mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 20:20:36 +07:00
8a2d9ed321
Fix panic in run_timer_softirq right after "modprobe -r firewire-ohci" if a FireWire disk was attached and firewire-sbp2 loaded. Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
561 lines
14 KiB
C
561 lines
14 KiB
C
/*
|
|
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/device.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/crc-itu-t.h>
|
|
#include "fw-transaction.h"
|
|
#include "fw-topology.h"
|
|
#include "fw-device.h"
|
|
|
|
int fw_compute_block_crc(u32 *block)
|
|
{
|
|
__be32 be32_block[256];
|
|
int i, length;
|
|
|
|
length = (*block >> 16) & 0xff;
|
|
for (i = 0; i < length; i++)
|
|
be32_block[i] = cpu_to_be32(block[i + 1]);
|
|
*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
|
|
|
|
return length;
|
|
}
|
|
|
|
static DEFINE_MUTEX(card_mutex);
|
|
static LIST_HEAD(card_list);
|
|
|
|
static LIST_HEAD(descriptor_list);
|
|
static int descriptor_count;
|
|
|
|
#define BIB_CRC(v) ((v) << 0)
|
|
#define BIB_CRC_LENGTH(v) ((v) << 16)
|
|
#define BIB_INFO_LENGTH(v) ((v) << 24)
|
|
|
|
#define BIB_LINK_SPEED(v) ((v) << 0)
|
|
#define BIB_GENERATION(v) ((v) << 4)
|
|
#define BIB_MAX_ROM(v) ((v) << 8)
|
|
#define BIB_MAX_RECEIVE(v) ((v) << 12)
|
|
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
|
|
#define BIB_PMC ((1) << 27)
|
|
#define BIB_BMC ((1) << 28)
|
|
#define BIB_ISC ((1) << 29)
|
|
#define BIB_CMC ((1) << 30)
|
|
#define BIB_IMC ((1) << 31)
|
|
|
|
static u32 *
|
|
generate_config_rom(struct fw_card *card, size_t *config_rom_length)
|
|
{
|
|
struct fw_descriptor *desc;
|
|
static u32 config_rom[256];
|
|
int i, j, length;
|
|
|
|
/*
|
|
* Initialize contents of config rom buffer. On the OHCI
|
|
* controller, block reads to the config rom accesses the host
|
|
* memory, but quadlet read access the hardware bus info block
|
|
* registers. That's just crack, but it means we should make
|
|
* sure the contents of bus info block in host memory mathces
|
|
* the version stored in the OHCI registers.
|
|
*/
|
|
|
|
memset(config_rom, 0, sizeof(config_rom));
|
|
config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
|
|
config_rom[1] = 0x31333934;
|
|
|
|
config_rom[2] =
|
|
BIB_LINK_SPEED(card->link_speed) |
|
|
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
|
|
BIB_MAX_ROM(2) |
|
|
BIB_MAX_RECEIVE(card->max_receive) |
|
|
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
|
|
config_rom[3] = card->guid >> 32;
|
|
config_rom[4] = card->guid;
|
|
|
|
/* Generate root directory. */
|
|
i = 5;
|
|
config_rom[i++] = 0;
|
|
config_rom[i++] = 0x0c0083c0; /* node capabilities */
|
|
j = i + descriptor_count;
|
|
|
|
/* Generate root directory entries for descriptors. */
|
|
list_for_each_entry (desc, &descriptor_list, link) {
|
|
if (desc->immediate > 0)
|
|
config_rom[i++] = desc->immediate;
|
|
config_rom[i] = desc->key | (j - i);
|
|
i++;
|
|
j += desc->length;
|
|
}
|
|
|
|
/* Update root directory length. */
|
|
config_rom[5] = (i - 5 - 1) << 16;
|
|
|
|
/* End of root directory, now copy in descriptors. */
|
|
list_for_each_entry (desc, &descriptor_list, link) {
|
|
memcpy(&config_rom[i], desc->data, desc->length * 4);
|
|
i += desc->length;
|
|
}
|
|
|
|
/* Calculate CRCs for all blocks in the config rom. This
|
|
* assumes that CRC length and info length are identical for
|
|
* the bus info block, which is always the case for this
|
|
* implementation. */
|
|
for (i = 0; i < j; i += length + 1)
|
|
length = fw_compute_block_crc(config_rom + i);
|
|
|
|
*config_rom_length = j;
|
|
|
|
return config_rom;
|
|
}
|
|
|
|
static void
|
|
update_config_roms(void)
|
|
{
|
|
struct fw_card *card;
|
|
u32 *config_rom;
|
|
size_t length;
|
|
|
|
list_for_each_entry (card, &card_list, link) {
|
|
config_rom = generate_config_rom(card, &length);
|
|
card->driver->set_config_rom(card, config_rom, length);
|
|
}
|
|
}
|
|
|
|
int
|
|
fw_core_add_descriptor(struct fw_descriptor *desc)
|
|
{
|
|
size_t i;
|
|
|
|
/*
|
|
* Check descriptor is valid; the length of all blocks in the
|
|
* descriptor has to add up to exactly the length of the
|
|
* block.
