linux_dsm_epyc7002/fs/btrfs/file-item.c
Filipe Manana 40e046acbd Btrfs: fix missing data checksums after replaying a log tree
When logging a file that has shared extents (reflinked with other files or
with itself), we can end up logging multiple checksum items that cover
overlapping ranges. This confuses the search for checksums at log replay
time causing some checksums to never be added to the fs/subvolume tree.

Consider the following example of a file that shares the same extent at
offsets 0 and 256Kb:

   [ bytenr 13893632, offset 64Kb, len 64Kb  ]
   0                                         64Kb

   [ bytenr 13631488, offset 64Kb, len 192Kb ]
   64Kb                                      256Kb

   [ bytenr 13893632, offset 0, len 256Kb    ]
   256Kb                                     512Kb

When logging the inode, at tree-log.c:copy_items(), when processing the
file extent item at offset 0, we log a checksum item covering the range
13959168 to 14024704, which corresponds to 13893632 + 64Kb and 13893632 +
64Kb + 64Kb, respectively.

Later when processing the extent item at offset 256K, we log the checksums
for the range from 13893632 to 14155776 (which corresponds to 13893632 +
256Kb). These checksums get merged with the checksum item for the range
from 13631488 to 13893632 (13631488 + 256Kb), logged by a previous fsync.
So after this we get the two following checksum items in the log tree:

   (...)
   item 6 key (EXTENT_CSUM EXTENT_CSUM 13631488) itemoff 3095 itemsize 512
           range start 13631488 end 14155776 length 524288
   item 7 key (EXTENT_CSUM EXTENT_CSUM 13959168) itemoff 3031 itemsize 64
           range start 13959168 end 14024704 length 65536

The first one covers the range from the second one, they overlap.

So far this does not cause a problem after replaying the log, because
when replaying the file extent item for offset 256K, we copy all the
checksums for the extent 13893632 from the log tree to the fs/subvolume
tree, since searching for an checksum item for bytenr 13893632 leaves us
at the first checksum item, which covers the whole range of the extent.

However if we write 64Kb to file offset 256Kb for example, we will
not be able to find and copy the checksums for the last 128Kb of the
extent at bytenr 13893632, referenced by the file range 384Kb to 512Kb.

After writing 64Kb into file offset 256Kb we get the following extent
layout for our file:

   [ bytenr 13893632, offset 64K, len 64Kb   ]
   0                                         64Kb

   [ bytenr 13631488, offset 64Kb, len 192Kb ]
   64Kb                                      256Kb

   [ bytenr 14155776, offset 0, len 64Kb     ]
   256Kb                                     320Kb

   [ bytenr 13893632, offset 64Kb, len 192Kb ]
   320Kb                                     512Kb

After fsync'ing the file, if we have a power failure and then mount
the filesystem to replay the log, the following happens:

1) When replaying the file extent item for file offset 320Kb, we
   lookup for the checksums for the extent range from 13959168
   (13893632 + 64Kb) to 14155776 (13893632 + 256Kb), through a call
   to btrfs_lookup_csums_range();

2) btrfs_lookup_csums_range() finds the checksum item that starts
   precisely at offset 13959168 (item 7 in the log tree, shown before);

3) However that checksum item only covers 64Kb of data, and not 192Kb
   of data;

4) As a result only the checksums for the first 64Kb of data referenced
   by the file extent item are found and copied to the fs/subvolume tree.
   The remaining 128Kb of data, file range 384Kb to 512Kb, doesn't get
   the corresponding data checksums found and copied to the fs/subvolume
   tree.

5) After replaying the log userspace will not be able to read the file
   range from 384Kb to 512Kb, because the checksums are missing and
   resulting in an -EIO error.

