mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 07:10:07 +07:00
91a2abb78f
Add a NEON-accelerated implementation of Speck128-XTS and Speck64-XTS for ARM64. This is ported from the 32-bit version. It may be useful on devices with 64-bit ARM CPUs that don't have the Cryptography Extensions, so cannot do AES efficiently -- e.g. the Cortex-A53 processor on the Raspberry Pi 3. It generally works the same way as the 32-bit version, but there are some slight differences due to the different instructions, registers, and syntax available in ARM64 vs. in ARM32. For example, in the 64-bit version there are enough registers to hold the XTS tweaks for each 128-byte chunk, so they don't need to be saved on the stack. Benchmarks on a Raspberry Pi 3 running a 64-bit kernel: Algorithm Encryption Decryption --------- ---------- ---------- Speck64/128-XTS (NEON) 92.2 MB/s 92.2 MB/s Speck128/256-XTS (NEON) 75.0 MB/s 75.0 MB/s Speck128/256-XTS (generic) 47.4 MB/s 35.6 MB/s AES-128-XTS (NEON bit-sliced) 33.4 MB/s 29.6 MB/s AES-256-XTS (NEON bit-sliced) 24.6 MB/s 21.7 MB/s The code performs well on higher-end ARM64 processors as well, though such processors tend to have the Crypto Extensions which make AES preferred. For example, here are the same benchmarks run on a HiKey960 (with CPU affinity set for the A73 cores), with the Crypto Extensions implementation of AES-256-XTS added: Algorithm Encryption Decryption --------- ----------- ----------- AES-256-XTS (Crypto Extensions) 1273.3 MB/s 1274.7 MB/s Speck64/128-XTS (NEON) 359.8 MB/s 348.0 MB/s Speck128/256-XTS (NEON) 292.5 MB/s 286.1 MB/s Speck128/256-XTS (generic) 186.3 MB/s 181.8 MB/s AES-128-XTS (NEON bit-sliced) 142.0 MB/s 124.3 MB/s AES-256-XTS (NEON bit-sliced) 104.7 MB/s 91.1 MB/s Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
353 lines
9.9 KiB
ArmAsm
353 lines
9.9 KiB
ArmAsm
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* ARM64 NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
|
|
*
|
|
* Copyright (c) 2018 Google, Inc
|
|
*
|
|
* Author: Eric Biggers <ebiggers@google.com>
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
.text
|
|
|
|
// arguments
|
|
ROUND_KEYS .req x0 // const {u64,u32} *round_keys
|
|
NROUNDS .req w1 // int nrounds
|
|
NROUNDS_X .req x1
|
|
DST .req x2 // void *dst
|
|
SRC .req x3 // const void *src
|
|
NBYTES .req w4 // unsigned int nbytes
|
|
TWEAK .req x5 // void *tweak
|
|
|
|
// registers which hold the data being encrypted/decrypted
|
|
// (underscores avoid a naming collision with ARM64 registers x0-x3)
|
|
X_0 .req v0
|
|
Y_0 .req v1
|
|
X_1 .req v2
|
|
Y_1 .req v3
|
|
X_2 .req v4
|
|
Y_2 .req v5
|
|
X_3 .req v6
|
|
Y_3 .req v7
|
|
|
|
// the round key, duplicated in all lanes
|
|
ROUND_KEY .req v8
|
|
|
|
// index vector for tbl-based 8-bit rotates
|
|
ROTATE_TABLE .req v9
|
|
ROTATE_TABLE_Q .req q9
|
|
|
|
// temporary registers
|
|
TMP0 .req v10
|
|
TMP1 .req v11
|
|
TMP2 .req v12
|
|
TMP3 .req v13
|
|
|
|
// multiplication table for updating XTS tweaks
|
|
GFMUL_TABLE .req v14
|
|
GFMUL_TABLE_Q .req q14
|
|
|
|
// next XTS tweak value(s)
|
|
TWEAKV_NEXT .req v15
|
|
|
|
// XTS tweaks for the blocks currently being encrypted/decrypted
|
|
TWEAKV0 .req v16
|
|
TWEAKV1 .req v17
|
|
TWEAKV2 .req v18
|
|
TWEAKV3 .req v19
|
|
TWEAKV4 .req v20
|
|
TWEAKV5 .req v21
|
|
TWEAKV6 .req v22
|
|
TWEAKV7 .req v23
|
|
|
|
.align 4
|
|
.Lror64_8_table:
|
|
.octa 0x080f0e0d0c0b0a090007060504030201
|
|
.Lror32_8_table:
|
|
.octa 0x0c0f0e0d080b0a090407060500030201
|
|
.Lrol64_8_table:
|
|
.octa 0x0e0d0c0b0a09080f0605040302010007
|
|
.Lrol32_8_table:
|
|
.octa 0x0e0d0c0f0a09080b0605040702010003
|
|
.Lgf128mul_table:
|
|
.octa 0x00000000000000870000000000000001
|
|
.Lgf64mul_table:
|
|
.octa 0x0000000000000000000000002d361b00
|
|
|
|
/*
|
|
* _speck_round_128bytes() - Speck encryption round on 128 bytes at a time
|
|
*
|
|
* Do one Speck encryption round on the 128 bytes (8 blocks for Speck128, 16 for
|
|
* Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes
|
|
* of ROUND_KEY. 'n' is the lane size: 64 for Speck128, or 32 for Speck64.
