mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 12:56:51 +07:00
5d829300be
The open-coded pattern: ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t) is all over the xfs code; provide a new helper xfs_iext_count(ifp) to count the number of inline extents in an inode fork. [dchinner: pick up several missed conversions] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
859 lines
23 KiB
C
859 lines
23 KiB
C
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_log.h"
|
|
|
|
|
|
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
|
|
|
|
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_inode_log_item, ili_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_data_fork_size(
|
|
struct xfs_inode_log_item *iip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
switch (ip->i_d.di_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
|
|
ip->i_d.di_nextents > 0 &&
|
|
ip->i_df.if_bytes > 0) {
|
|
/* worst case, doesn't subtract delalloc extents */
|
|
*nbytes += XFS_IFORK_DSIZE(ip);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
|
|
ip->i_df.if_broot_bytes > 0) {
|
|
*nbytes += ip->i_df.if_broot_bytes;
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
|
|
ip->i_df.if_bytes > 0) {
|
|
*nbytes += roundup(ip->i_df.if_bytes, 4);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
|
|
case XFS_DINODE_FMT_DEV:
|
|
case XFS_DINODE_FMT_UUID:
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_attr_fork_size(
|
|
struct xfs_inode_log_item *iip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
switch (ip->i_d.di_aformat) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
|
|
ip->i_d.di_anextents > 0 &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
/* worst case, doesn't subtract unused space */
|
|
*nbytes += XFS_IFORK_ASIZE(ip);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
|
|
ip->i_afp->if_broot_bytes > 0) {
|
|
*nbytes += ip->i_afp->if_broot_bytes;
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
*nbytes += roundup(ip->i_afp->if_bytes, 4);
|
|
*nvecs += 1;
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given inode item.
|
|
*
|
|
* We need one iovec for the inode log format structure, one for the
|
|
* inode core, and possibly one for the inode data/extents/b-tree root
|
|
* and one for the inode attribute data/extents/b-tree root.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
*nvecs += 2;
|
|
*nbytes += sizeof(struct xfs_inode_log_format) +
|
|
xfs_log_dinode_size(ip->i_d.di_version);
|
|
|
|
xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
|
|
if (XFS_IFORK_Q(ip))
|
|
xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_format_data_fork(
|
|
struct xfs_inode_log_item *iip,
|
|
struct xfs_inode_log_format *ilf,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
size_t data_bytes;
|
|
|
|
switch (ip->i_d.di_format) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
|
|
ip->i_d.di_nextents > 0 &&
|
|
ip->i_df.if_bytes > 0) {
|
|
struct xfs_bmbt_rec *p;
|
|
|
|
ASSERT(ip->i_df.if_u1.if_extents != NULL);
|
|
ASSERT(xfs_iext_count(&ip->i_df) > 0);
|
|
|
|
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
|
|
data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
|
|
xlog_finish_iovec(lv, *vecp, data_bytes);
|
|
|
|
ASSERT(data_bytes <= ip->i_df.if_bytes);
|
|
|
|
ilf->ilf_dsize = data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_DEXT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
|
|
ip->i_df.if_broot_bytes > 0) {
|
|
ASSERT(ip->i_df.if_broot != NULL);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
|
|
ip->i_df.if_broot,
|
|
ip->i_df.if_broot_bytes);
|
|
ilf->ilf_dsize = ip->i_df.if_broot_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
ASSERT(!(iip->ili_fields &
|
|
XFS_ILOG_DBROOT));
|
|
iip->ili_fields &= ~XFS_ILOG_DBROOT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEV | XFS_ILOG_UUID);
|
|
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
|
|
ip->i_df.if_bytes > 0) {
|
|
/*
|
|
* Round i_bytes up to a word boundary.
|
|
* The underlying memory is guaranteed to
|
|
* to be there by xfs_idata_realloc().
