mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 00:06:41 +07:00
91f606a8fa
This patch converts the of CONFIG_X86_5LEVEL check to runtime checks for p4d folding. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180214182542.69302-9-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
220 lines
6.3 KiB
C
220 lines
6.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file implements KASLR memory randomization for x86_64. It randomizes
|
|
* the virtual address space of kernel memory regions (physical memory
|
|
* mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
|
|
* exploits relying on predictable kernel addresses.
|
|
*
|
|
* Entropy is generated using the KASLR early boot functions now shared in
|
|
* the lib directory (originally written by Kees Cook). Randomization is
|
|
* done on PGD & P4D/PUD page table levels to increase possible addresses.
|
|
* The physical memory mapping code was adapted to support P4D/PUD level
|
|
* virtual addresses. This implementation on the best configuration provides
|
|
* 30,000 possible virtual addresses in average for each memory region.
|
|
* An additional low memory page is used to ensure each CPU can start with
|
|
* a PGD aligned virtual address (for realmode).
|
|
*
|
|
* The order of each memory region is not changed. The feature looks at
|
|
* the available space for the regions based on different configuration
|
|
* options and randomizes the base and space between each. The size of the
|
|
* physical memory mapping is the available physical memory.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/random.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/kaslr.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
#define TB_SHIFT 40
|
|
|
|
/*
|
|
* The end address could depend on more configuration options to make the
|
|
* highest amount of space for randomization available, but that's too hard
|
|
* to keep straight and caused issues already.
|
|
*/
|
|
static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
|
|
|
|
/*
|
|
* Memory regions randomized by KASLR (except modules that use a separate logic
|
|
* earlier during boot). The list is ordered based on virtual addresses. This
|
|
* order is kept after randomization.
|
|
*/
|
|
static __initdata struct kaslr_memory_region {
|
|
unsigned long *base;
|
|
unsigned long size_tb;
|
|
} kaslr_regions[] = {
|
|
{ &page_offset_base, 0 },
|
|
{ &vmalloc_base, 0 },
|
|
{ &vmemmap_base, 1 },
|
|
};
|
|
|
|
/* Get size in bytes used by the memory region */
|
|
static inline unsigned long get_padding(struct kaslr_memory_region *region)
|
|
{
|
|
return (region->size_tb << TB_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Apply no randomization if KASLR was disabled at boot or if KASAN
|
|
* is enabled. KASAN shadow mappings rely on regions being PGD aligned.
|
|
*/
|
|
static inline bool kaslr_memory_enabled(void)
|
|
{
|
|
return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
|
|
}
|
|
|
|
/* Initialize base and padding for each memory region randomized with KASLR */
|
|
void __init kernel_randomize_memory(void)
|
|
{
|
|
size_t i;
|
|
unsigned long vaddr_start, vaddr;
|
|
unsigned long rand, memory_tb;
|
|
struct rnd_state rand_state;
|
|
unsigned long remain_entropy;
|
|
|
|
vaddr_start = pgtable_l5_enabled ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
|
|
vaddr = vaddr_start;
|
|
|
|
/*
|
|
* These BUILD_BUG_ON checks ensure the memory layout is consistent
|
|
* with the vaddr_start/vaddr_end variables. These checks are very
|
|
* limited....
|
|
*/
|
|
BUILD_BUG_ON(vaddr_start >= vaddr_end);
|
|
BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
|
|
BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
|
|
|
|
if (!kaslr_memory_enabled())
|
|
return;
|
|
|
|
kaslr_regions[0].size_tb = 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT);
|
|
kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
|
|
|
|
/*
|
|
* Update Physical memory mapping to available and
|
|
* add padding if needed (especially for memory hotplug support).
