linux_dsm_epyc7002/drivers/net/vxge/vxge-config.h
Jon Mason 926bd900b1 vxge: Update copyright information
Update copyright information to reflect the Exar purchase of Neterion

Signed-off-by: Jon Mason <jon.mason@exar.com>
Signed-off-by: Sreenivasa Honnur <sreenivasa.honnur@exar.com>
Signed-off-by: Ramkrishna Vepa <ramkrishna.vepa@exar.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-07-15 20:46:22 -07:00

2280 lines
78 KiB
C

/******************************************************************************
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* vxge-config.h: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
* Virtualized Server Adapter.
* Copyright(c) 2002-2010 Exar Corp.
******************************************************************************/
#ifndef VXGE_CONFIG_H
#define VXGE_CONFIG_H
#include <linux/list.h>
#include <linux/slab.h>
#ifndef VXGE_CACHE_LINE_SIZE
#define VXGE_CACHE_LINE_SIZE 128
#endif
#define vxge_os_vaprintf(level, mask, fmt, ...) { \
char buff[255]; \
snprintf(buff, 255, fmt, __VA_ARGS__); \
printk(buff); \
printk("\n"); \
}
#ifndef VXGE_ALIGN
#define VXGE_ALIGN(adrs, size) \
(((size) - (((u64)adrs) & ((size)-1))) & ((size)-1))
#endif
#define VXGE_HW_MIN_MTU 68
#define VXGE_HW_MAX_MTU 9600
#define VXGE_HW_DEFAULT_MTU 1500
#ifdef VXGE_DEBUG_ASSERT
/**
* vxge_assert
* @test: C-condition to check
* @fmt: printf like format string
*
* This function implements traditional assert. By default assertions
* are enabled. It can be disabled by undefining VXGE_DEBUG_ASSERT macro in
* compilation
* time.
*/
#define vxge_assert(test) { \
if (!(test)) \
vxge_os_bug("bad cond: "#test" at %s:%d\n", \
__FILE__, __LINE__); }
#else
#define vxge_assert(test)
#endif /* end of VXGE_DEBUG_ASSERT */
/**
* enum enum vxge_debug_level
* @VXGE_NONE: debug disabled
* @VXGE_ERR: all errors going to be logged out
* @VXGE_TRACE: all errors plus all kind of verbose tracing print outs
* going to be logged out. Very noisy.
*
* This enumeration going to be used to switch between different
* debug levels during runtime if DEBUG macro defined during
* compilation. If DEBUG macro not defined than code will be
* compiled out.
*/
enum vxge_debug_level {
VXGE_NONE = 0,
VXGE_TRACE = 1,
VXGE_ERR = 2
};
#define NULL_VPID 0xFFFFFFFF
#ifdef CONFIG_VXGE_DEBUG_TRACE_ALL
#define VXGE_DEBUG_MODULE_MASK 0xffffffff
#define VXGE_DEBUG_TRACE_MASK 0xffffffff
#define VXGE_DEBUG_ERR_MASK 0xffffffff
#define VXGE_DEBUG_MASK 0x000001ff
#else
#define VXGE_DEBUG_MODULE_MASK 0x20000000
#define VXGE_DEBUG_TRACE_MASK 0x20000000
#define VXGE_DEBUG_ERR_MASK 0x20000000
#define VXGE_DEBUG_MASK 0x00000001
#endif
/*
* @VXGE_COMPONENT_LL: do debug for vxge link layer module
* @VXGE_COMPONENT_ALL: activate debug for all modules with no exceptions
*
* This enumeration going to be used to distinguish modules
* or libraries during compilation and runtime. Makefile must declare
* VXGE_DEBUG_MODULE_MASK macro and set it to proper value.
*/
#define VXGE_COMPONENT_LL 0x20000000
#define VXGE_COMPONENT_ALL 0xffffffff
#define VXGE_HW_BASE_INF 100
#define VXGE_HW_BASE_ERR 200
#define VXGE_HW_BASE_BADCFG 300
enum vxge_hw_status {
VXGE_HW_OK = 0,
VXGE_HW_FAIL = 1,
VXGE_HW_PENDING = 2,
VXGE_HW_COMPLETIONS_REMAIN = 3,
VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS = VXGE_HW_BASE_INF + 1,
VXGE_HW_INF_OUT_OF_DESCRIPTORS = VXGE_HW_BASE_INF + 2,
VXGE_HW_ERR_INVALID_HANDLE = VXGE_HW_BASE_ERR + 1,
VXGE_HW_ERR_OUT_OF_MEMORY = VXGE_HW_BASE_ERR + 2,
VXGE_HW_ERR_VPATH_NOT_AVAILABLE = VXGE_HW_BASE_ERR + 3,
VXGE_HW_ERR_VPATH_NOT_OPEN = VXGE_HW_BASE_ERR + 4,
VXGE_HW_ERR_WRONG_IRQ = VXGE_HW_BASE_ERR + 5,
VXGE_HW_ERR_SWAPPER_CTRL = VXGE_HW_BASE_ERR + 6,
VXGE_HW_ERR_INVALID_MTU_SIZE = VXGE_HW_BASE_ERR + 7,
VXGE_HW_ERR_INVALID_INDEX = VXGE_HW_BASE_ERR + 8,
VXGE_HW_ERR_INVALID_TYPE = VXGE_HW_BASE_ERR + 9,
VXGE_HW_ERR_INVALID_OFFSET = VXGE_HW_BASE_ERR + 10,
VXGE_HW_ERR_INVALID_DEVICE = VXGE_HW_BASE_ERR + 11,
VXGE_HW_ERR_VERSION_CONFLICT = VXGE_HW_BASE_ERR + 12,
VXGE_HW_ERR_INVALID_PCI_INFO = VXGE_HW_BASE_ERR + 13,
VXGE_HW_ERR_INVALID_TCODE = VXGE_HW_BASE_ERR + 14,
VXGE_HW_ERR_INVALID_BLOCK_SIZE = VXGE_HW_BASE_ERR + 15,
VXGE_HW_ERR_INVALID_STATE = VXGE_HW_BASE_ERR + 16,
VXGE_HW_ERR_PRIVILAGED_OPEARATION = VXGE_HW_BASE_ERR + 17,
VXGE_HW_ERR_INVALID_PORT = VXGE_HW_BASE_ERR + 18,
VXGE_HW_ERR_FIFO = VXGE_HW_BASE_ERR + 19,
VXGE_HW_ERR_VPATH = VXGE_HW_BASE_ERR + 20,
VXGE_HW_ERR_CRITICAL = VXGE_HW_BASE_ERR + 21,
VXGE_HW_ERR_SLOT_FREEZE = VXGE_HW_BASE_ERR + 22,
VXGE_HW_BADCFG_RING_INDICATE_MAX_PKTS = VXGE_HW_BASE_BADCFG + 1,
VXGE_HW_BADCFG_FIFO_BLOCKS = VXGE_HW_BASE_BADCFG + 2,
VXGE_HW_BADCFG_VPATH_MTU = VXGE_HW_BASE_BADCFG + 3,
VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG = VXGE_HW_BASE_BADCFG + 4,
VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH = VXGE_HW_BASE_BADCFG + 5,
VXGE_HW_BADCFG_INTR_MODE = VXGE_HW_BASE_BADCFG + 6,
VXGE_HW_BADCFG_RTS_MAC_EN = VXGE_HW_BASE_BADCFG + 7,
VXGE_HW_EOF_TRACE_BUF = -1
};
/**
* enum enum vxge_hw_device_link_state - Link state enumeration.
