mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 01:19:23 +07:00
d834c5ab83
The CMA memory allocator doesn't support standard gfp flags for memory
allocation, so there is no point having it as a parameter for
dma_alloc_from_contiguous() function. Replace it by a boolean no_warn
argument, which covers all the underlaying cma_alloc() function
supports.
This will help to avoid giving false feeling that this function supports
standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
what has already been an issue: see commit dd65a941f6
("arm64:
dma-mapping: clear buffers allocated with FORCE_CONTIGUOUS flag").
Link: http://lkml.kernel.org/r/20180709122020eucas1p21a71b092975cb4a3b9954ffc63f699d1~-sqUFoa-h2939329393eucas1p2Y@eucas1p2.samsung.com
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michał Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
894 lines
24 KiB
C
894 lines
24 KiB
C
/*
|
|
* SWIOTLB-based DMA API implementation
|
|
*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Catalin Marinas <catalin.marinas@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
static int swiotlb __ro_after_init;
|
|
|
|
static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
|
|
bool coherent)
|
|
{
|
|
if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
|
|
return pgprot_writecombine(prot);
|
|
return prot;
|
|
}
|
|
|
|
static struct gen_pool *atomic_pool __ro_after_init;
|
|
|
|
#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
|
|
static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
|
|
|
|
static int __init early_coherent_pool(char *p)
|
|
{
|
|
atomic_pool_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("coherent_pool", early_coherent_pool);
|
|
|
|
static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
|
|
{
|
|
unsigned long val;
|
|
void *ptr = NULL;
|
|
|
|
if (!atomic_pool) {
|
|
WARN(1, "coherent pool not initialised!\n");
|
|
return NULL;
|
|
}
|
|
|
|
val = gen_pool_alloc(atomic_pool, size);
|
|
if (val) {
|
|
phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
|
|
|
|
*ret_page = phys_to_page(phys);
|
|
ptr = (void *)val;
|
|
memset(ptr, 0, size);
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static bool __in_atomic_pool(void *start, size_t size)
|
|
{
|
|
return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
|
|
}
|
|
|
|
static int __free_from_pool(void *start, size_t size)
|
|
{
|
|
if (!__in_atomic_pool(start, size))
|
|
return 0;
|
|
|
|
gen_pool_free(atomic_pool, (unsigned long)start, size);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void *__dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page;
|
|
void *ptr, *coherent_ptr;
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!coherent && !gfpflags_allow_blocking(flags)) {
|
|
struct page *page = NULL;
|
|
void *addr = __alloc_from_pool(size, &page, flags);
|
|
|
|
if (addr)
|
|
*dma_handle = phys_to_dma(dev, page_to_phys(page));
|
|
|
|
return addr;
|
|
}
|
|
|
|
ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs);
|
|
if (!ptr)
|
|
goto no_mem;
|
|
|
|
/* no need for non-cacheable mapping if coherent */
|
|
if (coherent)
|
|
return ptr;
|
|
|
|
/* remove any dirty cache lines on the kernel alias */
|
|
__dma_flush_area(ptr, size);
|
|
|
|
/* create a coherent mapping */
|
|
page = virt_to_page(ptr);
|
|
coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
|
|
prot, __builtin_return_address(0));
|
|
if (!coherent_ptr)
|
|
goto no_map;
|
|
|
|
return coherent_ptr;
|
|
|
|
no_map:
|
|
swiotlb_free(dev, size, ptr, *dma_handle, attrs);
|
|
no_mem:
|
|
return NULL;
|
|
}
|
|
|
|
static void __dma_free(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
unsigned long attrs)
|
|
{
|
|
void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!is_device_dma_coherent(dev)) {
|
|
if (__free_from_pool(vaddr, size))
|
|
return;
|
|
vunmap(vaddr);
|
|
}
|
|
swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs);
|
|
}
|
|
|
|
static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
dma_addr_t dev_addr;
|
|
|
|
dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
|
|
if (!is_device_dma_coherent(dev) &&
|
|
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