|
|
*/
|
|
data_bytes = roundup(ip->i_df.if_bytes, 4);
|
|
ASSERT(ip->i_df.if_real_bytes == 0 ||
|
|
ip->i_df.if_real_bytes >= data_bytes);
|
|
ASSERT(ip->i_df.if_u1.if_data != NULL);
|
|
ASSERT(ip->i_d.di_size > 0);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
|
|
ip->i_df.if_u1.if_data, data_bytes);
|
|
ilf->ilf_dsize = (unsigned)data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_DDATA;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_DEV:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEXT | XFS_ILOG_UUID);
|
|
if (iip->ili_fields & XFS_ILOG_DEV)
|
|
ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
|
|
break;
|
|
case XFS_DINODE_FMT_UUID:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
|
|
XFS_ILOG_DEXT | XFS_ILOG_DEV);
|
|
if (iip->ili_fields & XFS_ILOG_UUID)
|
|
ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_item_format_attr_fork(
|
|
struct xfs_inode_log_item *iip,
|
|
struct xfs_inode_log_format *ilf,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
size_t data_bytes;
|
|
|
|
switch (ip->i_d.di_aformat) {
|
|
case XFS_DINODE_FMT_EXTENTS:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
|
|
ip->i_d.di_anextents > 0 &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
struct xfs_bmbt_rec *p;
|
|
|
|
ASSERT(xfs_iext_count(ip->i_afp) ==
|
|
ip->i_d.di_anextents);
|
|
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
|
|
|
|
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
|
|
data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
|
|
xlog_finish_iovec(lv, *vecp, data_bytes);
|
|
|
|
ilf->ilf_asize = data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_AEXT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_BTREE:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
|
|
ip->i_afp->if_broot_bytes > 0) {
|
|
ASSERT(ip->i_afp->if_broot != NULL);
|
|
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
|
|
ip->i_afp->if_broot,
|
|
ip->i_afp->if_broot_bytes);
|
|
ilf->ilf_asize = ip->i_afp->if_broot_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_ABROOT;
|
|
}
|
|
break;
|
|
case XFS_DINODE_FMT_LOCAL:
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
|
|
|
|
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
|
|
ip->i_afp->if_bytes > 0) {
|
|
/*
|
|
* Round i_bytes up to a word boundary.
|
|
* The underlying memory is guaranteed to
|
|
* to be there by xfs_idata_realloc().
|
|
*/
|
|
data_bytes = roundup(ip->i_afp->if_bytes, 4);
|
|
ASSERT(ip->i_afp->if_real_bytes == 0 ||
|
|
ip->i_afp->if_real_bytes >= data_bytes);
|
|
ASSERT(ip->i_afp->if_u1.if_data != NULL);
|
|
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
|
|
ip->i_afp->if_u1.if_data,
|
|
data_bytes);
|
|
ilf->ilf_asize = (unsigned)data_bytes;
|
|
ilf->ilf_size++;
|
|
} else {
|
|
iip->ili_fields &= ~XFS_ILOG_ADATA;
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_inode_to_log_dinode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_dinode *to,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_icdinode *from = &ip->i_d;
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
to->di_magic = XFS_DINODE_MAGIC;
|
|
|
|
to->di_version = from->di_version;
|
|
to->di_format = from->di_format;
|
|
to->di_uid = from->di_uid;
|
|
to->di_gid = from->di_gid;
|
|
to->di_projid_lo = from->di_projid_lo;
|
|
to->di_projid_hi = from->di_projid_hi;
|
|
|
|
memset(to->di_pad, 0, sizeof(to->di_pad));
|
|
memset(to->di_pad3, 0, sizeof(to->di_pad3));
|
|
to->di_atime.t_sec = inode->i_atime.tv_sec;
|
|
to->di_atime.t_nsec = inode->i_atime.tv_nsec;
|
|
to->di_mtime.t_sec = inode->i_mtime.tv_sec;
|
|
to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
|
|
to->di_ctime.t_sec = inode->i_ctime.tv_sec;
|
|
to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
|
|
to->di_nlink = inode->i_nlink;
|
|
to->di_gen = inode->i_generation;
|
|
to->di_mode = inode->i_mode;
|
|
|
|
to->di_size = from->di_size;
|
|
to->di_nblocks = from->di_nblocks;
|
|