* @VXGE_HW_LINK_NONE: Invalid link state.
* @VXGE_HW_LINK_DOWN: Link is down.
* @VXGE_HW_LINK_UP: Link is up.
*
*/
enum vxge_hw_device_link_state {
VXGE_HW_LINK_NONE,
VXGE_HW_LINK_DOWN,
VXGE_HW_LINK_UP
};
/**
* struct vxge_hw_device_date - Date Format
* @day: Day
* @month: Month
* @year: Year
* @date: Date in string format
*
* Structure for returning date
*/
#define VXGE_HW_FW_STRLEN 32
struct vxge_hw_device_date {
u32 day;
u32 month;
u32 year;
char date[VXGE_HW_FW_STRLEN];
};
struct vxge_hw_device_version {
u32 major;
u32 minor;
u32 build;
char version[VXGE_HW_FW_STRLEN];
};
u64
__vxge_hw_vpath_pci_func_mode_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg);
/**
* struct vxge_hw_fifo_config - Configuration of fifo.
* @enable: Is this fifo to be commissioned
* @fifo_blocks: Numbers of TxDL (that is, lists of Tx descriptors)
* blocks per queue.
* @max_frags: Max number of Tx buffers per TxDL (that is, per single
* transmit operation).
* No more than 256 transmit buffers can be specified.
* @memblock_size: Fifo descriptors are allocated in blocks of @mem_block_size
* bytes. Setting @memblock_size to page size ensures
* by-page allocation of descriptors. 128K bytes is the
* maximum supported block size.
* @alignment_size: per Tx fragment DMA-able memory used to align transmit data
* (e.g., to align on a cache line).
* @intr: Boolean. Use 1 to generate interrupt for each completed TxDL.
* Use 0 otherwise.
* @no_snoop_bits: If non-zero, specifies no-snoop PCI operation,
* which generally improves latency of the host bridge operation
* (see PCI specification). For valid values please refer
* to struct vxge_hw_fifo_config{} in the driver sources.
* Configuration of all Titan fifos.
* Note: Valid (min, max) range for each attribute is specified in the body of
* the struct vxge_hw_fifo_config{} structure.
*/
struct vxge_hw_fifo_config {
u32 enable;
#define VXGE_HW_FIFO_ENABLE 1
#define VXGE_HW_FIFO_DISABLE 0
u32 fifo_blocks;
#define VXGE_HW_MIN_FIFO_BLOCKS 2
#define VXGE_HW_MAX_FIFO_BLOCKS 128
u32 max_frags;
#define VXGE_HW_MIN_FIFO_FRAGS 1
#define VXGE_HW_MAX_FIFO_FRAGS 256
u32 memblock_size;
#define VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE VXGE_HW_BLOCK_SIZE
#define VXGE_HW_MAX_FIFO_MEMBLOCK_SIZE 131072
#define VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE 8096
u32 alignment_size;
#define VXGE_HW_MIN_FIFO_ALIGNMENT_SIZE 0
#define VXGE_HW_MAX_FIFO_ALIGNMENT_SIZE 65536
#define VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE VXGE_CACHE_LINE_SIZE
u32 intr;
#define VXGE_HW_FIFO_QUEUE_INTR_ENABLE 1
#define VXGE_HW_FIFO_QUEUE_INTR_DISABLE 0
#define VXGE_HW_FIFO_QUEUE_INTR_DEFAULT 0
u32 no_snoop_bits;
#define VXGE_HW_FIFO_NO_SNOOP_DISABLED 0
#define VXGE_HW_FIFO_NO_SNOOP_TXD 1
#define VXGE_HW_FIFO_NO_SNOOP_FRM 2
#define VXGE_HW_FIFO_NO_SNOOP_ALL 3
#define VXGE_HW_FIFO_NO_SNOOP_DEFAULT 0
};
/**
* struct vxge_hw_ring_config - Ring configurations.
* @enable: Is this ring to be commissioned
* @ring_blocks: Numbers of RxD blocks in the ring
* @buffer_mode: Receive buffer mode (1, 2, 3, or 5); for details please refer
* to Titan User Guide.
* @scatter_mode: Titan supports two receive scatter modes: A and B.
* For details please refer to Titan User Guide.
* @rx_timer_val: The number of 32ns periods that would be counted between two
* timer interrupts.
* @greedy_return: If Set it forces the device to return absolutely all RxD
* that are consumed and still on board when a timer interrupt
* triggers. If Clear, then if the device has already returned
* RxD before current timer interrupt trigerred and after the
* previous timer interrupt triggered, then the device is not
* forced to returned the rest of the consumed RxD that it has
* on board which account for a byte count less than the one
* programmed into PRC_CFG6.RXD_CRXDT field
* @rx_timer_ci: TBD
* @backoff_interval_us: Time (in microseconds), after which Titan
* tries to download RxDs posted by the host.
* Note that the "backoff" does not happen if host posts receive
* descriptors in the timely fashion.
* Ring configuration.