|
|
* 'lanes' is the lane specifier: "2d" for Speck128 or "4s" for Speck64.
|
|
*/
|
|
.macro _speck_round_128bytes n, lanes
|
|
|
|
// x = ror(x, 8)
|
|
tbl X_0.16b, {X_0.16b}, ROTATE_TABLE.16b
|
|
tbl X_1.16b, {X_1.16b}, ROTATE_TABLE.16b
|
|
tbl X_2.16b, {X_2.16b}, ROTATE_TABLE.16b
|
|
tbl X_3.16b, {X_3.16b}, ROTATE_TABLE.16b
|
|
|
|
// x += y
|
|
add X_0.\lanes, X_0.\lanes, Y_0.\lanes
|
|
add X_1.\lanes, X_1.\lanes, Y_1.\lanes
|
|
add X_2.\lanes, X_2.\lanes, Y_2.\lanes
|
|
add X_3.\lanes, X_3.\lanes, Y_3.\lanes
|
|
|
|
// x ^= k
|
|
eor X_0.16b, X_0.16b, ROUND_KEY.16b
|
|
eor X_1.16b, X_1.16b, ROUND_KEY.16b
|
|
eor X_2.16b, X_2.16b, ROUND_KEY.16b
|
|
eor X_3.16b, X_3.16b, ROUND_KEY.16b
|
|
|
|
// y = rol(y, 3)
|
|
shl TMP0.\lanes, Y_0.\lanes, #3
|
|
shl TMP1.\lanes, Y_1.\lanes, #3
|
|
shl TMP2.\lanes, Y_2.\lanes, #3
|
|
shl TMP3.\lanes, Y_3.\lanes, #3
|
|
sri TMP0.\lanes, Y_0.\lanes, #(\n - 3)
|
|
sri TMP1.\lanes, Y_1.\lanes, #(\n - 3)
|
|
sri TMP2.\lanes, Y_2.\lanes, #(\n - 3)
|
|
sri TMP3.\lanes, Y_3.\lanes, #(\n - 3)
|
|
|
|
// y ^= x
|
|
eor Y_0.16b, TMP0.16b, X_0.16b
|
|
eor Y_1.16b, TMP1.16b, X_1.16b
|
|
eor Y_2.16b, TMP2.16b, X_2.16b
|
|
eor Y_3.16b, TMP3.16b, X_3.16b
|
|
.endm
|
|
|
|
/*
|
|
* _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time
|
|
*
|
|
* This is the inverse of _speck_round_128bytes().
