mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 00:47:11 +07:00
6c0afb5039
Currently, TI clock driver uses an encapsulated struct that is cast into a void pointer to store all register addresses. This can be considered as rather nasty hackery, and prevents from expanding the register address field also. Instead, replace all the code to use proper struct in place for this, which contains all the previously used data. This patch is rather large as it is touching multiple files, but this can't be split up as we need to avoid any boot breakage. Signed-off-by: Tero Kristo <t-kristo@ti.com> Acked-by: Tony Lindgren <tony@atomide.com>
374 lines
10 KiB
C
374 lines
10 KiB
C
/*
|
|
* OMAP2/3/4 DPLL clock functions
|
|
*
|
|
* Copyright (C) 2005-2008 Texas Instruments, Inc.
|
|
* Copyright (C) 2004-2010 Nokia Corporation
|
|
*
|
|
* Contacts:
|
|
* Richard Woodruff <r-woodruff2@ti.com>
|
|
* Paul Walmsley
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/io.h>
|
|
#include <linux/clk/ti.h>
|
|
|
|
#include <asm/div64.h>
|
|
|
|
#include "clock.h"
|
|
|
|
/* DPLL rate rounding: minimum DPLL multiplier, divider values */
|
|
#define DPLL_MIN_MULTIPLIER 2
|
|
#define DPLL_MIN_DIVIDER 1
|
|
|
|
/* Possible error results from _dpll_test_mult */
|
|
#define DPLL_MULT_UNDERFLOW -1
|
|
|
|
/*
|
|
* Scale factor to mitigate roundoff errors in DPLL rate rounding.
|
|
* The higher the scale factor, the greater the risk of arithmetic overflow,
|
|
* but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR
|
|
* must be a power of DPLL_SCALE_BASE.
|
|
*/
|
|
#define DPLL_SCALE_FACTOR 64
|
|
#define DPLL_SCALE_BASE 2
|
|
#define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \
|
|
(DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
|
|
|
|
/*
|
|
* DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
|
|
* From device data manual section 4.3 "DPLL and DLL Specifications".
|
|
*/
|
|
#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000
|
|
#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000
|
|
|
|
/* _dpll_test_fint() return codes */
|
|
#define DPLL_FINT_UNDERFLOW -1
|
|
#define DPLL_FINT_INVALID -2
|
|
|
|
/* Private functions */
|
|
|
|
/*
|
|
* _dpll_test_fint - test whether an Fint value is valid for the DPLL
|
|
* @clk: DPLL struct clk to test
|
|
* @n: divider value (N) to test
|
|
*
|
|
* Tests whether a particular divider @n will result in a valid DPLL
|
|
* internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
|
|
* Correction". Returns 0 if OK, -1 if the enclosing loop can terminate
|
|
* (assuming that it is counting N upwards), or -2 if the enclosing loop
|
|
* should skip to the next iteration (again assuming N is increasing).
|
|
*/
|
|
static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
|
|
{
|
|
struct dpll_data *dd;
|
|
long fint, fint_min, fint_max;
|
|
int ret = 0;
|
|
|
|
dd = clk->dpll_data;
|
|
|
|
/* DPLL divider must result in a valid jitter correction val */
|
|
fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n;
|
|
|
|
if (dd->flags & DPLL_J_TYPE) {
|
|
fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
|
|
fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
|
|
} else {
|
|
fint_min = ti_clk_get_features()->fint_min;
|
|
fint_max = ti_clk_get_features()->fint_max;
|
|
}
|
|
|
|
if (!fint_min || !fint_max) {
|
|
WARN(1, "No fint limits available!\n");
|
|
return DPLL_FINT_INVALID;
|
|
}
|
|
|
|
if (fint < ti_clk_get_features()->fint_min) {
|
|
pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
|
|
n);
|
|
dd->max_divider = n;
|
|
ret = DPLL_FINT_UNDERFLOW;
|
|
} else if (fint > ti_clk_get_features()->fint_max) {
|
|
pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
|
|
n);
|
|
dd->min_divider = n;
|
|
ret = DPLL_FINT_INVALID;
|
|
} else if (fint > ti_clk_get_features()->fint_band1_max &&
|
|
fint < ti_clk_get_features()->fint_band2_min) {
|
|
pr_debug("rejecting n=%d due to Fint failure\n", n);
|
|