to->di_extsize = from->di_extsize;
|
|
to->di_nextents = from->di_nextents;
|
|
to->di_anextents = from->di_anextents;
|
|
to->di_forkoff = from->di_forkoff;
|
|
to->di_aformat = from->di_aformat;
|
|
to->di_dmevmask = from->di_dmevmask;
|
|
to->di_dmstate = from->di_dmstate;
|
|
to->di_flags = from->di_flags;
|
|
|
|
if (from->di_version == 3) {
|
|
to->di_changecount = inode->i_version;
|
|
to->di_crtime.t_sec = from->di_crtime.t_sec;
|
|
to->di_crtime.t_nsec = from->di_crtime.t_nsec;
|
|
to->di_flags2 = from->di_flags2;
|
|
to->di_cowextsize = from->di_cowextsize;
|
|
to->di_ino = ip->i_ino;
|
|
to->di_lsn = lsn;
|
|
memset(to->di_pad2, 0, sizeof(to->di_pad2));
|
|
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
|
|
to->di_flushiter = 0;
|
|
} else {
|
|
to->di_flushiter = from->di_flushiter;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Format the inode core. Current timestamp data is only in the VFS inode
|
|
* fields, so we need to grab them from there. Hence rather than just copying
|
|
* the XFS inode core structure, format the fields directly into the iovec.
|
|
*/
|
|
static void
|
|
xfs_inode_item_format_core(
|
|
struct xfs_inode *ip,
|
|
struct xfs_log_vec *lv,
|
|
struct xfs_log_iovec **vecp)
|
|
{
|
|
struct xfs_log_dinode *dic;
|
|
|
|
dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
|
|
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
|
|
xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the given inode
|
|
* log item. It fills the first item with an inode log format structure,
|
|
* the second with the on-disk inode structure, and a possible third and/or
|
|
* fourth with the inode data/extents/b-tree root and inode attributes
|
|
* data/extents/b-tree root.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
struct xfs_inode_log_format *ilf;
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(ip->i_d.di_version > 1);
|
|
|
|
ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
|
|
ilf->ilf_type = XFS_LI_INODE;
|
|
ilf->ilf_ino = ip->i_ino;
|
|
ilf->ilf_blkno = ip->i_imap.im_blkno;
|
|
ilf->ilf_len = ip->i_imap.im_len;
|
|
ilf->ilf_boffset = ip->i_imap.im_boffset;
|
|
ilf->ilf_fields = XFS_ILOG_CORE;
|
|
ilf->ilf_size = 2; /* format + core */
|
|
xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
|
|
|
|
xfs_inode_item_format_core(ip, lv, &vecp);
|
|
xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
|
|
if (XFS_IFORK_Q(ip)) {
|
|
xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
|
|
} else {
|
|
iip->ili_fields &=
|
|
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
|
|
}
|
|
|
|
/* update the format with the exact fields we actually logged */
|
|
ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
|
|
}
|
|
|
|
/*
|
|
* This is called to pin the inode associated with the inode log
|
|
* item in memory so it cannot be written out.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
|
|
trace_xfs_inode_pin(ip, _RET_IP_);
|
|
atomic_inc(&ip->i_pincount);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called to unpin the inode associated with the inode log
|
|
* item which was previously pinned with a call to xfs_inode_item_pin().
|
|
*
|
|
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
|
|
|
|
trace_xfs_inode_unpin(ip, _RET_IP_);
|
|
ASSERT(atomic_read(&ip->i_pincount) > 0);
|
|
if (atomic_dec_and_test(&ip->i_pincount))
|
|
wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
|
|
}
|
|
|
|
STATIC uint
|
|
xfs_inode_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
__releases(&lip->li_ailp->xa_lock)
|
|
__acquires(&lip->li_ailp->xa_lock)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
struct xfs_buf *bp = NULL;
|
|
uint rval = XFS_ITEM_SUCCESS;
|
|
int error;
|
|
|
|
if (xfs_ipincount(ip) > 0)
|
|
return XFS_ITEM_PINNED;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
|
|
return XFS_ITEM_LOCKED;
|
|
|
|
/*
|
|
* Re-check the pincount now that we stabilized the value by
|
|
* taking the ilock.