The following steps reproduce this scenario:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt/sdc

  $ xfs_io -f -c "pwrite -S 0xa3 0 256K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar
  $ xfs_io -c "pwrite -S 0xc7 256K 256K" /mnt/sdc/foobar

  $ xfs_io -c "reflink /mnt/sdc/foobar 320K 0 64K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar

  $ xfs_io -c "pwrite -S 0xe5 256K 64K" /mnt/sdc/foobar
  $ xfs_io -c "fsync" /mnt/sdc/foobar

  <power failure>

  $ mount /dev/sdc /mnt/sdc
  $ md5sum /mnt/sdc/foobar
  md5sum: /mnt/sdc/foobar: Input/output error

  $ dmesg | tail
  [165305.003464] BTRFS info (device sdc): no csum found for inode 257 start 401408
  [165305.004014] BTRFS info (device sdc): no csum found for inode 257 start 405504
  [165305.004559] BTRFS info (device sdc): no csum found for inode 257 start 409600
  [165305.005101] BTRFS info (device sdc): no csum found for inode 257 start 413696
  [165305.005627] BTRFS info (device sdc): no csum found for inode 257 start 417792
  [165305.006134] BTRFS info (device sdc): no csum found for inode 257 start 421888
  [165305.006625] BTRFS info (device sdc): no csum found for inode 257 start 425984
  [165305.007278] BTRFS info (device sdc): no csum found for inode 257 start 430080
  [165305.008248] BTRFS warning (device sdc): csum failed root 5 ino 257 off 393216 csum 0x1337385e expected csum 0x00000000 mirror 1
  [165305.009550] BTRFS warning (device sdc): csum failed root 5 ino 257 off 393216 csum 0x1337385e expected csum 0x00000000 mirror 1

Fix this simply by deleting first any checksums, from the log tree, for the
range of the extent we are logging at copy_items(). This ensures we do not
get checksum items in the log tree that have overlapping ranges.

This is a long time issue that has been present since we have the clone
(and deduplication) ioctl, and can happen both when an extent is shared
between different files and within the same file.

A test case for fstests follows soon.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-13 14:09:24 +01:00