|
|
*/
|
|
.macro _speck_unround_128bytes n, lanes
|
|
|
|
// y ^= x
|
|
eor TMP0.16b, Y_0.16b, X_0.16b
|
|
eor TMP1.16b, Y_1.16b, X_1.16b
|
|
eor TMP2.16b, Y_2.16b, X_2.16b
|
|
eor TMP3.16b, Y_3.16b, X_3.16b
|
|
|
|
// y = ror(y, 3)
|
|
ushr Y_0.\lanes, TMP0.\lanes, #3
|
|
ushr Y_1.\lanes, TMP1.\lanes, #3
|
|
ushr Y_2.\lanes, TMP2.\lanes, #3
|
|
ushr Y_3.\lanes, TMP3.\lanes, #3
|
|
sli Y_0.\lanes, TMP0.\lanes, #(\n - 3)
|
|
sli Y_1.\lanes, TMP1.\lanes, #(\n - 3)
|
|
sli Y_2.\lanes, TMP2.\lanes, #(\n - 3)
|
|
sli Y_3.\lanes, TMP3.\lanes, #(\n - 3)
|
|
|
|
// x ^= k
|
|
eor X_0.16b, X_0.16b, ROUND_KEY.16b
|
|
eor X_1.16b, X_1.16b, ROUND_KEY.16b
|
|
eor X_2.16b, X_2.16b, ROUND_KEY.16b
|
|
eor X_3.16b, X_3.16b, ROUND_KEY.16b
|
|
|
|
// x -= y
|
|
sub X_0.\lanes, X_0.\lanes, Y_0.\lanes
|
|
sub X_1.\lanes, X_1.\lanes, Y_1.\lanes
|
|
sub X_2.\lanes, X_2.\lanes, Y_2.\lanes
|
|
sub X_3.\lanes, X_3.\lanes, Y_3.\lanes
|
|
|
|
// x = rol(x, 8)
|
|
tbl X_0.16b, {X_0.16b}, ROTATE_TABLE.16b
|
|
tbl X_1.16b, {X_1.16b}, ROTATE_TABLE.16b
|
|
tbl X_2.16b, {X_2.16b}, ROTATE_TABLE.16b
|
|
tbl X_3.16b, {X_3.16b}, ROTATE_TABLE.16b
|
|
.endm
|
|
|
|
.macro _next_xts_tweak next, cur, tmp, n
|
|
.if \n == 64
|
|
/*
|
|
* Calculate the next tweak by multiplying the current one by x,
|
|
* modulo p(x) = x^128 + x^7 + x^2 + x + 1.
|
|
*/
|
|
sshr \tmp\().2d, \cur\().2d, #63
|
|
and \tmp\().16b, \tmp\().16b, GFMUL_TABLE.16b
|
|
shl \next\().2d, \cur\().2d, #1
|
|
ext \tmp\().16b, \tmp\().16b, \tmp\().16b, #8
|
|
eor \next\().16b, \next\().16b, \tmp\().16b
|
|
.else
|
|
/*
|
|
* Calculate the next two tweaks by multiplying the current ones by x^2,
|
|
* modulo p(x) = x^64 + x^4 + x^3 + x + 1.
|
|
*/
|
|
ushr \tmp\().2d, \cur\().2d, #62
|
|
shl \next\().2d, \cur\().2d, #2
|
|
tbl \tmp\().16b, {GFMUL_TABLE.16b}, \tmp\().16b
|
|
eor \next\().16b, \next\().16b, \tmp\().16b
|
|
.endif
|
|
.endm
|
|
|
|
/*
|
|
* _speck_xts_crypt() - Speck-XTS encryption/decryption
|
|
*
|
|
* Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the DST buffer
|
|
* using Speck-XTS, specifically the variant with a block size of '2n' and round
|
|
* count given by NROUNDS. The expanded round keys are given in ROUND_KEYS, and
|
|
* the current XTS tweak value is given in TWEAK. It's assumed that NBYTES is a
|
|
* nonzero multiple of 128.
|
|
*/
|
|
.macro _speck_xts_crypt n, lanes, decrypting
|
|
|
|
/*
|
|
* If decrypting, modify the ROUND_KEYS parameter to point to the last
|
|
* round key rather than the first, since for decryption the round keys
|
|
* are used in reverse order.