|
|
*/
|
|
if (xfs_ipincount(ip) > 0) {
|
|
rval = XFS_ITEM_PINNED;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Stale inode items should force out the iclog.
|
|
*/
|
|
if (ip->i_flags & XFS_ISTALE) {
|
|
rval = XFS_ITEM_PINNED;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Someone else is already flushing the inode. Nothing we can do
|
|
* here but wait for the flush to finish and remove the item from
|
|
* the AIL.
|
|
*/
|
|
if (!xfs_iflock_nowait(ip)) {
|
|
rval = XFS_ITEM_FLUSHING;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
|
|
ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
|
|
|
|
spin_unlock(&lip->li_ailp->xa_lock);
|
|
|
|
error = xfs_iflush(ip, &bp);
|
|
if (!error) {
|
|
if (!xfs_buf_delwri_queue(bp, buffer_list))
|
|
rval = XFS_ITEM_FLUSHING;
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
spin_lock(&lip->li_ailp->xa_lock);
|
|
out_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Unlock the inode associated with the inode log item.
|
|
* Clear the fields of the inode and inode log item that
|
|
* are specific to the current transaction. If the
|
|
* hold flags is set, do not unlock the inode.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
unsigned short lock_flags;
|
|
|
|
ASSERT(ip->i_itemp != NULL);
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
|
|
lock_flags = iip->ili_lock_flags;
|
|
iip->ili_lock_flags = 0;
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
}
|
|
|
|
/*
|
|
* This is called to find out where the oldest active copy of the inode log
|
|
* item in the on disk log resides now that the last log write of it completed
|
|
* at the given lsn. Since we always re-log all dirty data in an inode, the
|
|
* latest copy in the on disk log is the only one that matters. Therefore,
|
|
* simply return the given lsn.
|
|
*
|
|
* If the inode has been marked stale because the cluster is being freed, we
|
|
* don't want to (re-)insert this inode into the AIL. There is a race condition
|
|
* where the cluster buffer may be unpinned before the inode is inserted into
|
|
* the AIL during transaction committed processing. If the buffer is unpinned
|
|
* before the inode item has been committed and inserted, then it is possible
|
|
* for the buffer to be written and IO completes before the inode is inserted
|
|
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
|
|
* AIL which will never get removed. It will, however, get reclaimed which
|
|
* triggers an assert in xfs_inode_free() complaining about freein an inode
|
|
* still in the AIL.
|
|
*
|
|
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
|
|
* transaction committed code knows that it does not need to do any further
|
|
* processing on the item.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_inode_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
|
|
struct xfs_inode *ip = iip->ili_inode;
|
|
|
|
if (xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
xfs_inode_item_unpin(lip, 0);
|
|
return -1;
|
|
}
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* XXX rcc - this one really has to do something. Probably needs
|
|
* to stamp in a new field in the incore inode.
|
|
*/
|
|
STATIC void
|
|
xfs_inode_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
INODE_ITEM(lip)->ili_last_lsn = lsn;
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all buf log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_inode_item_ops = {
|
|
.iop_size = xfs_inode_item_size,
|
|
.iop_format = xfs_inode_item_format,
|
|
.iop_pin = xfs_inode_item_pin,
|
|
.iop_unpin = xfs_inode_item_unpin,
|
|
.iop_unlock = xfs_inode_item_unlock,
|
|
.iop_committed = xfs_inode_item_committed,
|
|
.iop_push = xfs_inode_item_push,
|
|
.iop_committing = xfs_inode_item_committing
|
|
};
|
|
|
|
|
|
/*
|
|
* Initialize the inode log item for a newly allocated (in-core) inode.