*/
struct vxge_hw_ring_config {
u32 enable;
#define VXGE_HW_RING_ENABLE 1
#define VXGE_HW_RING_DISABLE 0
#define VXGE_HW_RING_DEFAULT 1
u32 ring_blocks;
#define VXGE_HW_MIN_RING_BLOCKS 1
#define VXGE_HW_MAX_RING_BLOCKS 128
#define VXGE_HW_DEF_RING_BLOCKS 2
u32 buffer_mode;
#define VXGE_HW_RING_RXD_BUFFER_MODE_1 1
#define VXGE_HW_RING_RXD_BUFFER_MODE_3 3
#define VXGE_HW_RING_RXD_BUFFER_MODE_5 5
#define VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT 1
u32 scatter_mode;
#define VXGE_HW_RING_SCATTER_MODE_A 0
#define VXGE_HW_RING_SCATTER_MODE_B 1
#define VXGE_HW_RING_SCATTER_MODE_C 2
#define VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT 0xffffffff
u64 rxds_limit;
#define VXGE_HW_DEF_RING_RXDS_LIMIT 44
};
/**
* struct vxge_hw_vp_config - Configuration of virtual path
* @vp_id: Virtual Path Id
* @min_bandwidth: Minimum Guaranteed bandwidth
* @ring: See struct vxge_hw_ring_config{}.
* @fifo: See struct vxge_hw_fifo_config{}.
* @tti: Configuration of interrupt associated with Transmit.
* see struct vxge_hw_tim_intr_config();
* @rti: Configuration of interrupt associated with Receive.
* see struct vxge_hw_tim_intr_config();
* @mtu: mtu size used on this port.
* @rpa_strip_vlan_tag: Strip VLAN Tag enable/disable. Instructs the device to
* remove the VLAN tag from all received tagged frames that are not
* replicated at the internal L2 switch.
* 0 - Do not strip the VLAN tag.
* 1 - Strip the VLAN tag. Regardless of this setting, VLAN tags are
* always placed into the RxDMA descriptor.
*
* This structure is used by the driver to pass the configuration parameters to
* configure Virtual Path.
*/
struct vxge_hw_vp_config {
u32 vp_id;
#define VXGE_HW_VPATH_PRIORITY_MIN 0
#define VXGE_HW_VPATH_PRIORITY_MAX 16
#define VXGE_HW_VPATH_PRIORITY_DEFAULT 0
u32 min_bandwidth;
#define VXGE_HW_VPATH_BANDWIDTH_MIN 0
#define VXGE_HW_VPATH_BANDWIDTH_MAX 100
#define VXGE_HW_VPATH_BANDWIDTH_DEFAULT 0
struct vxge_hw_ring_config ring;
struct vxge_hw_fifo_config fifo;
struct vxge_hw_tim_intr_config tti;
struct vxge_hw_tim_intr_config rti;
u32 mtu;
#define VXGE_HW_VPATH_MIN_INITIAL_MTU VXGE_HW_MIN_MTU
#define VXGE_HW_VPATH_MAX_INITIAL_MTU VXGE_HW_MAX_MTU
#define VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU 0xffffffff
u32 rpa_strip_vlan_tag;
#define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE 1
#define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE 0
#define VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT 0xffffffff
};
/**
* struct vxge_hw_device_config - Device configuration.
* @dma_blockpool_initial: Initial size of DMA Pool
* @dma_blockpool_max: Maximum blocks in DMA pool
* @intr_mode: Line, or MSI-X interrupt.
*
* @rth_en: Enable Receive Traffic Hashing(RTH) using IT(Indirection Table).
* @rth_it_type: RTH IT table programming type
* @rts_mac_en: Enable Receive Traffic Steering using MAC destination address
* @vp_config: Configuration for virtual paths
* @device_poll_millis: Specify the interval (in mulliseconds)
* to wait for register reads
*
* Titan configuration.
* Contains per-device configuration parameters, including:
* - stats sampling interval, etc.
*
* In addition, struct vxge_hw_device_config{} includes "subordinate"
* configurations, including:
* - fifos and rings;
* - MAC (done at firmware level).
*
* See Titan User Guide for more details.
* Note: Valid (min, max) range for each attribute is specified in the body of
* the struct vxge_hw_device_config{} structure. Please refer to the
* corresponding include file.
* See also: struct vxge_hw_tim_intr_config{}.
*/
struct vxge_hw_device_config {
u32 dma_blockpool_initial;
u32 dma_blockpool_max;
#define VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE 0
#define VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE 0
#define VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE 4
#define VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE 4096
#define VXGE_HW_MAX_PAYLOAD_SIZE_512 2
u32 intr_mode;
#define VXGE_HW_INTR_MODE_IRQLINE 0
#define VXGE_HW_INTR_MODE_MSIX 1
#define VXGE_HW_INTR_MODE_MSIX_ONE_SHOT 2
#define VXGE_HW_INTR_MODE_DEF 0
u32 rth_en;
#define VXGE_HW_RTH_DISABLE 0
#define VXGE_HW_RTH_ENABLE 1
#define VXGE_HW_RTH_DEFAULT 0
u32 rth_it_type;
#define VXGE_HW_RTH_IT_TYPE_SOLO_IT 0
#define VXGE_HW_RTH_IT_TYPE_MULTI_IT 1
#define VXGE_HW_RTH_IT_TYPE_DEFAULT 0
u32 rts_mac_en;
#define VXGE_HW_RTS_MAC_DISABLE 0
#define VXGE_HW_RTS_MAC_ENABLE 1
#define VXGE_HW_RTS_MAC_DEFAULT 0
struct vxge_hw_vp_config vp_config[VXGE_HW_MAX_VIRTUAL_PATHS];
u32 device_poll_millis;
#define VXGE_HW_MIN_DEVICE_POLL_MILLIS 1
#define VXGE_HW_MAX_DEVICE_POLL_MILLIS 100000
#define VXGE_HW_DEF_DEVICE_POLL_MILLIS 1000
};
/**
* function vxge_uld_link_up_f - Link-Up callback provided by driver.
* @devh: HW device handle.
* Link-up notification callback provided by the driver.
* This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}.
*
* See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_down_f{},
* vxge_hw_driver_initialize().
*/
/**
* function vxge_uld_link_down_f - Link-Down callback provided by
* driver.
* @devh: HW device handle.
*
* Link-Down notification callback provided by the driver.
* This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}.
*
* See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_up_f{},
* vxge_hw_driver_initialize().
*/
/**
* function vxge_uld_crit_err_f - Critical Error notification callback.
* @devh: HW device handle.
* (typically - at HW device iinitialization time).
* @type: Enumerated hw error, e.g.: double ECC.
* @serr_data: Titan status.
* @ext_data: Extended data. The contents depends on the @type.
*
* Link-Down notification callback provided by the driver.
* This is one of the per-driver callbacks, see struct vxge_hw_uld_cbs{}.
*
* See also: struct vxge_hw_uld_cbs{}, enum vxge_hw_event{},
* vxge_hw_driver_initialize().