|
|
return dev_addr;
|
|
}
|
|
|
|
|
|
static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if (!is_device_dma_coherent(dev) &&
|
|
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
|
|
}
|
|
|
|
static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i, ret;
|
|
|
|
ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
|
|
if (!is_device_dma_coherent(dev) &&
|
|
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
for_each_sg(sgl, sg, ret, i)
|
|
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __swiotlb_unmap_sg_attrs(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (!is_device_dma_coherent(dev) &&
|
|
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
|
|
}
|
|
|
|
static void __swiotlb_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (!is_device_dma_coherent(dev))
|
|
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
|
|
}
|
|
|
|
static void __swiotlb_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
|
|
if (!is_device_dma_coherent(dev))
|
|
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
}
|
|
|
|
static void __swiotlb_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (!is_device_dma_coherent(dev))
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
|
|
}
|
|
|
|
static void __swiotlb_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
|
|
if (!is_device_dma_coherent(dev))
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
}
|
|
|
|
static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
|
|
unsigned long pfn, size_t size)
|
|
{
|
|
int ret = -ENXIO;
|
|
unsigned long nr_vma_pages = vma_pages(vma);
|
|
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long off = vma->vm_pgoff;
|
|
|
|
if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + off,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __swiotlb_mmap(struct device *dev,
|
|
struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
int ret;
|
|
unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
|
|
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
|
|
is_device_dma_coherent(dev));
|
|
|
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
return __swiotlb_mmap_pfn(vma, pfn, size);
|
|
}
|
|
|
|
static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
|
|
struct page *page, size_t size)
|
|
{
|
|
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
|
|
|
if (!ret)
|
|
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t handle, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page = phys_to_page(dma_to_phys(dev, handle));
|
|
|
|
return __swiotlb_get_sgtable_page(sgt, page, size);
|
|
}
|
|
|
|
static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
|
|
{
|
|
if (swiotlb)
|
|
return swiotlb_dma_supported(hwdev, mask);
|
|
return 1;
|
|
}
|
|
|
|
static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
|
|
{
|
|
if (swiotlb)
|
|
return swiotlb_dma_mapping_error(hwdev, addr);
|
|
return 0;
|
|
}
|
|
|
|
static const struct dma_map_ops arm64_swiotlb_dma_ops = {
|
|
.alloc = __dma_alloc,
|
|
.free = __dma_free,
|
|
.mmap = __swiotlb_mmap,
|
|
.get_sgtable = __swiotlb_get_sgtable,
|
|
.map_page = __swiotlb_map_page,
|
|
.unmap_page = __swiotlb_unmap_page,
|
|
.map_sg = __swiotlb_map_sg_attrs,
|
|
.unmap_sg = __swiotlb_unmap_sg_attrs,
|
|
.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
|
|
.sync_single_for_device = __swiotlb_sync_single_for_device,
|
|
.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
|
|
.sync_sg_for_device = __swiotlb_sync_sg_for_device,
|
|
.dma_supported = __swiotlb_dma_supported,
|
|
.mapping_error = __swiotlb_dma_mapping_error,
|
|
};
|
|
|
|
static int __init atomic_pool_init(void)
|
|
{
|
|
pgprot_t prot = __pgprot(PROT_NORMAL_NC);
|
|
unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
|
|
struct page *page;
|
|
void *addr;
|
|
unsigned int pool_size_order = get_order(atomic_pool_size);
|
|
|
|
if (dev_get_cma_area(NULL))
|
|
page = dma_alloc_from_contiguous(NULL, nr_pages,
|
|
pool_size_order, false);
|
|
else
|
|
page = alloc_pages(GFP_DMA32, pool_size_order);
|
|
|
|
if (page) {
|
|
int ret;
|
|
void *page_addr = page_address(page);
|
|
|
|
memset(page_addr, 0, atomic_pool_size);