|
|
*/
|
|
i = 0;
|
|
while (i < desc->length)
|
|
i += (desc->data[i] >> 16) + 1;
|
|
|
|
if (i != desc->length)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&card_mutex);
|
|
|
|
list_add_tail(&desc->link, &descriptor_list);
|
|
descriptor_count++;
|
|
if (desc->immediate > 0)
|
|
descriptor_count++;
|
|
update_config_roms();
|
|
|
|
mutex_unlock(&card_mutex);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fw_core_add_descriptor);
|
|
|
|
void
|
|
fw_core_remove_descriptor(struct fw_descriptor *desc)
|
|
{
|
|
mutex_lock(&card_mutex);
|
|
|
|
list_del(&desc->link);
|
|
descriptor_count--;
|
|
if (desc->immediate > 0)
|
|
descriptor_count--;
|
|
update_config_roms();
|
|
|
|
mutex_unlock(&card_mutex);
|
|
}
|
|
EXPORT_SYMBOL(fw_core_remove_descriptor);
|
|
|
|
static const char gap_count_table[] = {
|
|
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
|
|
};
|
|
|
|
struct bm_data {
|
|
struct fw_transaction t;
|
|
struct {
|
|
__be32 arg;
|
|
__be32 data;
|
|
} lock;
|
|
u32 old;
|
|
int rcode;
|
|
struct completion done;
|
|
};
|
|
|
|
static void
|
|
complete_bm_lock(struct fw_card *card, int rcode,
|
|
void *payload, size_t length, void *data)
|
|
{
|
|
struct bm_data *bmd = data;
|
|
|
|
if (rcode == RCODE_COMPLETE)
|
|
bmd->old = be32_to_cpu(*(__be32 *) payload);
|
|
bmd->rcode = rcode;
|
|
complete(&bmd->done);
|
|
}
|
|
|
|
static void
|
|
fw_card_bm_work(struct work_struct *work)
|
|
{
|
|
struct fw_card *card = container_of(work, struct fw_card, work.work);
|
|
struct fw_device *root;
|
|
struct bm_data bmd;
|
|
unsigned long flags;
|
|
int root_id, new_root_id, irm_id, gap_count, generation, grace;
|
|
int do_reset = 0;
|
|
|
|
spin_lock_irqsave(&card->lock, flags);
|
|
|
|
generation = card->generation;
|
|
root = card->root_node->data;
|
|
root_id = card->root_node->node_id;
|
|
grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));
|
|
|
|
if (card->bm_generation + 1 == generation ||
|
|
(card->bm_generation != generation && grace)) {
|
|
/*
|
|
* This first step is to figure out who is IRM and
|
|
* then try to become bus manager. If the IRM is not
|
|
* well defined (e.g. does not have an active link
|
|
* layer or does not responds to our lock request, we
|
|
* will have to do a little vigilante bus management.
|
|
* In that case, we do a goto into the gap count logic
|
|
* so that when we do the reset, we still optimize the
|
|
* gap count. That could well save a reset in the
|
|
* next generation.
|
|
*/
|
|
|
|
irm_id = card->irm_node->node_id;
|
|
if (!card->irm_node->link_on) {
|
|
new_root_id = card->local_node->node_id;
|
|
fw_notify("IRM has link off, making local node (%02x) root.\n",
|
|
new_root_id);
|
|
goto pick_me;
|
|
}
|
|
|
|
bmd.lock.arg = cpu_to_be32(0x3f);
|
|
bmd.lock.data = cpu_to_be32(card->local_node->node_id);
|
|
|
|
spin_unlock_irqrestore(&card->lock, flags);
|
|
|
|
init_completion(&bmd.done);
|
|
fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
|
|
irm_id, generation,
|
|
SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
|
|
&bmd.lock, sizeof(bmd.lock),
|
|
complete_bm_lock, &bmd);
|
|
wait_for_completion(&bmd.done);
|
|
|
|
if (bmd.rcode == RCODE_GENERATION) {
|
|
/*
|
|
* Another bus reset happened. Just return,
|
|
* the BM work has been rescheduled.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
|
|
/* Somebody else is BM, let them do the work. */
|
|
return;
|
|
|
|
spin_lock_irqsave(&card->lock, flags);
|
|
if (bmd.rcode != RCODE_COMPLETE) {
|
|
/*
|
|
* The lock request failed, maybe the IRM
|
|
* isn't really IRM capable after all. Let's
|
|
* do a bus reset and pick the local node as
|
|
* root, and thus, IRM.