*/
/**
* struct vxge_hw_uld_cbs - driver "slow-path" callbacks.
* @link_up: See vxge_uld_link_up_f{}.
* @link_down: See vxge_uld_link_down_f{}.
* @crit_err: See vxge_uld_crit_err_f{}.
*
* Driver slow-path (per-driver) callbacks.
* Implemented by driver and provided to HW via
* vxge_hw_driver_initialize().
* Note that these callbacks are not mandatory: HW will not invoke
* a callback if NULL is specified.
*
* See also: vxge_hw_driver_initialize().
*/
struct vxge_hw_uld_cbs {
void (*link_up)(struct __vxge_hw_device *devh);
void (*link_down)(struct __vxge_hw_device *devh);
void (*crit_err)(struct __vxge_hw_device *devh,
enum vxge_hw_event type, u64 ext_data);
};
/*
* struct __vxge_hw_blockpool_entry - Block private data structure
* @item: List header used to link.
* @length: Length of the block
* @memblock: Virtual address block
* @dma_addr: DMA Address of the block.
* @dma_handle: DMA handle of the block.
* @acc_handle: DMA acc handle
*
* Block is allocated with a header to put the blocks into list.
*
*/
struct __vxge_hw_blockpool_entry {
struct list_head item;
u32 length;
void *memblock;
dma_addr_t dma_addr;
struct pci_dev *dma_handle;
struct pci_dev *acc_handle;
};
/*
* struct __vxge_hw_blockpool - Block Pool
* @hldev: HW device
* @block_size: size of each block.
* @Pool_size: Number of blocks in the pool
* @pool_max: Maximum number of blocks above which to free additional blocks
* @req_out: Number of block requests with OS out standing
* @free_block_list: List of free blocks
*
* Block pool contains the DMA blocks preallocated.
*
*/
struct __vxge_hw_blockpool {
struct __vxge_hw_device *hldev;
u32 block_size;
u32 pool_size;
u32 pool_max;
u32 req_out;
struct list_head free_block_list;
struct list_head free_entry_list;
};
/*
* enum enum __vxge_hw_channel_type - Enumerated channel types.
* @VXGE_HW_CHANNEL_TYPE_UNKNOWN: Unknown channel.
* @VXGE_HW_CHANNEL_TYPE_FIFO: fifo.
* @VXGE_HW_CHANNEL_TYPE_RING: ring.
* @VXGE_HW_CHANNEL_TYPE_MAX: Maximum number of HW-supported
* (and recognized) channel types. Currently: 2.
*
* Enumerated channel types. Currently there are only two link-layer
* channels - Titan fifo and Titan ring. In the future the list will grow.
*/
enum __vxge_hw_channel_type {
VXGE_HW_CHANNEL_TYPE_UNKNOWN = 0,
VXGE_HW_CHANNEL_TYPE_FIFO = 1,
VXGE_HW_CHANNEL_TYPE_RING = 2,
VXGE_HW_CHANNEL_TYPE_MAX = 3
};
/*
* struct __vxge_hw_channel
* @item: List item; used to maintain a list of open channels.
* @type: Channel type. See enum vxge_hw_channel_type{}.
* @devh: Device handle. HW device object that contains _this_ channel.
* @vph: Virtual path handle. Virtual Path Object that contains _this_ channel.
* @length: Channel length. Currently allocated number of descriptors.
* The channel length "grows" when more descriptors get allocated.
* See _hw_mempool_grow.
* @reserve_arr: Reserve array. Contains descriptors that can be reserved
* by driver for the subsequent send or receive operation.
* See vxge_hw_fifo_txdl_reserve(),
* vxge_hw_ring_rxd_reserve().
* @reserve_ptr: Current pointer in the resrve array
* @reserve_top: Reserve top gives the maximum number of dtrs available in
* reserve array.
* @work_arr: Work array. Contains descriptors posted to the channel.
* Note that at any point in time @work_arr contains 3 types of
* descriptors:
* 1) posted but not yet consumed by Titan device;
* 2) consumed but not yet completed;
* 3) completed but not yet freed
* (via vxge_hw_fifo_txdl_free() or vxge_hw_ring_rxd_free())
* @post_index: Post index. At any point in time points on the
* position in the channel, which'll contain next to-be-posted
* descriptor.
* @compl_index: Completion index. At any point in time points on the
* position in the channel, which will contain next
* to-be-completed descriptor.
* @free_arr: Free array. Contains completed descriptors that were freed
* (i.e., handed over back to HW) by driver.
* See vxge_hw_fifo_txdl_free(), vxge_hw_ring_rxd_free().
* @free_ptr: current pointer in free array
* @per_dtr_space: Per-descriptor space (in bytes) that channel user can utilize
* to store per-operation control information.
* @stats: Pointer to common statistics
* @userdata: Per-channel opaque (void*) user-defined context, which may be
* driver object, ULP connection, etc.
* Once channel is open, @userdata is passed back to user via
* vxge_hw_channel_callback_f.
*
* HW channel object.
*
* See also: enum vxge_hw_channel_type{}, enum vxge_hw_channel_flag
*/
struct __vxge_hw_channel {
struct list_head item;
enum __vxge_hw_channel_type type;
struct __vxge_hw_device *devh;
struct __vxge_hw_vpath_handle *vph;
u32 length;
u32 vp_id;
void **reserve_arr;
u32 reserve_ptr;
u32 reserve_top;
void **work_arr;
u32 post_index ____cacheline_aligned;
u32 compl_index ____cacheline_aligned;
void **free_arr;
u32 free_ptr;
void **orig_arr;
u32 per_dtr_space;
void *userdata;
struct vxge_hw_common_reg __iomem *common_reg;
u32 first_vp_id;
struct vxge_hw_vpath_stats_sw_common_info *stats;
} ____cacheline_aligned;
/*
* struct __vxge_hw_virtualpath - Virtual Path
*
* @vp_id: Virtual path id
* @vp_open: This flag specifies if vxge_hw_vp_open is called from LL Driver
* @hldev: Hal device
* @vp_config: Virtual Path Config
* @vp_reg: VPATH Register map address in BAR0
* @vpmgmt_reg: VPATH_MGMT register map address
* @max_mtu: Max mtu that can be supported
* @vsport_number: vsport attached to this vpath
* @max_kdfc_db: Maximum kernel mode doorbells
* @max_nofl_db: Maximum non offload doorbells
* @tx_intr_num: Interrupt Number associated with the TX
* @ringh: Ring Queue
* @fifoh: FIFO Queue
* @vpath_handles: Virtual Path handles list
* @stats_block: Memory for DMAing stats
* @stats: Vpath statistics
*
* Virtual path structure to encapsulate the data related to a virtual path.
