mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 22:36:40 +07:00
06ca7f68d4
Several hardware related cipher implementations are implemented as follows: a "helper" cipher implementation is registered with the kernel crypto API. Such helper ciphers are never intended to be called by normal users. In some cases, calling them via the normal crypto API may even cause failures including kernel crashes. In a normal case, the "wrapping" ciphers that use the helpers ensure that these helpers are invoked such that they cannot cause any calamity. Considering the AF_ALG user space interface, unprivileged users can call all ciphers registered with the crypto API, including these helper ciphers that are not intended to be called directly. That means, with AF_ALG user space may invoke these helper ciphers and may cause undefined states or side effects. To avoid any potential side effects with such helpers, the patch prevents the helpers to be called directly. A new cipher type flag is added: CRYPTO_ALG_INTERNAL. This flag shall be used to mark helper ciphers. These ciphers can only be used if the caller invoke the cipher with CRYPTO_ALG_INTERNAL in the type and mask field. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
616 lines
14 KiB
C
616 lines
14 KiB
C
/*
|
|
* Scatterlist Cryptographic API.
|
|
*
|
|
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
|
|
* Copyright (c) 2002 David S. Miller (davem@redhat.com)
|
|
* Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*
|
|
* Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
|
|
* and Nettle, by Niels Möller.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/module.h>
|
|
#include <linux/param.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include "internal.h"
|
|
|
|
LIST_HEAD(crypto_alg_list);
|
|
EXPORT_SYMBOL_GPL(crypto_alg_list);
|
|
DECLARE_RWSEM(crypto_alg_sem);
|
|
EXPORT_SYMBOL_GPL(crypto_alg_sem);
|
|
|
|
BLOCKING_NOTIFIER_HEAD(crypto_chain);
|
|
EXPORT_SYMBOL_GPL(crypto_chain);
|
|
|
|
static struct crypto_alg *crypto_larval_wait(struct crypto_alg *alg);
|
|
|
|
struct crypto_alg *crypto_mod_get(struct crypto_alg *alg)
|
|
{
|
|
return try_module_get(alg->cra_module) ? crypto_alg_get(alg) : NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_mod_get);
|
|
|
|
void crypto_mod_put(struct crypto_alg *alg)
|
|
{
|
|
struct module *module = alg->cra_module;
|
|
|
|
crypto_alg_put(alg);
|
|
module_put(module);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_mod_put);
|
|
|
|
static inline int crypto_is_test_larval(struct crypto_larval *larval)
|
|
{
|
|
return larval->alg.cra_driver_name[0];
|
|
}
|
|
|
|
static struct crypto_alg *__crypto_alg_lookup(const char *name, u32 type,
|
|
u32 mask)
|
|
{
|
|
struct crypto_alg *q, *alg = NULL;
|
|
int best = -2;
|
|
|
|
list_for_each_entry(q, &crypto_alg_list, cra_list) {
|
|
int exact, fuzzy;
|
|
|
|
if (crypto_is_moribund(q))
|
|
continue;
|
|
|
|
if ((q->cra_flags ^ type) & mask)
|
|
continue;
|
|
|
|
if (crypto_is_larval(q) &&
|
|
!crypto_is_test_larval((struct crypto_larval *)q) &&
|
|
((struct crypto_larval *)q)->mask != mask)
|
|
continue;
|
|
|
|
exact = !strcmp(q->cra_driver_name, name);
|
|
fuzzy = !strcmp(q->cra_name, name);
|
|
if (!exact && !(fuzzy && q->cra_priority > best))
|
|
continue;
|
|
|
|
if (unlikely(!crypto_mod_get(q)))
|
|
continue;
|
|
|
|