1011 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/sched/mm.h>
#include <crypto/hash.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "print-tree.h"
#include "compression.h"
#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
sizeof(struct btrfs_item) * 2) / \
size) - 1))
#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
PAGE_SIZE))
static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
u16 csum_size)
{
u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
return ncsums * fs_info->sectorsize;
}
int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 pos,
u64 disk_offset, u64 disk_num_bytes,
u64 num_bytes, u64 offset, u64 ram_bytes,
u8 compression, u8 encryption, u16 other_encoding)
{
int ret = 0;
struct btrfs_file_extent_item *item;
struct btrfs_key file_key;
struct btrfs_path *path;
struct extent_buffer *leaf;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
file_key.objectid = objectid;
file_key.offset = pos;
file_key.type = BTRFS_EXTENT_DATA_KEY;
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
sizeof(*item));
if (ret < 0)
goto out;
BUG_ON(ret); /* Can't happen */
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
btrfs_set_file_extent_offset(leaf, item, offset);
btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
btrfs_set_file_extent_generation(leaf, item, trans->transid);
btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_compression(leaf, item, compression);
btrfs_set_file_extent_encryption(leaf, item, encryption);
btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, int cow)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
struct btrfs_key file_key;
struct btrfs_key found_key;
struct btrfs_csum_item *item;
struct extent_buffer *leaf;
u64 csum_offset = 0;
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
int csums_in_item;
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
file_key.offset = bytenr;
file_key.type = BTRFS_EXTENT_CSUM_KEY;
ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
if (ret < 0)
goto fail;
leaf = path->nodes[0];
if (ret > 0) {
ret = 1;
if (path->slots[0] == 0)
goto fail;
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
goto fail;
csum_offset = (bytenr - found_key.offset) >>
fs_info->sb->s_blocksize_bits;
csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
csums_in_item /= csum_size;
if (csum_offset == csums_in_item) {
ret = -EFBIG;
goto fail;
} else if (csum_offset > csums_in_item) {
goto fail;
}
}
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
item = (struct btrfs_csum_item *)((unsigned char *)item +
csum_offset * csum_size);
return item;
fail:
if (ret > 0)
ret = -ENOENT;
return ERR_PTR(ret);
}
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid,
u64 offset, int mod)
{
int ret;
struct btrfs_key file_key;
int ins_len = mod < 0 ? -1 : 0;
int cow = mod != 0;
file_key.objectid = objectid;
file_key.offset = offset;
file_key.type = BTRFS_EXTENT_DATA_KEY;
ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
return ret;
}
static blk_status_t __btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
u64 logical_offset, u8 *dst, int dio)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct bio_vec bvec;
struct bvec_iter iter;
struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
struct btrfs_csum_item *item = NULL;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_path *path;
u8 *csum;
u64 offset = 0;
u64 item_start_offset = 0;
u64 item_last_offset = 0;
u64 disk_bytenr;
u64 page_bytes_left;
u32 diff;
int nblocks;
int count = 0;
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
path = btrfs_alloc_path();
if (!path)
return BLK_STS_RESOURCE;
nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
if (!dst) {
if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
GFP_NOFS);
if (!btrfs_bio->csum) {
btrfs_free_path(path);
return BLK_STS_RESOURCE;
}
} else {
btrfs_bio->csum = btrfs_bio->csum_inline;
}
csum = btrfs_bio->csum;
} else {
csum = dst;
}
if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
path->reada = READA_FORWARD;
/*
* the free space stuff is only read when it hasn't been
* updated in the current transaction. So, we can safely
* read from the commit root and sidestep a nasty deadlock
* between reading the free space cache and updating the csum tree.
*/
if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
path->search_commit_root = 1;
path->skip_locking = 1;
}
disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
if (dio)
offset = logical_offset;
bio_for_each_segment(bvec, bio, iter) {
page_bytes_left = bvec.bv_len;
if (count)
goto next;