* Virtual paths are allocated by the HW upon getting configuration from the
* driver and inserted into the list of virtual paths.
*/
struct __vxge_hw_virtualpath {
u32 vp_id;
u32 vp_open;
#define VXGE_HW_VP_NOT_OPEN 0
#define VXGE_HW_VP_OPEN 1
struct __vxge_hw_device *hldev;
struct vxge_hw_vp_config *vp_config;
struct vxge_hw_vpath_reg __iomem *vp_reg;
struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
struct __vxge_hw_non_offload_db_wrapper __iomem *nofl_db;
u32 max_mtu;
u32 vsport_number;
u32 max_kdfc_db;
u32 max_nofl_db;
struct __vxge_hw_ring *____cacheline_aligned ringh;
struct __vxge_hw_fifo *____cacheline_aligned fifoh;
struct list_head vpath_handles;
struct __vxge_hw_blockpool_entry *stats_block;
struct vxge_hw_vpath_stats_hw_info *hw_stats;
struct vxge_hw_vpath_stats_hw_info *hw_stats_sav;
struct vxge_hw_vpath_stats_sw_info *sw_stats;
};
/*
* struct __vxge_hw_vpath_handle - List item to store callback information
* @item: List head to keep the item in linked list
* @vpath: Virtual path to which this item belongs
*
* This structure is used to store the callback information.
*/
struct __vxge_hw_vpath_handle{
struct list_head item;
struct __vxge_hw_virtualpath *vpath;
};
/*
* struct __vxge_hw_device
*
* HW device object.
*/
/**
* struct __vxge_hw_device - Hal device object
* @magic: Magic Number
* @device_id: PCI Device Id of the adapter
* @major_revision: PCI Device major revision
* @minor_revision: PCI Device minor revision
* @bar0: BAR0 virtual address.
* @pdev: Physical device handle
* @config: Confguration passed by the LL driver at initialization
* @link_state: Link state
*
* HW device object. Represents Titan adapter
*/
struct __vxge_hw_device {
u32 magic;
#define VXGE_HW_DEVICE_MAGIC 0x12345678
#define VXGE_HW_DEVICE_DEAD 0xDEADDEAD
u16 device_id;
u8 major_revision;
u8 minor_revision;
void __iomem *bar0;
struct pci_dev *pdev;
struct net_device *ndev;
struct vxge_hw_device_config config;
enum vxge_hw_device_link_state link_state;
struct vxge_hw_uld_cbs uld_callbacks;
u32 host_type;
u32 func_id;
u32 access_rights;
#define VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH 0x1
#define VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM 0x2
#define VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM 0x4
struct vxge_hw_legacy_reg __iomem *legacy_reg;
struct vxge_hw_toc_reg __iomem *toc_reg;
struct vxge_hw_common_reg __iomem *common_reg;
struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
struct vxge_hw_srpcim_reg __iomem *srpcim_reg \
[VXGE_HW_TITAN_SRPCIM_REG_SPACES];
struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg \
[VXGE_HW_TITAN_VPMGMT_REG_SPACES];
struct vxge_hw_vpath_reg __iomem *vpath_reg \
[VXGE_HW_TITAN_VPATH_REG_SPACES];
u8 __iomem *kdfc;
u8 __iomem *usdc;
struct __vxge_hw_virtualpath virtual_paths \
[VXGE_HW_MAX_VIRTUAL_PATHS];
u64 vpath_assignments;
u64 vpaths_deployed;
u32 first_vp_id;
u64 tim_int_mask0[4];
u32 tim_int_mask1[4];
struct __vxge_hw_blockpool block_pool;
struct vxge_hw_device_stats stats;
u32 debug_module_mask;
u32 debug_level;
u32 level_err;
u32 level_trace;
};
#define VXGE_HW_INFO_LEN 64
/**
* struct vxge_hw_device_hw_info - Device information
* @host_type: Host Type
* @func_id: Function Id
* @vpath_mask: vpath bit mask
* @fw_version: Firmware version
* @fw_date: Firmware Date
* @flash_version: Firmware version
* @flash_date: Firmware Date
* @mac_addrs: Mac addresses for each vpath
* @mac_addr_masks: Mac address masks for each vpath
*
* Returns the vpath mask that has the bits set for each vpath allocated
* for the driver and the first mac address for each vpath
*/
struct vxge_hw_device_hw_info {
u32 host_type;
#define VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION 0
#define VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION 1
#define VXGE_HW_NO_MR_SR_VH0_FUNCTION0 2
#define VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION 3
#define VXGE_HW_MR_SR_VH0_INVALID_CONFIG 4
#define VXGE_HW_SR_VH_FUNCTION0 5
#define VXGE_HW_SR_VH_VIRTUAL_FUNCTION 6
#define VXGE_HW_VH_NORMAL_FUNCTION 7
u64 function_mode;
#define VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION 0
#define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION 1
#define VXGE_HW_FUNCTION_MODE_SRIOV 2
#define VXGE_HW_FUNCTION_MODE_MRIOV 3
#define VXGE_HW_FUNCTION_MODE_MRIOV_8 4
#define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_17 5
#define VXGE_HW_FUNCTION_MODE_SRIOV_8 6
#define VXGE_HW_FUNCTION_MODE_SRIOV_4 7
#define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_2 8
#define VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_4 9
#define VXGE_HW_FUNCTION_MODE_MRIOV_4 10
u32 func_id;
u64 vpath_mask;
struct vxge_hw_device_version fw_version;
struct vxge_hw_device_date fw_date;
struct vxge_hw_device_version flash_version;
struct vxge_hw_device_date flash_date;
u8 serial_number[VXGE_HW_INFO_LEN];
u8 part_number[VXGE_HW_INFO_LEN];
u8 product_desc[VXGE_HW_INFO_LEN];
u8 (mac_addrs)[VXGE_HW_MAX_VIRTUAL_PATHS][ETH_ALEN];
u8 (mac_addr_masks)[VXGE_HW_MAX_VIRTUAL_PATHS][ETH_ALEN];
};
/**
* struct vxge_hw_device_attr - Device memory spaces.
* @bar0: BAR0 virtual address.
* @pdev: PCI device object.
*
* Device memory spaces. Includes configuration, BAR0 etc. per device
* mapped memories. Also, includes a pointer to OS-specific PCI device object.