ret = DPLL_FINT_INVALID;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
|
|
unsigned int m, unsigned int n)
|
|
{
|
|
unsigned long long num;
|
|
|
|
num = (unsigned long long)parent_rate * m;
|
|
do_div(num, n);
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* _dpll_test_mult - test a DPLL multiplier value
|
|
* @m: pointer to the DPLL m (multiplier) value under test
|
|
* @n: current DPLL n (divider) value under test
|
|
* @new_rate: pointer to storage for the resulting rounded rate
|
|
* @target_rate: the desired DPLL rate
|
|
* @parent_rate: the DPLL's parent clock rate
|
|
*
|
|
* This code tests a DPLL multiplier value, ensuring that the
|
|
* resulting rate will not be higher than the target_rate, and that
|
|
* the multiplier value itself is valid for the DPLL. Initially, the
|
|
* integer pointed to by the m argument should be prescaled by
|
|
* multiplying by DPLL_SCALE_FACTOR. The code will replace this with
|
|
* a non-scaled m upon return. This non-scaled m will result in a
|
|
* new_rate as close as possible to target_rate (but not greater than
|
|
* target_rate) given the current (parent_rate, n, prescaled m)
|
|
* triple. Returns DPLL_MULT_UNDERFLOW in the event that the
|
|
* non-scaled m attempted to underflow, which can allow the calling
|
|
* function to bail out early; or 0 upon success.
|
|
*/
|
|
static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
|
|
unsigned long target_rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
int r = 0, carry = 0;
|
|
|
|
/* Unscale m and round if necessary */
|
|
if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
|
|
carry = 1;
|
|
*m = (*m / DPLL_SCALE_FACTOR) + carry;
|
|
|
|
/*
|
|
* The new rate must be <= the target rate to avoid programming
|
|
* a rate that is impossible for the hardware to handle
|
|
*/
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
if (*new_rate > target_rate) {
|
|
(*m)--;
|
|
*new_rate = 0;
|
|
}
|
|
|
|
/* Guard against m underflow */
|
|
if (*m < DPLL_MIN_MULTIPLIER) {
|
|
*m = DPLL_MIN_MULTIPLIER;
|
|
*new_rate = 0;
|
|
r = DPLL_MULT_UNDERFLOW;
|
|
}
|
|
|
|
if (*new_rate == 0)
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
|
|
* @v: bitfield value of the DPLL enable
|
|
*
|
|
* Checks given DPLL enable bitfield to see whether the DPLL is in bypass
|
|
* mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
|
|
*/
|
|
static int _omap2_dpll_is_in_bypass(u32 v)
|
|
{
|
|
u8 mask, val;
|
|
|
|
mask = ti_clk_get_features()->dpll_bypass_vals;
|
|
|
|
/*
|
|
* Each set bit in the mask corresponds to a bypass value equal
|
|
* to the bitshift. Go through each set-bit in the mask and
|
|
* compare against the given register value.
|
|
*/
|
|
while (mask) {
|
|
val = __ffs(mask);
|
|
mask ^= (1 << val);
|
|
if (v == val)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Public functions */
|
|
u8 omap2_init_dpll_parent(struct clk_hw *hw)
|
|
{
|
|
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
|
|
u32 v;
|
|
struct dpll_data *dd;
|
|
|
|
dd = clk->dpll_data;
|
|
if (!dd)
|
|
return -EINVAL;
|
|
|
|
v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
|
|
v &= dd->enable_mask;
|
|
v >>= __ffs(dd->enable_mask);
|
|
|
|
/* Reparent the struct clk in case the dpll is in bypass */
|
|
if (_omap2_dpll_is_in_bypass(v))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
|
|
* @clk: struct clk * of a DPLL
|
|
*
|
|
* DPLLs can be locked or bypassed - basically, enabled or disabled.
|
|
* When locked, the DPLL output depends on the M and N values. When
|
|
* bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
|
|
* or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
|
|
* 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
|
|
* (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
|
|
* Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
|
|
* locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
|
|
* if the clock @clk is not a DPLL.