if (!dio)
offset = page_offset(bvec.bv_page) + bvec.bv_offset;
count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
csum, nblocks);
if (count)
goto found;
if (!item || disk_bytenr < item_start_offset ||
disk_bytenr >= item_last_offset) {
struct btrfs_key found_key;
u32 item_size;
if (item)
btrfs_release_path(path);
item = btrfs_lookup_csum(NULL, fs_info->csum_root,
path, disk_bytenr, 0);
if (IS_ERR(item)) {
count = 1;
memset(csum, 0, csum_size);
if (BTRFS_I(inode)->root->root_key.objectid ==
BTRFS_DATA_RELOC_TREE_OBJECTID) {
set_extent_bits(io_tree, offset,
offset + fs_info->sectorsize - 1,
EXTENT_NODATASUM);
} else {
btrfs_info_rl(fs_info,
"no csum found for inode %llu start %llu",
btrfs_ino(BTRFS_I(inode)), offset);
}
item = NULL;
btrfs_release_path(path);
goto found;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
item_start_offset = found_key.offset;
item_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
item_last_offset = item_start_offset +
(item_size / csum_size) *
fs_info->sectorsize;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_csum_item);
}
/*
* this byte range must be able to fit inside
* a single leaf so it will also fit inside a u32
*/
diff = disk_bytenr - item_start_offset;
diff = diff / fs_info->sectorsize;
diff = diff * csum_size;
count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
inode->i_sb->s_blocksize_bits);
read_extent_buffer(path->nodes[0], csum,
((unsigned long)item) + diff,
csum_size * count);
found:
csum += count * csum_size;
nblocks -= count;
next:
while (count--) {
disk_bytenr += fs_info->sectorsize;
offset += fs_info->sectorsize;
page_bytes_left -= fs_info->sectorsize;
if (!page_bytes_left)
break; /* move to next bio */
}
}
WARN_ON_ONCE(count);
btrfs_free_path(path);
return 0;
}
blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
u8 *dst)
{
return __btrfs_lookup_bio_sums(inode, bio, 0, dst, 0);
}
blk_status_t btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio, u64 offset)
{
return __btrfs_lookup_bio_sums(inode, bio, offset, NULL, 1);
}
int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
struct list_head *list, int search_commit)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_key key;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_ordered_sum *sums;
struct btrfs_csum_item *item;
LIST_HEAD(tmplist);
unsigned long offset;
int ret;
size_t size;
u64 csum_end;
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
IS_ALIGNED(end + 1, fs_info->sectorsize));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (search_commit) {
path->skip_locking = 1;
path->reada = READA_FORWARD;
path->search_commit_root = 1;
}
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
key.offset = start;
key.type = BTRFS_EXTENT_CSUM_KEY;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto fail;
if (ret > 0 && path->slots[0] > 0) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
key.type == BTRFS_EXTENT_CSUM_KEY) {
offset = (start - key.offset) >>
fs_info->sb->s_blocksize_bits;
if (offset * csum_size <
btrfs_item_size_nr(leaf, path->slots[0] - 1))
path->slots[0]--;
}
}
while (start <= end) {
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto fail;
if (ret > 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
key.type != BTRFS_EXTENT_CSUM_KEY ||
key.offset > end)
break;
if (key.offset > start)
start = key.offset;
size = btrfs_item_size_nr(leaf, path->slots[0]);
csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
if (csum_end <= start) {
path->slots[0]++;
continue;
}
csum_end = min(csum_end, end + 1);
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_csum_item);
while (start < csum_end) {
size = min_t(size_t, csum_end - start,
max_ordered_sum_bytes(fs_info, csum_size));
sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
GFP_NOFS);
if (!sums) {
ret = -ENOMEM;
goto fail;
}
sums->bytenr = start;
sums->len = (int)size;
offset = (start - key.offset) >>
fs_info->sb->s_blocksize_bits;
offset *= csum_size;
size >>= fs_info->sb->s_blocksize_bits;
read_extent_buffer(path->nodes[0],
sums->sums,
((unsigned long)item) + offset,
csum_size * size);
start += fs_info->sectorsize * size;
list_add_tail(&sums->list, &tmplist);
}
path->slots[0]++;
}
ret = 0;
fail:
while (ret < 0 && !list_empty(&tmplist)) {
sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
list_del(&sums->list);
kfree(sums);
}
list_splice_tail(&tmplist, list);
btrfs_free_path(path);
return ret;
}
/*
* btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
* @inode: Owner of the data inside the bio
* @bio: Contains the data to be checksummed