*/
struct vxge_hw_device_attr {
void __iomem *bar0;
struct pci_dev *pdev;
struct vxge_hw_uld_cbs uld_callbacks;
};
#define VXGE_HW_DEVICE_LINK_STATE_SET(hldev, ls) (hldev->link_state = ls)
#define VXGE_HW_DEVICE_TIM_INT_MASK_SET(m0, m1, i) { \
if (i < 16) { \
m0[0] |= vxge_vBIT(0x8, (i*4), 4); \
m0[1] |= vxge_vBIT(0x4, (i*4), 4); \
} \
else { \
m1[0] = 0x80000000; \
m1[1] = 0x40000000; \
} \
}
#define VXGE_HW_DEVICE_TIM_INT_MASK_RESET(m0, m1, i) { \
if (i < 16) { \
m0[0] &= ~vxge_vBIT(0x8, (i*4), 4); \
m0[1] &= ~vxge_vBIT(0x4, (i*4), 4); \
} \
else { \
m1[0] = 0; \
m1[1] = 0; \
} \
}
#define VXGE_HW_DEVICE_STATS_PIO_READ(loc, offset) { \
status = vxge_hw_mrpcim_stats_access(hldev, \
VXGE_HW_STATS_OP_READ, \
loc, \
offset, \
&val64); \
\
if (status != VXGE_HW_OK) \
return status; \
}
#define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
status = __vxge_hw_vpath_stats_access(vpath, \
VXGE_HW_STATS_OP_READ, \
offset, \
&val64); \
if (status != VXGE_HW_OK) \
return status; \
}
/*
* struct __vxge_hw_ring - Ring channel.
* @channel: Channel "base" of this ring, the common part of all HW
* channels.
* @mempool: Memory pool, the pool from which descriptors get allocated.
* (See vxge_hw_mm.h).
* @config: Ring configuration, part of device configuration
* (see struct vxge_hw_device_config{}).
* @ring_length: Length of the ring
* @buffer_mode: 1, 3, or 5. The value specifies a receive buffer mode,
* as per Titan User Guide.
* @rxd_size: RxD sizes for 1-, 3- or 5- buffer modes. As per Titan spec,
* 1-buffer mode descriptor is 32 byte long, etc.
* @rxd_priv_size: Per RxD size reserved (by HW) for driver to keep
* per-descriptor data (e.g., DMA handle for Solaris)
* @per_rxd_space: Per rxd space requested by driver
* @rxds_per_block: Number of descriptors per hardware-defined RxD
* block. Depends on the (1-, 3-, 5-) buffer mode.
* @rxdblock_priv_size: Reserved at the end of each RxD block. HW internal
* usage. Not to confuse with @rxd_priv_size.
* @cmpl_cnt: Completion counter. Is reset to zero upon entering the ISR.
* @callback: Channel completion callback. HW invokes the callback when there
* are new completions on that channel. In many implementations
* the @callback executes in the hw interrupt context.
* @rxd_init: Channel's descriptor-initialize callback.
* See vxge_hw_ring_rxd_init_f{}.
* If not NULL, HW invokes the callback when opening
* the ring.
* @rxd_term: Channel's descriptor-terminate callback. If not NULL,
* HW invokes the callback when closing the corresponding channel.
* See also vxge_hw_channel_rxd_term_f{}.
* @stats: Statistics for ring
* Ring channel.
*
* Note: The structure is cache line aligned to better utilize
* CPU cache performance.
*/
struct __vxge_hw_ring {
struct __vxge_hw_channel channel;
struct vxge_hw_mempool *mempool;
struct vxge_hw_vpath_reg __iomem *vp_reg;
struct vxge_hw_common_reg __iomem *common_reg;
u32 ring_length;
u32 buffer_mode;
u32 rxd_size;
u32 rxd_priv_size;
u32 per_rxd_space;
u32 rxds_per_block;
u32 rxdblock_priv_size;
u32 cmpl_cnt;
u32 vp_id;
u32 doorbell_cnt;
u32 total_db_cnt;
u64 rxds_limit;
enum vxge_hw_status (*callback)(
struct __vxge_hw_ring *ringh,
void *rxdh,
u8 t_code,
void *userdata);
enum vxge_hw_status (*rxd_init)(
void *rxdh,
void *userdata);
void (*rxd_term)(
void *rxdh,
enum vxge_hw_rxd_state state,
void *userdata);
struct vxge_hw_vpath_stats_sw_ring_info *stats ____cacheline_aligned;
struct vxge_hw_ring_config *config;
} ____cacheline_aligned;
/**
* enum enum vxge_hw_txdl_state - Descriptor (TXDL) state.
* @VXGE_HW_TXDL_STATE_NONE: Invalid state.
* @VXGE_HW_TXDL_STATE_AVAIL: Descriptor is available for reservation.
* @VXGE_HW_TXDL_STATE_POSTED: Descriptor is posted for processing by the
* device.
* @VXGE_HW_TXDL_STATE_FREED: Descriptor is free and can be reused for
* filling-in and posting later.
*
* Titan/HW descriptor states.
*
*/
enum vxge_hw_txdl_state {
VXGE_HW_TXDL_STATE_NONE = 0,
VXGE_HW_TXDL_STATE_AVAIL = 1,
VXGE_HW_TXDL_STATE_POSTED = 2,
VXGE_HW_TXDL_STATE_FREED = 3
};
/*
* struct __vxge_hw_fifo - Fifo.
* @channel: Channel "base" of this fifo, the common part of all HW
* channels.
* @mempool: Memory pool, from which descriptors get allocated.
* @config: Fifo configuration, part of device configuration
* (see struct vxge_hw_device_config{}).
* @interrupt_type: Interrupt type to be used
* @no_snoop_bits: See struct vxge_hw_fifo_config{}.
* @txdl_per_memblock: Number of TxDLs (TxD lists) per memblock.
* on TxDL please refer to Titan UG.
* @txdl_size: Configured TxDL size (i.e., number of TxDs in a list), plus
* per-TxDL HW private space (struct __vxge_hw_fifo_txdl_priv).
* @priv_size: Per-Tx descriptor space reserved for driver
* usage.
* @per_txdl_space: Per txdl private space for the driver
* @callback: Fifo completion callback. HW invokes the callback when there
* are new completions on that fifo. In many implementations
* the @callback executes in the hw interrupt context.
* @txdl_term: Fifo's descriptor-terminate callback. If not NULL,
* HW invokes the callback when closing the corresponding fifo.
* See also vxge_hw_fifo_txdl_term_f{}.
