linux_dsm_epyc7002/arch/x86/crypto/sha1_ssse3_glue.c
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

375 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API.
*
* Glue code for the SHA1 Secure Hash Algorithm assembler implementation using
* Supplemental SSE3 instructions.
*
* This file is based on sha1_generic.c
*
* Copyright (c) Alan Smithee.
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) Mathias Krause <minipli@googlemail.com>
* Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <crypto/sha.h>
#include <crypto/sha1_base.h>
#include <asm/simd.h>
typedef void (sha1_transform_fn)(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_update(struct shash_desc *desc, const u8 *data,
unsigned int len, sha1_transform_fn *sha1_xform)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
if (!crypto_simd_usable() ||
(sctx->count % SHA1_BLOCK_SIZE) + len < SHA1_BLOCK_SIZE)
return crypto_sha1_update(desc, data, len);
/* make sure casting to sha1_block_fn() is safe */
BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0);
kernel_fpu_begin();
sha1_base_do_update(desc, data, len,
(sha1_block_fn *)sha1_xform);
kernel_fpu_end();
return 0;
}
static int sha1_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out, sha1_transform_fn *sha1_xform)
{
if (!crypto_simd_usable())
return crypto_sha1_finup(desc, data, len, out);
kernel_fpu_begin();
if (len)
sha1_base_do_update(desc, data, len,
(sha1_block_fn *)sha1_xform);
sha1_base_do_finalize(desc, (sha1_block_fn *)sha1_xform);
kernel_fpu_end();
return sha1_base_finish(desc, out);
}
asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_transform_ssse3);
}
static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_transform_ssse3);
}
/* Add padding and return the message digest. */
static int sha1_ssse3_final(struct shash_desc *desc, u8 *out)
{
return sha1_ssse3_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_ssse3_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_ssse3_update,
.final = sha1_ssse3_final,
.finup = sha1_ssse3_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ssse3",
.cra_priority = 150,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_ssse3(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
return crypto_register_shash(&sha1_ssse3_alg);
return 0;
}
static void unregister_sha1_ssse3(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
crypto_unregister_shash(&sha1_ssse3_alg);
}
#ifdef CONFIG_AS_AVX
asmlinkage void sha1_transform_avx(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_avx_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_transform_avx);
}
static int sha1_avx_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_transform_avx);
}
static int sha1_avx_final(struct shash_desc *desc, u8 *out)
{
return sha1_avx_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_avx_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_avx_update,
.final = sha1_avx_final,
.finup = sha1_avx_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-avx",
.cra_priority = 160,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static bool avx_usable(void)
{
if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) {
if (boot_cpu_has(X86_FEATURE_AVX))
pr_info("AVX detected but unusable.\n");
return false;
}
return true;
}
static int register_sha1_avx(void)
{
if (avx_usable())
return crypto_register_shash(&sha1_avx_alg);
return 0;
}
static void unregister_sha1_avx(void)
{
if (avx_usable())
crypto_unregister_shash(&sha1_avx_alg);
}
#else /* CONFIG_AS_AVX */
static inline int register_sha1_avx(void) { return 0; }
static inline void unregister_sha1_avx(void) { }
#endif /* CONFIG_AS_AVX */
#if defined(CONFIG_AS_AVX2) && (CONFIG_AS_AVX)
#define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */
asmlinkage void sha1_transform_avx2(u32 *digest, const char *data,
unsigned int rounds);
static bool avx2_usable(void)
{
if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2)
&& boot_cpu_has(X86_FEATURE_BMI1)
&& boot_cpu_has(X86_FEATURE_BMI2))
return true;
return false;
}
static void sha1_apply_transform_avx2(u32 *digest, const char *data,
unsigned int rounds)
{
/* Select the optimal transform based on data block size */
if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE)
sha1_transform_avx2(digest, data, rounds);
else
sha1_transform_avx(digest, data, rounds);
}
static int sha1_avx2_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_apply_transform_avx2);
}
static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_apply_transform_avx2);
}
static int sha1_avx2_final(struct shash_desc *desc, u8 *out)
{
return sha1_avx2_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_avx2_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_avx2_update,
.final = sha1_avx2_final,
.finup = sha1_avx2_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-avx2",
.cra_priority = 170,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_avx2(void)
{
if (avx2_usable())
return crypto_register_shash(&sha1_avx2_alg);
return 0;
}
static void unregister_sha1_avx2(void)
{
if (avx2_usable())
crypto_unregister_shash(&sha1_avx2_alg);
}
#else
static inline int register_sha1_avx2(void) { return 0; }
static inline void unregister_sha1_avx2(void) { }
#endif
#ifdef CONFIG_AS_SHA1_NI
asmlinkage void sha1_ni_transform(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_ni_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_ni_transform);
}
static int sha1_ni_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_ni_transform);
}
static int sha1_ni_final(struct shash_desc *desc, u8 *out)
{
return sha1_ni_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_ni_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_ni_update,
.final = sha1_ni_final,
.finup = sha1_ni_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ni",
.cra_priority = 250,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_ni(void)
{
if (boot_cpu_has(X86_FEATURE_SHA_NI))
return crypto_register_shash(&sha1_ni_alg);
return 0;
}
static void unregister_sha1_ni(void)
{
if (boot_cpu_has(X86_FEATURE_SHA_NI))
crypto_unregister_shash(&sha1_ni_alg);
}
#else
static inline int register_sha1_ni(void) { return 0; }
static inline void unregister_sha1_ni(void) { }
#endif
static int __init sha1_ssse3_mod_init(void)
{
if (register_sha1_ssse3())
goto fail;
if (register_sha1_avx()) {
unregister_sha1_ssse3();
goto fail;
}
if (register_sha1_avx2()) {
unregister_sha1_avx();
unregister_sha1_ssse3();
goto fail;
}
if (register_sha1_ni()) {
unregister_sha1_avx2();
unregister_sha1_avx();
unregister_sha1_ssse3();
goto fail;
}
return 0;
fail:
return -ENODEV;
}
static void __exit sha1_ssse3_mod_fini(void)
{
unregister_sha1_ni();
unregister_sha1_avx2();
unregister_sha1_avx();
unregister_sha1_ssse3();
}
module_init(sha1_ssse3_mod_init);
module_exit(sha1_ssse3_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated");
MODULE_ALIAS_CRYPTO("sha1");
MODULE_ALIAS_CRYPTO("sha1-ssse3");
MODULE_ALIAS_CRYPTO("sha1-avx");
MODULE_ALIAS_CRYPTO("sha1-avx2");
#ifdef CONFIG_AS_SHA1_NI
MODULE_ALIAS_CRYPTO("sha1-ni");
#endif