* @file_start: offset in file this bio begins to describe
* @contig: Boolean. If true/1 means all bio vecs in this bio are
* contiguous and they begin at @file_start in the file. False/0
* means this bio can contains potentially discontigous bio vecs
* so the logical offset of each should be calculated separately.
*/
blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
u64 file_start, int contig)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
struct btrfs_ordered_sum *sums;
struct btrfs_ordered_extent *ordered = NULL;
char *data;
struct bvec_iter iter;
struct bio_vec bvec;
int index;
int nr_sectors;
unsigned long total_bytes = 0;
unsigned long this_sum_bytes = 0;
int i;
u64 offset;
unsigned nofs_flag;
const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
nofs_flag = memalloc_nofs_save();
sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
if (!sums)
return BLK_STS_RESOURCE;
sums->len = bio->bi_iter.bi_size;
INIT_LIST_HEAD(&sums->list);
if (contig)
offset = file_start;
else
offset = 0; /* shut up gcc */
sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
index = 0;
shash->tfm = fs_info->csum_shash;
bio_for_each_segment(bvec, bio, iter) {
if (!contig)
offset = page_offset(bvec.bv_page) + bvec.bv_offset;
if (!ordered) {
ordered = btrfs_lookup_ordered_extent(inode, offset);
BUG_ON(!ordered); /* Logic error */
}
nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
bvec.bv_len + fs_info->sectorsize
- 1);
for (i = 0; i < nr_sectors; i++) {
if (offset >= ordered->file_offset + ordered->len ||
offset < ordered->file_offset) {
unsigned long bytes_left;
sums->len = this_sum_bytes;
this_sum_bytes = 0;
btrfs_add_ordered_sum(ordered, sums);
btrfs_put_ordered_extent(ordered);
bytes_left = bio->bi_iter.bi_size - total_bytes;
nofs_flag = memalloc_nofs_save();
sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
bytes_left), GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
BUG_ON(!sums); /* -ENOMEM */
sums->len = bytes_left;
ordered = btrfs_lookup_ordered_extent(inode,
offset);
ASSERT(ordered); /* Logic error */
sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
+ total_bytes;
index = 0;
}
crypto_shash_init(shash);
data = kmap_atomic(bvec.bv_page);
crypto_shash_update(shash, data + bvec.bv_offset
+ (i * fs_info->sectorsize),
fs_info->sectorsize);
kunmap_atomic(data);
crypto_shash_final(shash, (char *)(sums->sums + index));
index += csum_size;
offset += fs_info->sectorsize;
this_sum_bytes += fs_info->sectorsize;
total_bytes += fs_info->sectorsize;
}
}
this_sum_bytes = 0;
btrfs_add_ordered_sum(ordered, sums);
btrfs_put_ordered_extent(ordered);
return 0;
}
/*
* helper function for csum removal, this expects the
* key to describe the csum pointed to by the path, and it expects
* the csum to overlap the range [bytenr, len]
*
* The csum should not be entirely contained in the range and the
* range should not be entirely contained in the csum.
*
* This calls btrfs_truncate_item with the correct args based on the
* overlap, and fixes up the key as required.
*/
static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
struct btrfs_key *key,
u64 bytenr, u64 len)
{
struct extent_buffer *leaf;
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
u64 csum_end;
u64 end_byte = bytenr + len;
u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
leaf = path->nodes[0];
csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
csum_end <<= fs_info->sb->s_blocksize_bits;
csum_end += key->offset;
if (key->offset < bytenr && csum_end <= end_byte) {
/*
* [ bytenr - len ]
* [ ]
* [csum ]
* A simple truncate off the end of the item
*/
u32 new_size = (bytenr - key->offset) >> blocksize_bits;
new_size *= csum_size;
btrfs_truncate_item(path, new_size, 1);
} else if (key->offset >= bytenr && csum_end > end_byte &&
end_byte > key->offset) {
/*
* [ bytenr - len ]
* [ ]
* [csum ]
* we need to truncate from the beginning of the csum
*/
u32 new_size = (csum_end - end_byte) >> blocksize_bits;
new_size *= csum_size;
btrfs_truncate_item(path, new_size, 0);
key->offset = end_byte;
btrfs_set_item_key_safe(fs_info, path, key);
} else {
BUG();
}
}
/*
* deletes the csum items from the csum tree for a given
* range of bytes.
*/
int btrfs_del_csums(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr, u64 len)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_path *path;
struct btrfs_key key;
u64 end_byte = bytenr + len;
u64 csum_end;
struct extent_buffer *leaf;
int ret;
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
int blocksize_bits = fs_info->sb->s_blocksize_bits;