|
|
__dma_flush_area(page_addr, atomic_pool_size);
|
|
|
|
atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
|
|
if (!atomic_pool)
|
|
goto free_page;
|
|
|
|
addr = dma_common_contiguous_remap(page, atomic_pool_size,
|
|
VM_USERMAP, prot, atomic_pool_init);
|
|
|
|
if (!addr)
|
|
goto destroy_genpool;
|
|
|
|
ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
|
|
page_to_phys(page),
|
|
atomic_pool_size, -1);
|
|
if (ret)
|
|
goto remove_mapping;
|
|
|
|
gen_pool_set_algo(atomic_pool,
|
|
gen_pool_first_fit_order_align,
|
|
NULL);
|
|
|
|
pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
|
|
atomic_pool_size / 1024);
|
|
return 0;
|
|
}
|
|
goto out;
|
|
|
|
remove_mapping:
|
|
dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
|
|
destroy_genpool:
|
|
gen_pool_destroy(atomic_pool);
|
|
atomic_pool = NULL;
|
|
free_page:
|
|
if (!dma_release_from_contiguous(NULL, page, nr_pages))
|
|
__free_pages(page, pool_size_order);
|
|
out:
|
|
pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
|
|
atomic_pool_size / 1024);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/********************************************
|
|
* The following APIs are for dummy DMA ops *
|
|
********************************************/
|
|
|
|
static void *__dummy_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void __dummy_free(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
unsigned long attrs)
|
|
{
|
|
}
|
|
|
|
static int __dummy_mmap(struct device *dev,
|
|
struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
return -ENXIO;
|
|
}
|
|
|
|
static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
}
|
|
|
|
static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void __dummy_unmap_sg(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
}
|
|
|
|
static void __dummy_sync_single(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
}
|
|
|
|
static void __dummy_sync_sg(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
}
|
|
|
|
static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int __dummy_dma_supported(struct device *hwdev, u64 mask)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
const struct dma_map_ops dummy_dma_ops = {
|
|
.alloc = __dummy_alloc,
|
|
.free = __dummy_free,
|
|
.mmap = __dummy_mmap,
|
|
.map_page = __dummy_map_page,
|
|
.unmap_page = __dummy_unmap_page,
|
|
.map_sg = __dummy_map_sg,
|
|
.unmap_sg = __dummy_unmap_sg,
|
|
.sync_single_for_cpu = __dummy_sync_single,
|
|
.sync_single_for_device = __dummy_sync_single,
|
|
.sync_sg_for_cpu = __dummy_sync_sg,
|
|
.sync_sg_for_device = __dummy_sync_sg,
|
|
.mapping_error = __dummy_mapping_error,
|
|
.dma_supported = __dummy_dma_supported,
|
|
};
|
|
EXPORT_SYMBOL(dummy_dma_ops);
|
|
|
|
static int __init arm64_dma_init(void)
|
|
{
|
|
if (swiotlb_force == SWIOTLB_FORCE ||
|
|
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
|
|
swiotlb = 1;
|
|
|
|
WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
|
|
TAINT_CPU_OUT_OF_SPEC,
|
|
"ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
|
|
ARCH_DMA_MINALIGN, cache_line_size());
|
|
|
|
return atomic_pool_init();
|
|
}
|
|
arch_initcall(arm64_dma_init);
|
|
|
|
#ifdef CONFIG_IOMMU_DMA
|
|
#include <linux/dma-iommu.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/amba/bus.h>
|
|
|
|
/* Thankfully, all cache ops are by VA so we can ignore phys here */
|
|
static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
|
|
{
|
|
__dma_flush_area(virt, PAGE_SIZE);
|
|
}
|
|
|
|
static void *__iommu_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
|
|
size_t iosize = size;
|
|
void *addr;
|
|
|
|
if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
|
|
return NULL;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
/*
|
|
* Some drivers rely on this, and we probably don't want the
|
|
* possibility of stale kernel data being read by devices anyway.
|
|
*/
|
|
gfp |= __GFP_ZERO;
|
|
|
|
if (!gfpflags_allow_blocking(gfp)) {
|
|
struct page *page;
|
|
/*
|
|
* In atomic context we can't remap anything, so we'll only
|
|
* get the virtually contiguous buffer we need by way of a
|
|
* physically contiguous allocation.