best = q->cra_priority;
|
|
if (alg)
|
|
crypto_mod_put(alg);
|
|
alg = q;
|
|
|
|
if (exact)
|
|
break;
|
|
}
|
|
|
|
return alg;
|
|
}
|
|
|
|
static void crypto_larval_destroy(struct crypto_alg *alg)
|
|
{
|
|
struct crypto_larval *larval = (void *)alg;
|
|
|
|
BUG_ON(!crypto_is_larval(alg));
|
|
if (larval->adult)
|
|
crypto_mod_put(larval->adult);
|
|
kfree(larval);
|
|
}
|
|
|
|
struct crypto_larval *crypto_larval_alloc(const char *name, u32 type, u32 mask)
|
|
{
|
|
struct crypto_larval *larval;
|
|
|
|
larval = kzalloc(sizeof(*larval), GFP_KERNEL);
|
|
if (!larval)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
larval->mask = mask;
|
|
larval->alg.cra_flags = CRYPTO_ALG_LARVAL | type;
|
|
larval->alg.cra_priority = -1;
|
|
larval->alg.cra_destroy = crypto_larval_destroy;
|
|
|
|
strlcpy(larval->alg.cra_name, name, CRYPTO_MAX_ALG_NAME);
|
|
init_completion(&larval->completion);
|
|
|
|
return larval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_larval_alloc);
|
|
|
|
static struct crypto_alg *crypto_larval_add(const char *name, u32 type,
|
|
u32 mask)
|
|
{
|
|
struct crypto_alg *alg;
|
|
struct crypto_larval *larval;
|
|
|
|
larval = crypto_larval_alloc(name, type, mask);
|
|
if (IS_ERR(larval))
|
|
return ERR_CAST(larval);
|
|
|
|
atomic_set(&larval->alg.cra_refcnt, 2);
|
|
|
|
down_write(&crypto_alg_sem);
|
|
alg = __crypto_alg_lookup(name, type, mask);
|
|
if (!alg) {
|
|
alg = &larval->alg;
|
|
list_add(&alg->cra_list, &crypto_alg_list);
|
|
}
|
|
up_write(&crypto_alg_sem);
|
|
|
|
if (alg != &larval->alg) {
|
|
kfree(larval);
|
|
if (crypto_is_larval(alg))
|
|
alg = crypto_larval_wait(alg);
|
|
}
|
|
|
|
return alg;
|
|
}
|
|
|
|
void crypto_larval_kill(struct crypto_alg *alg)
|
|
{
|
|
struct crypto_larval *larval = (void *)alg;
|
|
|
|
down_write(&crypto_alg_sem);
|
|
list_del(&alg->cra_list);
|
|
up_write(&crypto_alg_sem);
|
|
complete_all(&larval->completion);
|
|
crypto_alg_put(alg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_larval_kill);
|
|
|
|
static struct crypto_alg *crypto_larval_wait(struct crypto_alg *alg)
|
|
{
|
|
struct crypto_larval *larval = (void *)alg;
|
|
long timeout;
|
|
|
|
timeout = wait_for_completion_interruptible_timeout(
|
|
&larval->completion, 60 * HZ);
|
|
|
|
alg = larval->adult;
|
|
if (timeout < 0)
|
|
alg = ERR_PTR(-EINTR);
|
|
else if (!timeout)
|
|
alg = ERR_PTR(-ETIMEDOUT);
|
|
else if (!alg)
|
|
alg = ERR_PTR(-ENOENT);
|
|
else if (crypto_is_test_larval(larval) &&
|
|
!(alg->cra_flags & CRYPTO_ALG_TESTED))
|
|
alg = ERR_PTR(-EAGAIN);
|
|
else if (!crypto_mod_get(alg))
|
|
alg = ERR_PTR(-EAGAIN);
|
|
crypto_mod_put(&larval->alg);
|
|
|
|
return alg;
|
|
}
|
|
|
|
struct crypto_alg *crypto_alg_lookup(const char *name, u32 type, u32 mask)
|
|
{
|
|
struct crypto_alg *alg;
|
|
|
|
down_read(&crypto_alg_sem);
|
|
alg = __crypto_alg_lookup(name, type, mask);
|
|
up_read(&crypto_alg_sem);
|
|
|
|
return alg;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alg_lookup);
|
|
|
|
struct crypto_alg *crypto_larval_lookup(const char *name, u32 type, u32 mask)
|
|
{
|
|
struct crypto_alg *alg;
|
|
|
|
if (!name)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
mask &= ~(CRYPTO_ALG_LARVAL | CRYPTO_ALG_DEAD);
|
|
type &= mask;
|
|
|
|
alg = crypto_alg_lookup(name, type, mask);
|
|
if (!alg) {
|
|
request_module("crypto-%s", name);