ASSERT(root == fs_info->csum_root ||
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
key.offset = end_byte - 1;
key.type = BTRFS_EXTENT_CSUM_KEY;
path->leave_spinning = 1;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
} else if (ret < 0) {
break;
}
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
key.type != BTRFS_EXTENT_CSUM_KEY) {
break;
}
if (key.offset >= end_byte)
break;
csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
csum_end <<= blocksize_bits;
csum_end += key.offset;
/* this csum ends before we start, we're done */
if (csum_end <= bytenr)
break;
/* delete the entire item, it is inside our range */
if (key.offset >= bytenr && csum_end <= end_byte) {
int del_nr = 1;
/*
* Check how many csum items preceding this one in this
* leaf correspond to our range and then delete them all
* at once.
*/
if (key.offset > bytenr && path->slots[0] > 0) {
int slot = path->slots[0] - 1;
while (slot >= 0) {
struct btrfs_key pk;
btrfs_item_key_to_cpu(leaf, &pk, slot);
if (pk.offset < bytenr ||
pk.type != BTRFS_EXTENT_CSUM_KEY ||
pk.objectid !=
BTRFS_EXTENT_CSUM_OBJECTID)
break;
path->slots[0] = slot;
del_nr++;
key.offset = pk.offset;
slot--;
}
}
ret = btrfs_del_items(trans, root, path,
path->slots[0], del_nr);
if (ret)
goto out;
if (key.offset == bytenr)
break;
} else if (key.offset < bytenr && csum_end > end_byte) {
unsigned long offset;
unsigned long shift_len;
unsigned long item_offset;
/*
* [ bytenr - len ]
* [csum ]
*
* Our bytes are in the middle of the csum,
* we need to split this item and insert a new one.
*
* But we can't drop the path because the
* csum could change, get removed, extended etc.
*
* The trick here is the max size of a csum item leaves
* enough room in the tree block for a single
* item header. So, we split the item in place,
* adding a new header pointing to the existing
* bytes. Then we loop around again and we have
* a nicely formed csum item that we can neatly
* truncate.
*/
offset = (bytenr - key.offset) >> blocksize_bits;
offset *= csum_size;
shift_len = (len >> blocksize_bits) * csum_size;
item_offset = btrfs_item_ptr_offset(leaf,
path->slots[0]);
memzero_extent_buffer(leaf, item_offset + offset,
shift_len);
key.offset = bytenr;
/*
* btrfs_split_item returns -EAGAIN when the
* item changed size or key
*/
ret = btrfs_split_item(trans, root, path, &key, offset);
if (ret && ret != -EAGAIN) {
btrfs_abort_transaction(trans, ret);
goto out;
}
key.offset = end_byte - 1;
} else {
truncate_one_csum(fs_info, path, &key, bytenr, len);
if (key.offset < bytenr)
break;
}
btrfs_release_path(path);
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_ordered_sum *sums)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_key file_key;
struct btrfs_key found_key;
struct btrfs_path *path;
struct btrfs_csum_item *item;
struct btrfs_csum_item *item_end;
struct extent_buffer *leaf = NULL;
u64 next_offset;
u64 total_bytes = 0;
u64 csum_offset;
u64 bytenr;
u32 nritems;
u32 ins_size;
int index = 0;
int found_next;
int ret;
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
next_offset = (u64)-1;
found_next = 0;
bytenr = sums->bytenr + total_bytes;
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
file_key.offset = bytenr;
file_key.type = BTRFS_EXTENT_CSUM_KEY;
item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
if (!IS_ERR(item)) {
ret = 0;
leaf = path->nodes[0];
item_end = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_csum_item);
item_end = (struct btrfs_csum_item *)((char *)item_end +
btrfs_item_size_nr(leaf, path->slots[0]));
goto found;
}
ret = PTR_ERR(item);
if (ret != -EFBIG && ret != -ENOENT)
goto fail_unlock;
if (ret == -EFBIG) {
u32 item_size;
/* we found one, but it isn't big enough yet */
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
if ((item_size / csum_size) >=
MAX_CSUM_ITEMS(fs_info, csum_size)) {
/* already at max size, make a new one */
goto insert;
}
} else {
int slot = path->slots[0] + 1;
/* we didn't find a csum item, insert one */
nritems = btrfs_header_nritems(path->nodes[0]);
if (!nritems || (path->slots[0] >= nritems - 1)) {
ret = btrfs_next_leaf(root, path);
if (ret == 1)
found_next = 1;
if (ret != 0)
goto insert;
slot = path->slots[0];
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
found_key.type != BTRFS_EXTENT_CSUM_KEY) {
found_next = 1;
goto insert;
}
next_offset = found_key.offset;
found_next = 1;
goto insert;
}
/*
* at this point, we know the tree has an item, but it isn't big
* enough yet to put our csum in. Grow it
*/
btrfs_release_path(path);
ret = btrfs_search_slot(trans, root, &file_key, path,