|
|
*/
|
|
if (coherent) {
|
|
page = alloc_pages(gfp, get_order(size));
|
|
addr = page ? page_address(page) : NULL;
|
|
} else {
|
|
addr = __alloc_from_pool(size, &page, gfp);
|
|
}
|
|
if (!addr)
|
|
return NULL;
|
|
|
|
*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
|
|
if (iommu_dma_mapping_error(dev, *handle)) {
|
|
if (coherent)
|
|
__free_pages(page, get_order(size));
|
|
else
|
|
__free_from_pool(addr, size);
|
|
addr = NULL;
|
|
}
|
|
} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
|
|
struct page *page;
|
|
|
|
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
|
|
get_order(size), gfp & __GFP_NOWARN);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
|
|
if (iommu_dma_mapping_error(dev, *handle)) {
|
|
dma_release_from_contiguous(dev, page,
|
|
size >> PAGE_SHIFT);
|
|
return NULL;
|
|
}
|
|
addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
|
|
prot,
|
|
__builtin_return_address(0));
|
|
if (addr) {
|
|
memset(addr, 0, size);
|
|
if (!coherent)
|
|
__dma_flush_area(page_to_virt(page), iosize);
|
|
} else {
|
|
iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
|
|
dma_release_from_contiguous(dev, page,
|
|
size >> PAGE_SHIFT);
|
|
}
|
|
} else {
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
|
|
struct page **pages;
|
|
|
|
pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
|
|
handle, flush_page);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
|
|
__builtin_return_address(0));
|
|
if (!addr)
|
|
iommu_dma_free(dev, pages, iosize, handle);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
size_t iosize = size;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
/*
|
|
* @cpu_addr will be one of 4 things depending on how it was allocated:
|
|
* - A remapped array of pages for contiguous allocations.
|
|
* - A remapped array of pages from iommu_dma_alloc(), for all
|
|
* non-atomic allocations.
|
|
* - A non-cacheable alias from the atomic pool, for atomic
|
|
* allocations by non-coherent devices.
|
|
* - A normal lowmem address, for atomic allocations by
|
|
* coherent devices.
|
|
* Hence how dodgy the below logic looks...
|
|
*/
|
|
if (__in_atomic_pool(cpu_addr, size)) {
|
|
iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
|
|
__free_from_pool(cpu_addr, size);
|
|
} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
|
|
struct page *page = vmalloc_to_page(cpu_addr);
|
|
|
|
iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
|
|
dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
|
|
dma_common_free_remap(cpu_addr, size, VM_USERMAP);
|
|
} else if (is_vmalloc_addr(cpu_addr)){
|
|
struct vm_struct *area = find_vm_area(cpu_addr);
|
|
|
|
if (WARN_ON(!area || !area->pages))
|
|
return;
|
|
iommu_dma_free(dev, area->pages, iosize, &handle);
|
|
dma_common_free_remap(cpu_addr, size, VM_USERMAP);
|
|
} else {
|
|
iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
|
|
__free_pages(virt_to_page(cpu_addr), get_order(size));
|
|
}
|
|
}
|
|
|
|
static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
struct vm_struct *area;
|
|
int ret;
|
|
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
|
|
is_device_dma_coherent(dev));
|
|
|
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
|
|
/*
|
|
* DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
|
|
* hence in the vmalloc space.
|
|
*/
|
|
unsigned long pfn = vmalloc_to_pfn(cpu_addr);
|
|
return __swiotlb_mmap_pfn(vma, pfn, size);
|
|
}
|
|
|
|
area = find_vm_area(cpu_addr);
|
|
if (WARN_ON(!area || !area->pages))
|
|
return -ENXIO;
|
|
|
|
return iommu_dma_mmap(area->pages, size, vma);
|
|
}
|
|
|
|
static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t dma_addr,
|
|
size_t size, unsigned long attrs)
|
|
{
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
struct vm_struct *area = find_vm_area(cpu_addr);
|
|
|
|
if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
|
|
/*
|
|
* DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
|
|
* hence in the vmalloc space.