|
|
*/
|
|
void
|
|
xfs_inode_item_init(
|
|
struct xfs_inode *ip,
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inode_log_item *iip;
|
|
|
|
ASSERT(ip->i_itemp == NULL);
|
|
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
|
|
|
|
iip->ili_inode = ip;
|
|
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
|
|
&xfs_inode_item_ops);
|
|
}
|
|
|
|
/*
|
|
* Free the inode log item and any memory hanging off of it.
|
|
*/
|
|
void
|
|
xfs_inode_item_destroy(
|
|
xfs_inode_t *ip)
|
|
{
|
|
kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
|
|
kmem_zone_free(xfs_ili_zone, ip->i_itemp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is the inode flushing I/O completion routine. It is called
|
|
* from interrupt level when the buffer containing the inode is
|
|
* flushed to disk. It is responsible for removing the inode item
|
|
* from the AIL if it has not been re-logged, and unlocking the inode's
|
|
* flush lock.
|
|
*
|
|
* To reduce AIL lock traffic as much as possible, we scan the buffer log item
|
|
* list for other inodes that will run this function. We remove them from the
|
|
* buffer list so we can process all the inode IO completions in one AIL lock
|
|
* traversal.
|
|
*/
|
|
void
|
|
xfs_iflush_done(
|
|
struct xfs_buf *bp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_inode_log_item *iip;
|
|
struct xfs_log_item *blip;
|
|
struct xfs_log_item *next;
|
|
struct xfs_log_item *prev;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
int need_ail = 0;
|
|
|
|
/*
|
|
* Scan the buffer IO completions for other inodes being completed and
|
|
* attach them to the current inode log item.
|
|
*/
|
|
blip = bp->b_fspriv;
|
|
prev = NULL;
|
|
while (blip != NULL) {
|
|
if (blip->li_cb != xfs_iflush_done) {
|
|
prev = blip;
|
|
blip = blip->li_bio_list;
|
|
continue;
|
|
}
|
|
|
|
/* remove from list */
|
|
next = blip->li_bio_list;
|
|
if (!prev) {
|
|
bp->b_fspriv = next;
|
|
} else {
|
|
prev->li_bio_list = next;
|
|
}
|
|
|
|
/* add to current list */
|
|
blip->li_bio_list = lip->li_bio_list;
|
|
lip->li_bio_list = blip;
|
|
|
|
/*
|
|
* while we have the item, do the unlocked check for needing
|
|
* the AIL lock.
|
|
*/
|
|
iip = INODE_ITEM(blip);
|
|
if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
|
|
need_ail++;
|
|
|
|
blip = next;
|
|
}
|
|
|
|
/* make sure we capture the state of the initial inode. */
|
|
iip = INODE_ITEM(lip);
|
|
if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
|
|
need_ail++;
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if it is
|
|
* actually there and its location in the log has not
|
|
* changed since we started the flush. Thus, we only bother
|
|
* if the ili_logged flag is set and the inode's lsn has not
|
|
* changed. First we check the lsn outside
|
|
* the lock since it's cheaper, and then we recheck while
|
|
* holding the lock before removing the inode from the AIL.
|
|
*/
|
|
if (need_ail) {
|
|
struct xfs_log_item *log_items[need_ail];
|
|
int i = 0;
|
|
spin_lock(&ailp->xa_lock);
|
|
for (blip = lip; blip; blip = blip->li_bio_list) {
|
|
iip = INODE_ITEM(blip);
|
|
if (iip->ili_logged &&
|
|
blip->li_lsn == iip->ili_flush_lsn) {
|
|
log_items[i++] = blip;
|
|
}
|
|
ASSERT(i <= need_ail);
|
|
}
|
|
/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
|
|
xfs_trans_ail_delete_bulk(ailp, log_items, i,
|
|
SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
|
|
|
|
/*
|
|
* clean up and unlock the flush lock now we are done. We can clear the
|
|
* ili_last_fields bits now that we know that the data corresponding to
|
|
* them is safely on disk.