|
|
|
|
if (!((type ^ CRYPTO_ALG_NEED_FALLBACK) & mask &
|
|
CRYPTO_ALG_NEED_FALLBACK))
|
|
request_module("crypto-%s-all", name);
|
|
|
|
alg = crypto_alg_lookup(name, type, mask);
|
|
}
|
|
|
|
if (alg)
|
|
return crypto_is_larval(alg) ? crypto_larval_wait(alg) : alg;
|
|
|
|
return crypto_larval_add(name, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_larval_lookup);
|
|
|
|
int crypto_probing_notify(unsigned long val, void *v)
|
|
{
|
|
int ok;
|
|
|
|
ok = blocking_notifier_call_chain(&crypto_chain, val, v);
|
|
if (ok == NOTIFY_DONE) {
|
|
request_module("cryptomgr");
|
|
ok = blocking_notifier_call_chain(&crypto_chain, val, v);
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_probing_notify);
|
|
|
|
struct crypto_alg *crypto_alg_mod_lookup(const char *name, u32 type, u32 mask)
|
|
{
|
|
struct crypto_alg *alg;
|
|
struct crypto_alg *larval;
|
|
int ok;
|
|
|
|
if (!((type | mask) & CRYPTO_ALG_TESTED)) {
|
|
type |= CRYPTO_ALG_TESTED;
|
|
mask |= CRYPTO_ALG_TESTED;
|
|
}
|
|
|
|
/*
|
|
* If the internal flag is set for a cipher, require a caller to
|
|
* to invoke the cipher with the internal flag to use that cipher.
|
|
* Also, if a caller wants to allocate a cipher that may or may
|
|
* not be an internal cipher, use type | CRYPTO_ALG_INTERNAL and
|
|
* !(mask & CRYPTO_ALG_INTERNAL).
|
|
*/
|
|
if (!((type | mask) & CRYPTO_ALG_INTERNAL))
|
|
mask |= CRYPTO_ALG_INTERNAL;
|
|
|
|
larval = crypto_larval_lookup(name, type, mask);
|
|
if (IS_ERR(larval) || !crypto_is_larval(larval))
|
|
return larval;
|
|
|
|
ok = crypto_probing_notify(CRYPTO_MSG_ALG_REQUEST, larval);
|
|
|
|
if (ok == NOTIFY_STOP)
|
|
alg = crypto_larval_wait(larval);
|
|
else {
|
|
crypto_mod_put(larval);
|
|
alg = ERR_PTR(-ENOENT);
|
|
}
|
|
crypto_larval_kill(larval);
|
|
return alg;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alg_mod_lookup);
|
|
|
|
static int crypto_init_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
|
|
{
|
|
const struct crypto_type *type_obj = tfm->__crt_alg->cra_type;
|
|
|
|
if (type_obj)
|
|
return type_obj->init(tfm, type, mask);
|
|
|
|
switch (crypto_tfm_alg_type(tfm)) {
|
|
case CRYPTO_ALG_TYPE_CIPHER:
|
|
return crypto_init_cipher_ops(tfm);
|
|
|
|
case CRYPTO_ALG_TYPE_COMPRESS:
|
|
return crypto_init_compress_ops(tfm);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
BUG();
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void crypto_exit_ops(struct crypto_tfm *tfm)
|
|
{
|
|
const struct crypto_type *type = tfm->__crt_alg->cra_type;
|
|
|
|
if (type) {
|
|
if (tfm->exit)
|
|
tfm->exit(tfm);
|
|
return;
|
|
}
|
|
|
|
switch (crypto_tfm_alg_type(tfm)) {
|
|
case CRYPTO_ALG_TYPE_CIPHER:
|
|
crypto_exit_cipher_ops(tfm);
|
|
break;
|
|
|
|
case CRYPTO_ALG_TYPE_COMPRESS:
|
|
crypto_exit_compress_ops(tfm);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static unsigned int crypto_ctxsize(struct crypto_alg *alg, u32 type, u32 mask)
|
|
{
|
|
const struct crypto_type *type_obj = alg->cra_type;
|
|
unsigned int len;
|
|
|
|
len = alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1);
|
|
if (type_obj)
|
|
return len + type_obj->ctxsize(alg, type, mask);
|
|
|
|
switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
|
|
default:
|
|
BUG();
|
|
|
|
case CRYPTO_ALG_TYPE_CIPHER:
|
|
len += crypto_cipher_ctxsize(alg);
|
|
break;
|
|
|
|