* @stats: Statistics of this fifo
*
* Fifo channel.
* Note: The structure is cache line aligned.
*/
struct __vxge_hw_fifo {
struct __vxge_hw_channel channel;
struct vxge_hw_mempool *mempool;
struct vxge_hw_fifo_config *config;
struct vxge_hw_vpath_reg __iomem *vp_reg;
struct __vxge_hw_non_offload_db_wrapper __iomem *nofl_db;
u64 interrupt_type;
u32 no_snoop_bits;
u32 txdl_per_memblock;
u32 txdl_size;
u32 priv_size;
u32 per_txdl_space;
u32 vp_id;
u32 tx_intr_num;
enum vxge_hw_status (*callback)(
struct __vxge_hw_fifo *fifo_handle,
void *txdlh,
enum vxge_hw_fifo_tcode t_code,
void *userdata,
struct sk_buff ***skb_ptr,
int nr_skb,
int *more);
void (*txdl_term)(
void *txdlh,
enum vxge_hw_txdl_state state,
void *userdata);
struct vxge_hw_vpath_stats_sw_fifo_info *stats ____cacheline_aligned;
} ____cacheline_aligned;
/*
* struct __vxge_hw_fifo_txdl_priv - Transmit descriptor HW-private data.
* @dma_addr: DMA (mapped) address of _this_ descriptor.
* @dma_handle: DMA handle used to map the descriptor onto device.
* @dma_offset: Descriptor's offset in the memory block. HW allocates
* descriptors in memory blocks (see struct vxge_hw_fifo_config{})
* Each memblock is a contiguous block of DMA-able memory.
* @frags: Total number of fragments (that is, contiguous data buffers)
* carried by this TxDL.
* @align_vaddr_start: Aligned virtual address start
* @align_vaddr: Virtual address of the per-TxDL area in memory used for
* alignement. Used to place one or more mis-aligned fragments
* @align_dma_addr: DMA address translated from the @align_vaddr.
* @align_dma_handle: DMA handle that corresponds to @align_dma_addr.
* @align_dma_acch: DMA access handle corresponds to @align_dma_addr.
* @align_dma_offset: The current offset into the @align_vaddr area.
* Grows while filling the descriptor, gets reset.
* @align_used_frags: Number of fragments used.
* @alloc_frags: Total number of fragments allocated.
* @unused: TODO
* @next_txdl_priv: (TODO).
* @first_txdp: (TODO).
* @linked_txdl_priv: Pointer to any linked TxDL for creating contiguous
* TxDL list.
* @txdlh: Corresponding txdlh to this TxDL.
* @memblock: Pointer to the TxDL memory block or memory page.
* on the next send operation.
* @dma_object: DMA address and handle of the memory block that contains
* the descriptor. This member is used only in the "checked"
* version of the HW (to enforce certain assertions);
* otherwise it gets compiled out.
* @allocated: True if the descriptor is reserved, 0 otherwise. Internal usage.
*
* Per-transmit decsriptor HW-private data. HW uses the space to keep DMA
* information associated with the descriptor. Note that driver can ask HW
* to allocate additional per-descriptor space for its own (driver-specific)
* purposes.
*
* See also: struct vxge_hw_ring_rxd_priv{}.
*/
struct __vxge_hw_fifo_txdl_priv {
dma_addr_t dma_addr;
struct pci_dev *dma_handle;
ptrdiff_t dma_offset;
u32 frags;
u8 *align_vaddr_start;
u8 *align_vaddr;
dma_addr_t align_dma_addr;
struct pci_dev *align_dma_handle;
struct pci_dev *align_dma_acch;
ptrdiff_t align_dma_offset;
u32 align_used_frags;
u32 alloc_frags;
u32 unused;
struct __vxge_hw_fifo_txdl_priv *next_txdl_priv;
struct vxge_hw_fifo_txd *first_txdp;
void *memblock;
};
/*
* struct __vxge_hw_non_offload_db_wrapper - Non-offload Doorbell Wrapper
* @control_0: Bits 0 to 7 - Doorbell type.
* Bits 8 to 31 - Reserved.
* Bits 32 to 39 - The highest TxD in this TxDL.
* Bits 40 to 47 - Reserved.
* Bits 48 to 55 - Reserved.
* Bits 56 to 63 - No snoop flags.
* @txdl_ptr: The starting location of the TxDL in host memory.
*
* Created by the host and written to the adapter via PIO to a Kernel Doorbell
* FIFO. All non-offload doorbell wrapper fields must be written by the host as
* part of a doorbell write. Consumed by the adapter but is not written by the
* adapter.
*/
struct __vxge_hw_non_offload_db_wrapper {
u64 control_0;
#define VXGE_HW_NODBW_GET_TYPE(ctrl0) vxge_bVALn(ctrl0, 0, 8)
#define VXGE_HW_NODBW_TYPE(val) vxge_vBIT(val, 0, 8)
#define VXGE_HW_NODBW_TYPE_NODBW 0
#define VXGE_HW_NODBW_GET_LAST_TXD_NUMBER(ctrl0) vxge_bVALn(ctrl0, 32, 8)
#define VXGE_HW_NODBW_LAST_TXD_NUMBER(val) vxge_vBIT(val, 32, 8)
#define VXGE_HW_NODBW_GET_NO_SNOOP(ctrl0) vxge_bVALn(ctrl0, 56, 8)
#define VXGE_HW_NODBW_LIST_NO_SNOOP(val) vxge_vBIT(val, 56, 8)
#define VXGE_HW_NODBW_LIST_NO_SNOOP_TXD_READ_TXD0_WRITE 0x2
#define VXGE_HW_NODBW_LIST_NO_SNOOP_TX_FRAME_DATA_READ 0x1
u64 txdl_ptr;
};
/*
* TX Descriptor
*/
/**
* struct vxge_hw_fifo_txd - Transmit Descriptor
* @control_0: Bits 0 to 6 - Reserved.
* Bit 7 - List Ownership. This field should be initialized
* to '1' by the driver before the transmit list pointer is
* written to the adapter. This field will be set to '0' by the
* adapter once it has completed transmitting the frame or frames in
* the list. Note - This field is only valid in TxD0. Additionally,
* for multi-list sequences, the driver should not release any
* buffers until the ownership of the last list in the multi-list
* sequence has been returned to the host.
* Bits 8 to 11 - Reserved
* Bits 12 to 15 - Transfer_Code. This field is only valid in
* TxD0. It is used to describe the status of the transmit data
* buffer transfer. This field is always overwritten by the
* adapter, so this field may be initialized to any value.