|
|
*/
|
|
.if \decrypting
|
|
mov NROUNDS, NROUNDS /* zero the high 32 bits */
|
|
.if \n == 64
|
|
add ROUND_KEYS, ROUND_KEYS, NROUNDS_X, lsl #3
|
|
sub ROUND_KEYS, ROUND_KEYS, #8
|
|
.else
|
|
add ROUND_KEYS, ROUND_KEYS, NROUNDS_X, lsl #2
|
|
sub ROUND_KEYS, ROUND_KEYS, #4
|
|
.endif
|
|
.endif
|
|
|
|
// Load the index vector for tbl-based 8-bit rotates
|
|
.if \decrypting
|
|
ldr ROTATE_TABLE_Q, .Lrol\n\()_8_table
|
|
.else
|
|
ldr ROTATE_TABLE_Q, .Lror\n\()_8_table
|
|
.endif
|
|
|
|
// One-time XTS preparation
|
|
.if \n == 64
|
|
// Load first tweak
|
|
ld1 {TWEAKV0.16b}, [TWEAK]
|
|
|
|
// Load GF(2^128) multiplication table
|
|
ldr GFMUL_TABLE_Q, .Lgf128mul_table
|
|
.else
|
|
// Load first tweak
|
|
ld1 {TWEAKV0.8b}, [TWEAK]
|
|
|
|
// Load GF(2^64) multiplication table
|
|
ldr GFMUL_TABLE_Q, .Lgf64mul_table
|
|
|
|
// Calculate second tweak, packing it together with the first
|
|
ushr TMP0.2d, TWEAKV0.2d, #63
|
|
shl TMP1.2d, TWEAKV0.2d, #1
|
|
tbl TMP0.8b, {GFMUL_TABLE.16b}, TMP0.8b
|
|
eor TMP0.8b, TMP0.8b, TMP1.8b
|
|
mov TWEAKV0.d[1], TMP0.d[0]
|
|
.endif
|
|
|
|
.Lnext_128bytes_\@:
|
|
|
|
// Calculate XTS tweaks for next 128 bytes
|
|
_next_xts_tweak TWEAKV1, TWEAKV0, TMP0, \n
|
|
_next_xts_tweak TWEAKV2, TWEAKV1, TMP0, \n
|
|
_next_xts_tweak TWEAKV3, TWEAKV2, TMP0, \n
|
|
_next_xts_tweak TWEAKV4, TWEAKV3, TMP0, \n
|
|
_next_xts_tweak TWEAKV5, TWEAKV4, TMP0, \n
|
|
_next_xts_tweak TWEAKV6, TWEAKV5, TMP0, \n
|
|
_next_xts_tweak TWEAKV7, TWEAKV6, TMP0, \n
|
|
_next_xts_tweak TWEAKV_NEXT, TWEAKV7, TMP0, \n
|
|
|
|
// Load the next source blocks into {X,Y}[0-3]
|
|
ld1 {X_0.16b-Y_1.16b}, [SRC], #64
|
|
ld1 {X_2.16b-Y_3.16b}, [SRC], #64
|
|
|
|
// XOR the source blocks with their XTS tweaks
|
|
eor TMP0.16b, X_0.16b, TWEAKV0.16b
|
|
eor Y_0.16b, Y_0.16b, TWEAKV1.16b
|
|
eor TMP1.16b, X_1.16b, TWEAKV2.16b
|
|
eor Y_1.16b, Y_1.16b, TWEAKV3.16b
|
|
eor TMP2.16b, X_2.16b, TWEAKV4.16b
|
|
eor Y_2.16b, Y_2.16b, TWEAKV5.16b
|
|
eor TMP3.16b, X_3.16b, TWEAKV6.16b
|
|
eor Y_3.16b, Y_3.16b, TWEAKV7.16b
|
|
|
|
/*
|
|
* De-interleave the 'x' and 'y' elements of each block, i.e. make it so
|
|
* that the X[0-3] registers contain only the second halves of blocks,
|
|
* and the Y[0-3] registers contain only the first halves of blocks.
|
|
* (Speck uses the order (y, x) rather than the more intuitive (x, y).)