case CRYPTO_ALG_TYPE_COMPRESS:
|
|
len += crypto_compress_ctxsize(alg);
|
|
break;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
void crypto_shoot_alg(struct crypto_alg *alg)
|
|
{
|
|
down_write(&crypto_alg_sem);
|
|
alg->cra_flags |= CRYPTO_ALG_DYING;
|
|
up_write(&crypto_alg_sem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_shoot_alg);
|
|
|
|
struct crypto_tfm *__crypto_alloc_tfm(struct crypto_alg *alg, u32 type,
|
|
u32 mask)
|
|
{
|
|
struct crypto_tfm *tfm = NULL;
|
|
unsigned int tfm_size;
|
|
int err = -ENOMEM;
|
|
|
|
tfm_size = sizeof(*tfm) + crypto_ctxsize(alg, type, mask);
|
|
tfm = kzalloc(tfm_size, GFP_KERNEL);
|
|
if (tfm == NULL)
|
|
goto out_err;
|
|
|
|
tfm->__crt_alg = alg;
|
|
|
|
err = crypto_init_ops(tfm, type, mask);
|
|
if (err)
|
|
goto out_free_tfm;
|
|
|
|
if (!tfm->exit && alg->cra_init && (err = alg->cra_init(tfm)))
|
|
goto cra_init_failed;
|
|
|
|
goto out;
|
|
|
|
cra_init_failed:
|
|
crypto_exit_ops(tfm);
|
|
out_free_tfm:
|
|
if (err == -EAGAIN)
|
|
crypto_shoot_alg(alg);
|
|
kfree(tfm);
|
|
out_err:
|
|
tfm = ERR_PTR(err);
|
|
out:
|
|
return tfm;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__crypto_alloc_tfm);
|
|
|
|
/*
|
|
* crypto_alloc_base - Locate algorithm and allocate transform
|
|
* @alg_name: Name of algorithm
|
|
* @type: Type of algorithm
|
|
* @mask: Mask for type comparison
|
|
*
|
|
* This function should not be used by new algorithm types.
|
|
* Please use crypto_alloc_tfm instead.
|
|
*
|
|
* crypto_alloc_base() will first attempt to locate an already loaded
|
|
* algorithm. If that fails and the kernel supports dynamically loadable
|
|
* modules, it will then attempt to load a module of the same name or
|
|
* alias. If that fails it will send a query to any loaded crypto manager
|
|
* to construct an algorithm on the fly. A refcount is grabbed on the
|
|
* algorithm which is then associated with the new transform.
|
|
*
|
|
* The returned transform is of a non-determinate type. Most people
|
|
* should use one of the more specific allocation functions such as
|
|
* crypto_alloc_blkcipher.
|
|
*
|
|
* In case of error the return value is an error pointer.
|
|
*/
|
|
struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
struct crypto_tfm *tfm;
|
|
int err;
|
|
|
|
for (;;) {
|
|
struct crypto_alg *alg;
|
|
|
|
alg = crypto_alg_mod_lookup(alg_name, type, mask);
|
|
if (IS_ERR(alg)) {
|
|
err = PTR_ERR(alg);
|
|
goto err;
|
|
}
|
|
|
|
tfm = __crypto_alloc_tfm(alg, type, mask);
|
|
if (!IS_ERR(tfm))
|
|
return tfm;
|
|
|
|
crypto_mod_put(alg);
|
|
err = PTR_ERR(tfm);
|
|
|
|
err:
|
|
if (err != -EAGAIN)
|
|
break;
|
|
if (signal_pending(current)) {
|
|
err = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alloc_base);
|
|
|
|
void *crypto_create_tfm(struct crypto_alg *alg,
|
|
const struct crypto_type *frontend)
|
|
{
|
|
char *mem;
|
|
struct crypto_tfm *tfm = NULL;
|
|
unsigned int tfmsize;
|
|
unsigned int total;
|
|
int err = -ENOMEM;
|
|
|
|
tfmsize = frontend->tfmsize;
|
|
total = tfmsize + sizeof(*tfm) + frontend->extsize(alg);
|
|
|
|
mem = kzalloc(total, GFP_KERNEL);
|
|
if (mem == NULL)
|
|
goto out_err;
|
|
|
|
tfm = (struct crypto_tfm *)(mem + tfmsize);
|
|
tfm->__crt_alg = alg;
|
|
|
|
err = frontend->init_tfm(tfm);
|
|
if (err)
|
|
goto out_free_tfm;
|
|
|
|
if (!tfm->exit && alg->cra_init && (err = alg->cra_init(tfm)))