|
|
*/
|
|
new_root_id = card->local_node->node_id;
|
|
fw_notify("BM lock failed, making local node (%02x) root.\n",
|
|
new_root_id);
|
|
goto pick_me;
|
|
}
|
|
} else if (card->bm_generation != generation) {
|
|
/*
|
|
* OK, we weren't BM in the last generation, and it's
|
|
* less than 100ms since last bus reset. Reschedule
|
|
* this task 100ms from now.
|
|
*/
|
|
spin_unlock_irqrestore(&card->lock, flags);
|
|
schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We're bus manager for this generation, so next step is to
|
|
* make sure we have an active cycle master and do gap count
|
|
* optimization.
|
|
*/
|
|
card->bm_generation = generation;
|
|
|
|
if (root == NULL) {
|
|
/*
|
|
* Either link_on is false, or we failed to read the
|
|
* config rom. In either case, pick another root.
|
|
*/
|
|
new_root_id = card->local_node->node_id;
|
|
} else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) {
|
|
/*
|
|
* If we haven't probed this device yet, bail out now
|
|
* and let's try again once that's done.
|
|
*/
|
|
spin_unlock_irqrestore(&card->lock, flags);
|
|
return;
|
|
} else if (root->config_rom[2] & BIB_CMC) {
|
|
/*
|
|
* FIXME: I suppose we should set the cmstr bit in the
|
|
* STATE_CLEAR register of this node, as described in
|
|
* 1394-1995, 8.4.2.6. Also, send out a force root
|
|
* packet for this node.
|
|
*/
|
|
new_root_id = root_id;
|
|
} else {
|
|
/*
|
|
* Current root has an active link layer and we
|
|
* successfully read the config rom, but it's not
|
|
* cycle master capable.
|
|
*/
|
|
new_root_id = card->local_node->node_id;
|
|
}
|
|
|
|
pick_me:
|
|
/*
|
|
* Pick a gap count from 1394a table E-1. The table doesn't cover
|
|
* the typically much larger 1394b beta repeater delays though.
|
|
*/
|
|
if (!card->beta_repeaters_present &&
|
|
card->root_node->max_hops < ARRAY_SIZE(gap_count_table))
|
|
gap_count = gap_count_table[card->root_node->max_hops];
|
|
else
|
|
gap_count = 63;
|
|
|
|
/*
|
|
* Finally, figure out if we should do a reset or not. If we've
|
|
* done less that 5 resets with the same physical topology and we
|
|
* have either a new root or a new gap count setting, let's do it.
|
|
*/
|
|
|
|
if (card->bm_retries++ < 5 &&
|
|
(card->gap_count != gap_count || new_root_id != root_id))
|
|
do_reset = 1;
|
|
|
|
spin_unlock_irqrestore(&card->lock, flags);
|
|
|
|
if (do_reset) {
|
|
fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
|
|
card->index, new_root_id, gap_count);
|
|
fw_send_phy_config(card, new_root_id, generation, gap_count);
|
|
fw_core_initiate_bus_reset(card, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
flush_timer_callback(unsigned long data)
|
|
{
|
|
struct fw_card *card = (struct fw_card *)data;
|
|
|
|
fw_flush_transactions(card);
|
|
}
|
|
|
|
void
|
|
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
|
|
struct device *device)
|
|
{
|
|
static atomic_t index = ATOMIC_INIT(-1);
|
|
|
|
kref_init(&card->kref);
|
|
card->index = atomic_inc_return(&index);
|
|
card->driver = driver;
|
|
card->device = device;
|
|
card->current_tlabel = 0;
|
|
card->tlabel_mask = 0;
|
|
card->color = 0;
|
|
|
|
INIT_LIST_HEAD(&card->transaction_list);
|
|
spin_lock_init(&card->lock);
|
|
setup_timer(&card->flush_timer,
|
|
flush_timer_callback, (unsigned long)card);
|
|
|
|
card->local_node = NULL;
|
|
|
|
INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
|
|
}
|
|
EXPORT_SYMBOL(fw_card_initialize);
|
|
|
|
int
|
|
fw_card_add(struct fw_card *card,
|
|
u32 max_receive, u32 link_speed, u64 guid)
|
|
{
|
|
u32 *config_rom;
|
|
size_t length;
|
|
|
|
card->max_receive = max_receive;
|
|
card->link_speed = link_speed;
|
|
card->guid = guid;
|
|
|
|
/*
|
|
* The subsystem grabs a reference when the card is added and
|
|
* drops it when the driver calls fw_core_remove_card.