|
|
*/
|
|
unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
|
|
{
|
|
u64 dpll_clk;
|
|
u32 dpll_mult, dpll_div, v;
|
|
struct dpll_data *dd;
|
|
|
|
dd = clk->dpll_data;
|
|
if (!dd)
|
|
return 0;
|
|
|
|
/* Return bypass rate if DPLL is bypassed */
|
|
v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
|
|
v &= dd->enable_mask;
|
|
v >>= __ffs(dd->enable_mask);
|
|
|
|
if (_omap2_dpll_is_in_bypass(v))
|
|
return clk_hw_get_rate(dd->clk_bypass);
|
|
|
|
v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg);
|
|
dpll_mult = v & dd->mult_mask;
|
|
dpll_mult >>= __ffs(dd->mult_mask);
|
|
dpll_div = v & dd->div1_mask;
|
|
dpll_div >>= __ffs(dd->div1_mask);
|
|
|
|
dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult;
|
|
do_div(dpll_clk, dpll_div + 1);
|
|
|
|
return dpll_clk;
|
|
}
|
|
|
|
/* DPLL rate rounding code */
|
|
|
|
/**
|
|
* omap2_dpll_round_rate - round a target rate for an OMAP DPLL
|
|
* @clk: struct clk * for a DPLL
|
|
* @target_rate: desired DPLL clock rate
|
|
*
|
|
* Given a DPLL and a desired target rate, round the target rate to a
|
|
* possible, programmable rate for this DPLL. Attempts to select the
|
|
* minimum possible n. Stores the computed (m, n) in the DPLL's
|
|
* dpll_data structure so set_rate() will not need to call this
|
|
* (expensive) function again. Returns ~0 if the target rate cannot
|
|
* be rounded, or the rounded rate upon success.
|
|
*/
|
|
long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
|
|
int m, n, r, scaled_max_m;
|
|
int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
|
|
unsigned long scaled_rt_rp;
|
|
unsigned long new_rate = 0;
|
|
struct dpll_data *dd;
|
|
unsigned long ref_rate;
|
|
long delta;
|
|
long prev_min_delta = LONG_MAX;
|
|
const char *clk_name;
|
|
|
|
if (!clk || !clk->dpll_data)
|
|
return ~0;
|
|
|
|
dd = clk->dpll_data;
|
|
|
|
if (dd->max_rate && target_rate > dd->max_rate)
|
|
target_rate = dd->max_rate;
|
|
|
|
ref_rate = clk_hw_get_rate(dd->clk_ref);
|
|
clk_name = clk_hw_get_name(hw);
|
|
pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
|
|
clk_name, target_rate);
|
|
|
|
scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
|
|
scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
|
|
|
|
dd->last_rounded_rate = 0;
|
|
|
|
for (n = dd->min_divider; n <= dd->max_divider; n++) {
|
|
/* Is the (input clk, divider) pair valid for the DPLL? */
|
|
r = _dpll_test_fint(clk, n);
|
|
if (r == DPLL_FINT_UNDERFLOW)
|
|
break;
|
|
else if (r == DPLL_FINT_INVALID)
|
|
continue;
|
|
|
|
/* Compute the scaled DPLL multiplier, based on the divider */
|
|
m = scaled_rt_rp * n;
|
|
|
|
/*
|
|
* Since we're counting n up, a m overflow means we
|
|
* can bail out completely (since as n increases in
|
|
* the next iteration, there's no way that m can
|
|
* increase beyond the current m)
|
|
*/
|
|
if (m > scaled_max_m)
|
|
break;
|
|
|
|
r = _dpll_test_mult(&m, n, &new_rate, target_rate,
|
|
ref_rate);
|
|
|
|
/* m can't be set low enough for this n - try with a larger n */
|
|
if (r == DPLL_MULT_UNDERFLOW)
|
|
continue;
|
|
|
|
/* skip rates above our target rate */
|
|
delta = target_rate - new_rate;
|
|
if (delta < 0)
|
|
continue;
|
|
|
|
if (delta < prev_min_delta) {
|
|
prev_min_delta = delta;
|
|
min_delta_m = m;
|
|
min_delta_n = n;
|
|
}
|
|
|
|
pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
|
|
clk_name, m, n, new_rate);
|
|
|
|
if (delta == 0)
|
|
break;
|
|
}
|
|
|
|
if (prev_min_delta == LONG_MAX) {
|
|
pr_debug("clock: %s: cannot round to rate %lu\n",
|
|
clk_name, target_rate);
|
|
return ~0;
|
|
}
|
|
|
|
dd->last_rounded_m = min_delta_m;
|
|
dd->last_rounded_n = min_delta_n;
|
|
dd->last_rounded_rate = target_rate - prev_min_delta;
|
|
|
|
return dd->last_rounded_rate;
|
|
}
|