|
|
goto cra_init_failed;
|
|
|
|
goto out;
|
|
|
|
cra_init_failed:
|
|
crypto_exit_ops(tfm);
|
|
out_free_tfm:
|
|
if (err == -EAGAIN)
|
|
crypto_shoot_alg(alg);
|
|
kfree(mem);
|
|
out_err:
|
|
mem = ERR_PTR(err);
|
|
out:
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_create_tfm);
|
|
|
|
struct crypto_alg *crypto_find_alg(const char *alg_name,
|
|
const struct crypto_type *frontend,
|
|
u32 type, u32 mask)
|
|
{
|
|
struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask) =
|
|
crypto_alg_mod_lookup;
|
|
|
|
if (frontend) {
|
|
type &= frontend->maskclear;
|
|
mask &= frontend->maskclear;
|
|
type |= frontend->type;
|
|
mask |= frontend->maskset;
|
|
|
|
if (frontend->lookup)
|
|
lookup = frontend->lookup;
|
|
}
|
|
|
|
return lookup(alg_name, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_find_alg);
|
|
|
|
/*
|
|
* crypto_alloc_tfm - Locate algorithm and allocate transform
|
|
* @alg_name: Name of algorithm
|
|
* @frontend: Frontend algorithm type
|
|
* @type: Type of algorithm
|
|
* @mask: Mask for type comparison
|
|
*
|
|
* crypto_alloc_tfm() will first attempt to locate an already loaded
|
|
* algorithm. If that fails and the kernel supports dynamically loadable
|
|
* modules, it will then attempt to load a module of the same name or
|
|
* alias. If that fails it will send a query to any loaded crypto manager
|
|
* to construct an algorithm on the fly. A refcount is grabbed on the
|
|
* algorithm which is then associated with the new transform.
|
|
*
|
|
* The returned transform is of a non-determinate type. Most people
|
|
* should use one of the more specific allocation functions such as
|
|
* crypto_alloc_blkcipher.
|
|
*
|
|
* In case of error the return value is an error pointer.
|
|
*/
|
|
void *crypto_alloc_tfm(const char *alg_name,
|
|
const struct crypto_type *frontend, u32 type, u32 mask)
|
|
{
|
|
void *tfm;
|
|
int err;
|
|
|
|
for (;;) {
|
|
struct crypto_alg *alg;
|
|
|
|
alg = crypto_find_alg(alg_name, frontend, type, mask);
|
|
if (IS_ERR(alg)) {
|
|
err = PTR_ERR(alg);
|
|
goto err;
|
|
}
|
|
|
|
tfm = crypto_create_tfm(alg, frontend);
|
|
if (!IS_ERR(tfm))
|
|
return tfm;
|
|
|
|
crypto_mod_put(alg);
|
|
err = PTR_ERR(tfm);
|
|
|
|
err:
|
|
if (err != -EAGAIN)
|
|
break;
|
|
if (signal_pending(current)) {
|
|
err = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alloc_tfm);
|
|
|
|
/*
|
|
* crypto_destroy_tfm - Free crypto transform
|
|
* @mem: Start of tfm slab
|
|
* @tfm: Transform to free
|
|
*
|
|
* This function frees up the transform and any associated resources,
|
|
* then drops the refcount on the associated algorithm.
|
|
*/
|
|
void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg;
|
|
|
|
if (unlikely(!mem))
|
|
return;
|
|
|
|
alg = tfm->__crt_alg;
|
|
|
|
if (!tfm->exit && alg->cra_exit)
|
|
alg->cra_exit(tfm);
|
|
crypto_exit_ops(tfm);
|
|
crypto_mod_put(alg);
|
|
kzfree(mem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_destroy_tfm);
|
|
|
|
int crypto_has_alg(const char *name, u32 type, u32 mask)
|
|
{
|
|
int ret = 0;
|
|
struct crypto_alg *alg = crypto_alg_mod_lookup(name, type, mask);
|
|
|
|
if (!IS_ERR(alg)) {
|
|
crypto_mod_put(alg);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_has_alg);
|
|
|
|
MODULE_DESCRIPTION("Cryptographic core API");
|
|
MODULE_LICENSE("GPL");
|