|
|
*/
|
|
for (blip = lip; blip; blip = next) {
|
|
next = blip->li_bio_list;
|
|
blip->li_bio_list = NULL;
|
|
|
|
iip = INODE_ITEM(blip);
|
|
iip->ili_logged = 0;
|
|
iip->ili_last_fields = 0;
|
|
xfs_ifunlock(iip->ili_inode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the inode flushing abort routine. It is called from xfs_iflush when
|
|
* the filesystem is shutting down to clean up the inode state. It is
|
|
* responsible for removing the inode item from the AIL if it has not been
|
|
* re-logged, and unlocking the inode's flush lock.
|
|
*/
|
|
void
|
|
xfs_iflush_abort(
|
|
xfs_inode_t *ip,
|
|
bool stale)
|
|
{
|
|
xfs_inode_log_item_t *iip = ip->i_itemp;
|
|
|
|
if (iip) {
|
|
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
|
|
xfs_trans_ail_remove(&iip->ili_item,
|
|
stale ? SHUTDOWN_LOG_IO_ERROR :
|
|
SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
iip->ili_logged = 0;
|
|
/*
|
|
* Clear the ili_last_fields bits now that we know that the
|
|
* data corresponding to them is safely on disk.
|
|
*/
|
|
iip->ili_last_fields = 0;
|
|
/*
|
|
* Clear the inode logging fields so no more flushes are
|
|
* attempted.
|
|
*/
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
}
|
|
/*
|
|
* Release the inode's flush lock since we're done with it.
|
|
*/
|
|
xfs_ifunlock(ip);
|
|
}
|
|
|
|
void
|
|
xfs_istale_done(
|
|
struct xfs_buf *bp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
|
|
}
|
|
|
|
/*
|
|
* convert an xfs_inode_log_format struct from either 32 or 64 bit versions
|
|
* (which can have different field alignments) to the native version
|
|
*/
|
|
int
|
|
xfs_inode_item_format_convert(
|
|
xfs_log_iovec_t *buf,
|
|
xfs_inode_log_format_t *in_f)
|
|
{
|
|
if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
|
|
xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
|
|
|
|
in_f->ilf_type = in_f32->ilf_type;
|
|
in_f->ilf_size = in_f32->ilf_size;
|
|
in_f->ilf_fields = in_f32->ilf_fields;
|
|
in_f->ilf_asize = in_f32->ilf_asize;
|
|
in_f->ilf_dsize = in_f32->ilf_dsize;
|
|
in_f->ilf_ino = in_f32->ilf_ino;
|
|
/* copy biggest field of ilf_u */
|
|
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
|
|
in_f32->ilf_u.ilfu_uuid.__u_bits,
|
|
sizeof(uuid_t));
|
|
in_f->ilf_blkno = in_f32->ilf_blkno;
|
|
in_f->ilf_len = in_f32->ilf_len;
|
|
in_f->ilf_boffset = in_f32->ilf_boffset;
|
|
return 0;
|
|
} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
|
|
xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
|
|
|
|
in_f->ilf_type = in_f64->ilf_type;
|
|
in_f->ilf_size = in_f64->ilf_size;
|
|
in_f->ilf_fields = in_f64->ilf_fields;
|
|
in_f->ilf_asize = in_f64->ilf_asize;
|
|
in_f->ilf_dsize = in_f64->ilf_dsize;
|
|
in_f->ilf_ino = in_f64->ilf_ino;
|
|
/* copy biggest field of ilf_u */
|
|
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
|
|
in_f64->ilf_u.ilfu_uuid.__u_bits,
|
|
sizeof(uuid_t));
|
|
in_f->ilf_blkno = in_f64->ilf_blkno;
|
|
in_f->ilf_len = in_f64->ilf_len;
|
|
in_f->ilf_boffset = in_f64->ilf_boffset;
|
|
return 0;
|
|
}
|
|
return -EFSCORRUPTED;
|
|
}
|