csum_size, 1);
if (ret < 0)
goto fail_unlock;
if (ret > 0) {
if (path->slots[0] == 0)
goto insert;
path->slots[0]--;
}
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
csum_offset = (bytenr - found_key.offset) >>
fs_info->sb->s_blocksize_bits;
if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
goto insert;
}
if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
csum_size) {
int extend_nr;
u64 tmp;
u32 diff;
u32 free_space;
if (btrfs_leaf_free_space(leaf) <
sizeof(struct btrfs_item) + csum_size * 2)
goto insert;
free_space = btrfs_leaf_free_space(leaf) -
sizeof(struct btrfs_item) - csum_size;
tmp = sums->len - total_bytes;
tmp >>= fs_info->sb->s_blocksize_bits;
WARN_ON(tmp < 1);
extend_nr = max_t(int, 1, (int)tmp);
diff = (csum_offset + extend_nr) * csum_size;
diff = min(diff,
MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
diff = min(free_space, diff);
diff /= csum_size;
diff *= csum_size;
btrfs_extend_item(path, diff);
ret = 0;
goto csum;
}
insert:
btrfs_release_path(path);
csum_offset = 0;
if (found_next) {
u64 tmp;
tmp = sums->len - total_bytes;
tmp >>= fs_info->sb->s_blocksize_bits;
tmp = min(tmp, (next_offset - file_key.offset) >>
fs_info->sb->s_blocksize_bits);
tmp = max_t(u64, 1, tmp);
tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
ins_size = csum_size * tmp;
} else {
ins_size = csum_size;
}
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
ins_size);
path->leave_spinning = 0;
if (ret < 0)
goto fail_unlock;
if (WARN_ON(ret != 0))
goto fail_unlock;
leaf = path->nodes[0];
csum:
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
item_end = (struct btrfs_csum_item *)((unsigned char *)item +
btrfs_item_size_nr(leaf, path->slots[0]));
item = (struct btrfs_csum_item *)((unsigned char *)item +
csum_offset * csum_size);
found:
ins_size = (u32)(sums->len - total_bytes) >>
fs_info->sb->s_blocksize_bits;
ins_size *= csum_size;
ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
ins_size);
write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
ins_size);
index += ins_size;
ins_size /= csum_size;
total_bytes += ins_size * fs_info->sectorsize;
btrfs_mark_buffer_dirty(path->nodes[0]);
if (total_bytes < sums->len) {
btrfs_release_path(path);
cond_resched();
goto again;
}
out:
btrfs_free_path(path);
return ret;
fail_unlock:
goto out;
}
void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
const struct btrfs_path *path,
struct btrfs_file_extent_item *fi,
const bool new_inline,
struct extent_map *em)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct btrfs_root *root = inode->root;
struct extent_buffer *leaf = path->nodes[0];
const int slot = path->slots[0];
struct btrfs_key key;
u64 extent_start, extent_end;
u64 bytenr;
u8 type = btrfs_file_extent_type(leaf, fi);
int compress_type = btrfs_file_extent_compression(leaf, fi);
btrfs_item_key_to_cpu(leaf, &key, slot);
extent_start = key.offset;
if (type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) {
extent_end = extent_start +
btrfs_file_extent_num_bytes(leaf, fi);
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
size_t size;
size = btrfs_file_extent_ram_bytes(leaf, fi);
extent_end = ALIGN(extent_start + size,
fs_info->sectorsize);
}
em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
if (type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) {
em->start = extent_start;
em->len = extent_end - extent_start;
em->orig_start = extent_start -
btrfs_file_extent_offset(leaf, fi);
em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
if (bytenr == 0) {
em->block_start = EXTENT_MAP_HOLE;
return;
}
if (compress_type != BTRFS_COMPRESS_NONE) {
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
em->compress_type = compress_type;
em->block_start = bytenr;
em->block_len = em->orig_block_len;
} else {
bytenr += btrfs_file_extent_offset(leaf, fi);
em->block_start = bytenr;
em->block_len = em->len;
if (type == BTRFS_FILE_EXTENT_PREALLOC)
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
}
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
em->block_start = EXTENT_MAP_INLINE;
em->start = extent_start;
em->len = extent_end - extent_start;
/*
* Initialize orig_start and block_len with the same values
* as in inode.c:btrfs_get_extent().
*/
em->orig_start = EXTENT_MAP_HOLE;
em->block_len = (u64)-1;
if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
em->compress_type = compress_type;
}
} else {
btrfs_err(fs_info,
"unknown file extent item type %d, inode %llu, offset %llu, "
"root %llu", type, btrfs_ino(inode), extent_start,
root->root_key.objectid);
}
}