|
|
*/
|
|
uzp2 X_0.\lanes, TMP0.\lanes, Y_0.\lanes
|
|
uzp1 Y_0.\lanes, TMP0.\lanes, Y_0.\lanes
|
|
uzp2 X_1.\lanes, TMP1.\lanes, Y_1.\lanes
|
|
uzp1 Y_1.\lanes, TMP1.\lanes, Y_1.\lanes
|
|
uzp2 X_2.\lanes, TMP2.\lanes, Y_2.\lanes
|
|
uzp1 Y_2.\lanes, TMP2.\lanes, Y_2.\lanes
|
|
uzp2 X_3.\lanes, TMP3.\lanes, Y_3.\lanes
|
|
uzp1 Y_3.\lanes, TMP3.\lanes, Y_3.\lanes
|
|
|
|
// Do the cipher rounds
|
|
mov x6, ROUND_KEYS
|
|
mov w7, NROUNDS
|
|
.Lnext_round_\@:
|
|
.if \decrypting
|
|
ld1r {ROUND_KEY.\lanes}, [x6]
|
|
sub x6, x6, #( \n / 8 )
|
|
_speck_unround_128bytes \n, \lanes
|
|
.else
|
|
ld1r {ROUND_KEY.\lanes}, [x6], #( \n / 8 )
|
|
_speck_round_128bytes \n, \lanes
|
|
.endif
|
|
subs w7, w7, #1
|
|
bne .Lnext_round_\@
|
|
|
|
// Re-interleave the 'x' and 'y' elements of each block
|
|
zip1 TMP0.\lanes, Y_0.\lanes, X_0.\lanes
|
|
zip2 Y_0.\lanes, Y_0.\lanes, X_0.\lanes
|
|
zip1 TMP1.\lanes, Y_1.\lanes, X_1.\lanes
|
|
zip2 Y_1.\lanes, Y_1.\lanes, X_1.\lanes
|
|
zip1 TMP2.\lanes, Y_2.\lanes, X_2.\lanes
|
|
zip2 Y_2.\lanes, Y_2.\lanes, X_2.\lanes
|
|
zip1 TMP3.\lanes, Y_3.\lanes, X_3.\lanes
|
|
zip2 Y_3.\lanes, Y_3.\lanes, X_3.\lanes
|
|
|
|
// XOR the encrypted/decrypted blocks with the tweaks calculated earlier
|
|
eor X_0.16b, TMP0.16b, TWEAKV0.16b
|
|
eor Y_0.16b, Y_0.16b, TWEAKV1.16b
|
|
eor X_1.16b, TMP1.16b, TWEAKV2.16b
|
|
eor Y_1.16b, Y_1.16b, TWEAKV3.16b
|
|
eor X_2.16b, TMP2.16b, TWEAKV4.16b
|
|
eor Y_2.16b, Y_2.16b, TWEAKV5.16b
|
|
eor X_3.16b, TMP3.16b, TWEAKV6.16b
|
|
eor Y_3.16b, Y_3.16b, TWEAKV7.16b
|
|
mov TWEAKV0.16b, TWEAKV_NEXT.16b
|
|
|
|
// Store the ciphertext in the destination buffer
|
|
st1 {X_0.16b-Y_1.16b}, [DST], #64
|
|
st1 {X_2.16b-Y_3.16b}, [DST], #64
|
|
|
|
// Continue if there are more 128-byte chunks remaining
|
|
subs NBYTES, NBYTES, #128
|
|
bne .Lnext_128bytes_\@
|
|
|
|
// Store the next tweak and return
|
|
.if \n == 64
|
|
st1 {TWEAKV_NEXT.16b}, [TWEAK]
|
|
.else
|
|
st1 {TWEAKV_NEXT.8b}, [TWEAK]
|
|
.endif
|
|
ret
|
|
.endm
|
|
|
|
ENTRY(speck128_xts_encrypt_neon)
|
|
_speck_xts_crypt n=64, lanes=2d, decrypting=0
|
|
ENDPROC(speck128_xts_encrypt_neon)
|
|
|
|
ENTRY(speck128_xts_decrypt_neon)
|
|
_speck_xts_crypt n=64, lanes=2d, decrypting=1
|
|
ENDPROC(speck128_xts_decrypt_neon)
|
|
|
|
ENTRY(speck64_xts_encrypt_neon)
|
|
_speck_xts_crypt n=32, lanes=4s, decrypting=0
|
|
ENDPROC(speck64_xts_encrypt_neon)
|
|
|
|
ENTRY(speck64_xts_decrypt_neon)
|
|
_speck_xts_crypt n=32, lanes=4s, decrypting=1
|
|
ENDPROC(speck64_xts_decrypt_neon)
|