mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 17:31:48 +07:00
198c74f43f
Now we can flush all the TLBs out of the mmu lock without TLB corruption when write-proect the sptes, it is because: - we have marked large sptes readonly instead of dropping them that means we just change the spte from writable to readonly so that we only need to care the case of changing spte from present to present (changing the spte from present to nonpresent will flush all the TLBs immediately), in other words, the only case we need to care is mmu_spte_update() - in mmu_spte_update(), we haved checked SPTE_HOST_WRITEABLE | PTE_MMU_WRITEABLE instead of PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK anymore Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
182 lines
6.1 KiB
C
182 lines
6.1 KiB
C
#ifndef __KVM_X86_MMU_H
|
|
#define __KVM_X86_MMU_H
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "kvm_cache_regs.h"
|
|
|
|
#define PT64_PT_BITS 9
|
|
#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
|
|
#define PT32_PT_BITS 10
|
|
#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
|
|
|
|
#define PT_WRITABLE_SHIFT 1
|
|
|
|
#define PT_PRESENT_MASK (1ULL << 0)
|
|
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
|
|
#define PT_USER_MASK (1ULL << 2)
|
|
#define PT_PWT_MASK (1ULL << 3)
|
|
#define PT_PCD_MASK (1ULL << 4)
|
|
#define PT_ACCESSED_SHIFT 5
|
|
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
|
|
#define PT_DIRTY_SHIFT 6
|
|
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
|
|
#define PT_PAGE_SIZE_SHIFT 7
|
|
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
|
|
#define PT_PAT_MASK (1ULL << 7)
|
|
#define PT_GLOBAL_MASK (1ULL << 8)
|
|
#define PT64_NX_SHIFT 63
|
|
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
|
|
|
|
#define PT_PAT_SHIFT 7
|
|
#define PT_DIR_PAT_SHIFT 12
|
|
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
|
|
|
|
#define PT32_DIR_PSE36_SIZE 4
|
|
#define PT32_DIR_PSE36_SHIFT 13
|
|
#define PT32_DIR_PSE36_MASK \
|
|
(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
|
|
|
|
#define PT64_ROOT_LEVEL 4
|
|
#define PT32_ROOT_LEVEL 2
|
|
#define PT32E_ROOT_LEVEL 3
|
|
|
|
#define PT_PDPE_LEVEL 3
|
|
#define PT_DIRECTORY_LEVEL 2
|
|
#define PT_PAGE_TABLE_LEVEL 1
|
|
|
|
#define PFERR_PRESENT_BIT 0
|
|
#define PFERR_WRITE_BIT 1
|
|
#define PFERR_USER_BIT 2
|
|
#define PFERR_RSVD_BIT 3
|
|
#define PFERR_FETCH_BIT 4
|
|
|
|
#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
|
|
#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
|
|
#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
|
|
#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
|
|
#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
|
|
|
|
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
|
|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
|
|
|
|
/*
|
|
* Return values of handle_mmio_page_fault_common:
|
|
* RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
|
|
* directly.
|
|
* RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
|
|
* fault path update the mmio spte.
|
|
* RET_MMIO_PF_RETRY: let CPU fault again on the address.
|
|
* RET_MMIO_PF_BUG: bug is detected.
|
|
*/
|
|
enum {
|
|
RET_MMIO_PF_EMULATE = 1,
|
|
RET_MMIO_PF_INVALID = 2,
|
|
RET_MMIO_PF_RETRY = 0,
|
|
RET_MMIO_PF_BUG = -1
|
|
};
|
|
|
|
int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
|
|
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
|
|
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
|
|
bool execonly);
|
|
void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
bool ept);
|
|
|
|
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
|
|
return kvm->arch.n_max_mmu_pages -
|
|
kvm->arch.n_used_mmu_pages;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
|
|
return 0;
|
|
|
|
return kvm_mmu_load(vcpu);
|
|
}
|
|
|
|
static inline int is_present_gpte(unsigned long pte)
|
|
{
|
|
return pte & PT_PRESENT_MASK;
|
|
}
|
|
|
|
/*
|
|
* Currently, we have two sorts of write-protection, a) the first one
|
|
* write-protects guest page to sync the guest modification, b) another one is
|
|
* used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
|
|
* between these two sorts are:
|
|
* 1) the first case clears SPTE_MMU_WRITEABLE bit.
|
|
* 2) the first case requires flushing tlb immediately avoiding corrupting
|
|
* shadow page table between all vcpus so it should be in the protection of
|
|
* mmu-lock. And the another case does not need to flush tlb until returning
|
|
* the dirty bitmap to userspace since it only write-protects the page
|
|
* logged in the bitmap, that means the page in the dirty bitmap is not
|
|
* missed, so it can flush tlb out of mmu-lock.
|
|
*
|
|
* So, there is the problem: the first case can meet the corrupted tlb caused
|
|
* by another case which write-protects pages but without flush tlb
|
|
* immediately. In order to making the first case be aware this problem we let
|
|
* it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
|
|
* is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
|
|
*
|
|
* Anyway, whenever a spte is updated (only permission and status bits are
|
|
* changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
|
|
* readonly, if that happens, we need to flush tlb. Fortunately,
|
|
* mmu_spte_update() has already handled it perfectly.
|
|
*
|
|
* The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
|
|
* - if we want to see if it has writable tlb entry or if the spte can be
|
|
* writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
|
|
* case, otherwise
|
|
* - if we fix page fault on the spte or do write-protection by dirty logging,
|
|
* check PT_WRITABLE_MASK.
|
|
*
|
|
* TODO: introduce APIs to split these two cases.
|
|
*/
|
|
static inline int is_writable_pte(unsigned long pte)
|
|
{
|
|
return pte & PT_WRITABLE_MASK;
|
|
}
|
|
|
|
static inline bool is_write_protection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
|
|
}
|
|
|
|
/*
|
|
* Will a fault with a given page-fault error code (pfec) cause a permission
|
|
* fault with the given access (in ACC_* format)?
|
|
*/
|
|
static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
unsigned pte_access, unsigned pfec)
|
|
{
|
|
int cpl = kvm_x86_ops->get_cpl(vcpu);
|
|
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
|
|
/*
|
|
* If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
|
|
*
|
|
* If CPL = 3, SMAP applies to all supervisor-mode data accesses
|
|
* (these are implicit supervisor accesses) regardless of the value
|
|
* of EFLAGS.AC.
|
|
*
|
|
* This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
|
|
* the result in X86_EFLAGS_AC. We then insert it in place of
|
|
* the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
|
|
* but it will be one in index if SMAP checks are being overridden.
|
|
* It is important to keep this branchless.
|
|
*/
|
|
unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
|
|
int index = (pfec >> 1) +
|
|
(smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
|
|
|
|
return (mmu->permissions[index] >> pte_access) & 1;
|
|
}
|
|
|
|
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
|
|
#endif
|