|
|
*/
|
|
struct page *page = vmalloc_to_page(cpu_addr);
|
|
return __swiotlb_get_sgtable_page(sgt, page, size);
|
|
}
|
|
|
|
if (WARN_ON(!area || !area->pages))
|
|
return -ENXIO;
|
|
|
|
return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static void __iommu_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t phys;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
|
|
__dma_unmap_area(phys_to_virt(phys), size, dir);
|
|
}
|
|
|
|
static void __iommu_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t phys;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
|
|
__dma_map_area(phys_to_virt(phys), size, dir);
|
|
}
|
|
|
|
static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
int prot = dma_info_to_prot(dir, coherent, attrs);
|
|
dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
|
|
|
|
if (!iommu_dma_mapping_error(dev, dev_addr) &&
|
|
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_single_for_device(dev, dev_addr, size, dir);
|
|
|
|
return dev_addr;
|
|
}
|
|
|
|
static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
|
|
|
|
iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
|
|
}
|
|
|
|
static void __iommu_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_unmap_area(sg_virt(sg), sg->length, dir);
|
|
}
|
|
|
|
static void __iommu_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_map_area(sg_virt(sg), sg->length, dir);
|
|
}
|
|
|
|
static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
|
|
|
|
return iommu_dma_map_sg(dev, sgl, nelems,
|
|
dma_info_to_prot(dir, coherent, attrs));
|
|
}
|
|
|
|
static void __iommu_unmap_sg_attrs(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
|
|
|
|
iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
|
|
}
|
|
|
|
static const struct dma_map_ops iommu_dma_ops = {
|
|
.alloc = __iommu_alloc_attrs,
|
|
.free = __iommu_free_attrs,
|
|
.mmap = __iommu_mmap_attrs,
|
|
.get_sgtable = __iommu_get_sgtable,
|
|
.map_page = __iommu_map_page,
|
|
.unmap_page = __iommu_unmap_page,
|
|
.map_sg = __iommu_map_sg_attrs,
|
|
.unmap_sg = __iommu_unmap_sg_attrs,
|
|
.sync_single_for_cpu = __iommu_sync_single_for_cpu,
|
|
.sync_single_for_device = __iommu_sync_single_for_device,
|
|
.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
|
|
.sync_sg_for_device = __iommu_sync_sg_for_device,
|
|
.map_resource = iommu_dma_map_resource,
|
|
.unmap_resource = iommu_dma_unmap_resource,
|
|
.mapping_error = iommu_dma_mapping_error,
|
|
};
|
|
|
|
static int __init __iommu_dma_init(void)
|
|
{
|
|
return iommu_dma_init();
|
|
}
|
|
arch_initcall(__iommu_dma_init);
|
|
|
|
static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *ops)
|
|
{
|
|
struct iommu_domain *domain;
|
|
|
|
if (!ops)
|
|
return;
|
|
|
|
/*
|
|
* The IOMMU core code allocates the default DMA domain, which the
|
|
* underlying IOMMU driver needs to support via the dma-iommu layer.
|
|
*/
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
|
|
if (!domain)
|
|
goto out_err;
|
|
|
|
if (domain->type == IOMMU_DOMAIN_DMA) {
|
|
if (iommu_dma_init_domain(domain, dma_base, size, dev))
|
|
goto out_err;
|
|
|
|
dev->dma_ops = &iommu_dma_ops;
|
|
}
|
|
|
|
return;
|
|
|
|
out_err:
|
|
pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
|
|
dev_name(dev));
|
|
}
|
|
|
|
void arch_teardown_dma_ops(struct device *dev)
|
|
{
|
|
dev->dma_ops = NULL;
|
|
}
|
|
|
|
#else
|
|
|
|
static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *iommu)
|
|
{ }
|
|
|
|
#endif /* CONFIG_IOMMU_DMA */
|
|
|
|
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *iommu, bool coherent)
|
|
{
|
|
if (!dev->dma_ops)
|
|
dev->dma_ops = &arm64_swiotlb_dma_ops;
|
|
|
|
dev->archdata.dma_coherent = coherent;
|
|
__iommu_setup_dma_ops(dev, dma_base, size, iommu);
|
|
|
|
#ifdef CONFIG_XEN
|
|
if (xen_initial_domain()) {
|
|
dev->archdata.dev_dma_ops = dev->dma_ops;
|
|
dev->dma_ops = xen_dma_ops;
|
|
}
|
|
#endif
|
|
}
|