|
|
*/
|
|
BUG_ON(kaslr_regions[0].base != &page_offset_base);
|
|
memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
|
|
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
|
|
|
|
/* Adapt phyiscal memory region size based on available memory */
|
|
if (memory_tb < kaslr_regions[0].size_tb)
|
|
kaslr_regions[0].size_tb = memory_tb;
|
|
|
|
/* Calculate entropy available between regions */
|
|
remain_entropy = vaddr_end - vaddr_start;
|
|
for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
|
|
remain_entropy -= get_padding(&kaslr_regions[i]);
|
|
|
|
prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
|
|
unsigned long entropy;
|
|
|
|
/*
|
|
* Select a random virtual address using the extra entropy
|
|
* available.
|
|
*/
|
|
entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
|
|
prandom_bytes_state(&rand_state, &rand, sizeof(rand));
|
|
if (pgtable_l5_enabled)
|
|
entropy = (rand % (entropy + 1)) & P4D_MASK;
|
|
else
|
|
entropy = (rand % (entropy + 1)) & PUD_MASK;
|
|
vaddr += entropy;
|
|
*kaslr_regions[i].base = vaddr;
|
|
|
|
/*
|
|
* Jump the region and add a minimum padding based on
|
|
* randomization alignment.
|
|
*/
|
|
vaddr += get_padding(&kaslr_regions[i]);
|
|
if (pgtable_l5_enabled)
|
|
vaddr = round_up(vaddr + 1, P4D_SIZE);
|
|
else
|
|
vaddr = round_up(vaddr + 1, PUD_SIZE);
|
|
remain_entropy -= entropy;
|
|
}
|
|
}
|
|
|
|
static void __meminit init_trampoline_pud(void)
|
|
{
|
|
unsigned long paddr, paddr_next;
|
|
pgd_t *pgd;
|
|
pud_t *pud_page, *pud_page_tramp;
|
|
int i;
|
|
|
|
pud_page_tramp = alloc_low_page();
|
|
|
|
paddr = 0;
|
|
pgd = pgd_offset_k((unsigned long)__va(paddr));
|
|
pud_page = (pud_t *) pgd_page_vaddr(*pgd);
|
|
|
|
for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
|
|
pud_t *pud, *pud_tramp;
|
|
unsigned long vaddr = (unsigned long)__va(paddr);
|
|
|
|
pud_tramp = pud_page_tramp + pud_index(paddr);
|
|
pud = pud_page + pud_index(vaddr);
|
|
paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
|
|
|
|
*pud_tramp = *pud;
|
|
}
|
|
|
|
set_pgd(&trampoline_pgd_entry,
|
|
__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
|
|
}
|
|
|
|
static void __meminit init_trampoline_p4d(void)
|
|
{
|
|
unsigned long paddr, paddr_next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d_page, *p4d_page_tramp;
|
|
int i;
|
|
|
|
p4d_page_tramp = alloc_low_page();
|
|
|
|
paddr = 0;
|
|
pgd = pgd_offset_k((unsigned long)__va(paddr));
|
|
p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
|
|
|
|
for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
|
|
p4d_t *p4d, *p4d_tramp;
|
|
unsigned long vaddr = (unsigned long)__va(paddr);
|
|
|
|
p4d_tramp = p4d_page_tramp + p4d_index(paddr);
|
|
p4d = p4d_page + p4d_index(vaddr);
|
|
paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
|
|
|
|
*p4d_tramp = *p4d;
|
|
}
|
|
|
|
set_pgd(&trampoline_pgd_entry,
|
|
__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
|
|
}
|
|
|
|
/*
|
|
* Create PGD aligned trampoline table to allow real mode initialization
|
|
* of additional CPUs. Consume only 1 low memory page.
|
|
*/
|
|
void __meminit init_trampoline(void)
|
|
{
|
|
|
|
if (!kaslr_memory_enabled()) {
|
|
init_trampoline_default();
|
|
return;
|
|
}
|
|
|
|
if (pgtable_l5_enabled)
|
|
init_trampoline_p4d();
|
|
else
|
|
init_trampoline_pud();
|
|
}
|