|
|
*/
|
|
fw_card_get(card);
|
|
|
|
mutex_lock(&card_mutex);
|
|
config_rom = generate_config_rom(card, &length);
|
|
list_add_tail(&card->link, &card_list);
|
|
mutex_unlock(&card_mutex);
|
|
|
|
return card->driver->enable(card, config_rom, length);
|
|
}
|
|
EXPORT_SYMBOL(fw_card_add);
|
|
|
|
|
|
/*
|
|
* The next few functions implements a dummy driver that use once a
|
|
* card driver shuts down an fw_card. This allows the driver to
|
|
* cleanly unload, as all IO to the card will be handled by the dummy
|
|
* driver instead of calling into the (possibly) unloaded module. The
|
|
* dummy driver just fails all IO.
|
|
*/
|
|
|
|
static int
|
|
dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
|
|
{
|
|
BUG();
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
dummy_update_phy_reg(struct fw_card *card, int address,
|
|
int clear_bits, int set_bits)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int
|
|
dummy_set_config_rom(struct fw_card *card,
|
|
u32 *config_rom, size_t length)
|
|
{
|
|
/*
|
|
* We take the card out of card_list before setting the dummy
|
|
* driver, so this should never get called.
|
|
*/
|
|
BUG();
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
dummy_send_request(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
packet->callback(packet, card, -ENODEV);
|
|
}
|
|
|
|
static void
|
|
dummy_send_response(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
packet->callback(packet, card, -ENODEV);
|
|
}
|
|
|
|
static int
|
|
dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int
|
|
dummy_enable_phys_dma(struct fw_card *card,
|
|
int node_id, int generation)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static struct fw_card_driver dummy_driver = {
|
|
.name = "dummy",
|
|
.enable = dummy_enable,
|
|
.update_phy_reg = dummy_update_phy_reg,
|
|
.set_config_rom = dummy_set_config_rom,
|
|
.send_request = dummy_send_request,
|
|
.cancel_packet = dummy_cancel_packet,
|
|
.send_response = dummy_send_response,
|
|
.enable_phys_dma = dummy_enable_phys_dma,
|
|
};
|
|
|
|
void
|
|
fw_core_remove_card(struct fw_card *card)
|
|
{
|
|
card->driver->update_phy_reg(card, 4,
|
|
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
|
|
fw_core_initiate_bus_reset(card, 1);
|
|
|
|
mutex_lock(&card_mutex);
|
|
list_del(&card->link);
|
|
mutex_unlock(&card_mutex);
|
|
|
|
/* Set up the dummy driver. */
|
|
card->driver = &dummy_driver;
|
|
|
|
fw_destroy_nodes(card);
|
|
flush_scheduled_work();
|
|
|
|
fw_flush_transactions(card);
|
|
del_timer_sync(&card->flush_timer);
|
|
|
|
fw_card_put(card);
|
|
}
|
|
EXPORT_SYMBOL(fw_core_remove_card);
|
|
|
|
struct fw_card *
|
|
fw_card_get(struct fw_card *card)
|
|
{
|
|
kref_get(&card->kref);
|
|
|
|
return card;
|
|
}
|
|
EXPORT_SYMBOL(fw_card_get);
|
|
|
|
static void
|
|
release_card(struct kref *kref)
|
|
{
|
|
struct fw_card *card = container_of(kref, struct fw_card, kref);
|
|
|
|
kfree(card);
|
|
}
|
|
|
|
/*
|
|
* An assumption for fw_card_put() is that the card driver allocates
|
|
* the fw_card struct with kalloc and that it has been shut down
|
|
* before the last ref is dropped.
|
|
*/
|
|
void
|
|
fw_card_put(struct fw_card *card)
|
|
{
|
|
kref_put(&card->kref, release_card);
|
|
}
|
|
EXPORT_SYMBOL(fw_card_put);
|
|
|
|
int
|
|
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
|
|
{
|
|
int reg = short_reset ? 5 : 1;
|
|
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
|
|
|
|
return card->driver->update_phy_reg(card, reg, 0, bit);
|
|
}
|
|
EXPORT_SYMBOL(fw_core_initiate_bus_reset);
|