* Bits 16 to 17 - Host steering. This field allows the host to
* override the selection of the physical transmit port.
* Attention:
* Normal sounds as if learned from the switch rather than from
* the aggregation algorythms.
* 00: Normal. Use Destination/MAC Address
* lookup to determine the transmit port.
* 01: Send on physical Port1.
* 10: Send on physical Port0.
* 11: Send on both ports.
* Bits 18 to 21 - Reserved
* Bits 22 to 23 - Gather_Code. This field is set by the host and
* is used to describe how individual buffers comprise a frame.
* 10: First descriptor of a frame.
* 00: Middle of a multi-descriptor frame.
* 01: Last descriptor of a frame.
* 11: First and last descriptor of a frame (the entire frame
* resides in a single buffer).
* For multi-descriptor frames, the only valid gather code sequence
* is {10, [00], 01}. In other words, the descriptors must be placed
* in the list in the correct order.
* Bits 24 to 27 - Reserved
* Bits 28 to 29 - LSO_Frm_Encap. LSO Frame Encapsulation
* definition. Only valid in TxD0. This field allows the host to
* indicate the Ethernet encapsulation of an outbound LSO packet.
* 00 - classic mode (best guess)
* 01 - LLC
* 10 - SNAP
* 11 - DIX
* If "classic mode" is selected, the adapter will attempt to
* decode the frame's Ethernet encapsulation by examining the L/T
* field as follows:
* <= 0x05DC LLC/SNAP encoding; must examine DSAP/SSAP to determine
* if packet is IPv4 or IPv6.
* 0x8870 Jumbo-SNAP encoding.
* 0x0800 IPv4 DIX encoding
* 0x86DD IPv6 DIX encoding
* others illegal encapsulation
* Bits 30 - LSO_ Flag. Large Send Offload (LSO) flag.
* Set to 1 to perform segmentation offload for TCP/UDP.
* This field is valid only in TxD0.
* Bits 31 to 33 - Reserved.
* Bits 34 to 47 - LSO_MSS. TCP/UDP LSO Maximum Segment Size
* This field is meaningful only when LSO_Control is non-zero.
* When LSO_Control is set to TCP_LSO, the single (possibly large)
* TCP segment described by this TxDL will be sent as a series of
* TCP segments each of which contains no more than LSO_MSS
* payload bytes.
* When LSO_Control is set to UDP_LSO, the single (possibly large)
* UDP datagram described by this TxDL will be sent as a series of
* UDP datagrams each of which contains no more than LSO_MSS
* payload bytes.
* All outgoing frames from this TxDL will have LSO_MSS bytes of UDP
* or TCP payload, with the exception of the last, which will have
* <= LSO_MSS bytes of payload.
* Bits 48 to 63 - Buffer_Size. Number of valid bytes in the
* buffer to be read by the adapter. This field is written by the
* host. A value of 0 is illegal.
* Bits 32 to 63 - This value is written by the adapter upon
* completion of a UDP or TCP LSO operation and indicates the number
* of UDP or TCP payload bytes that were transmitted. 0x0000 will be
* returned for any non-LSO operation.
* @control_1: Bits 0 to 4 - Reserved.
* Bit 5 - Tx_CKO_IPv4 Set to a '1' to enable IPv4 header checksum
* offload. This field is only valid in the first TxD of a frame.
* Bit 6 - Tx_CKO_TCP Set to a '1' to enable TCP checksum offload.
* This field is only valid in the first TxD of a frame (the TxD's
* gather code must be 10 or 11). The driver should only set this
* bit if it can guarantee that TCP is present.
* Bit 7 - Tx_CKO_UDP Set to a '1' to enable UDP checksum offload.
* This field is only valid in the first TxD of a frame (the TxD's
* gather code must be 10 or 11). The driver should only set this
* bit if it can guarantee that UDP is present.
* Bits 8 to 14 - Reserved.
* Bit 15 - Tx_VLAN_Enable VLAN tag insertion flag. Set to a '1' to
* instruct the adapter to insert the VLAN tag specified by the
* Tx_VLAN_Tag field. This field is only valid in the first TxD of
* a frame.
* Bits 16 to 31 - Tx_VLAN_Tag. Variable portion of the VLAN tag
* to be inserted into the frame by the adapter (the first two bytes
* of a VLAN tag are always 0x8100). This field is only valid if the
* Tx_VLAN_Enable field is set to '1'.
* Bits 32 to 33 - Reserved.
* Bits 34 to 39 - Tx_Int_Number. Indicates which Tx interrupt
* number the frame associated with. This field is written by the
* host. It is only valid in the first TxD of a frame.
* Bits 40 to 42 - Reserved.
* Bit 43 - Set to 1 to exclude the frame from bandwidth metering
* functions. This field is valid only in the first TxD
* of a frame.
* Bits 44 to 45 - Reserved.
* Bit 46 - Tx_Int_Per_List Set to a '1' to instruct the adapter to
* generate an interrupt as soon as all of the frames in the list
* have been transmitted. In order to have per-frame interrupts,
* the driver should place a maximum of one frame per list. This
* field is only valid in the first TxD of a frame.
* Bit 47 - Tx_Int_Utilization Set to a '1' to instruct the adapter
* to count the frame toward the utilization interrupt specified in
* the Tx_Int_Number field. This field is only valid in the first
* TxD of a frame.
* Bits 48 to 63 - Reserved.
* @buffer_pointer: Buffer start address.
* @host_control: Host_Control.Opaque 64bit data stored by driver inside the
* Titan descriptor prior to posting the latter on the fifo
* via vxge_hw_fifo_txdl_post().The %host_control is returned as is
* to the driver with each completed descriptor.
*
* Transmit descriptor (TxD).Fifo descriptor contains configured number
* (list) of TxDs. * For more details please refer to Titan User Guide,
* Section 5.4.2 "Transmit Descriptor (TxD) Format".
*/
struct vxge_hw_fifo_txd {
u64 control_0;
#define VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER vxge_mBIT(7)
#define VXGE_HW_FIFO_TXD_T_CODE_GET(ctrl0) vxge_bVALn(ctrl0, 12, 4)
#define VXGE_HW_FIFO_TXD_T_CODE(val) vxge_vBIT(val, 12, 4)
#define VXGE_HW_FIFO_TXD_T_CODE_UNUSED VXGE_HW_FIFO_T_CODE_UNUSED
#define VXGE_HW_FIFO_TXD_GATHER_CODE(val) vxge_vBIT(val, 22, 2)
#define VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST VXGE_HW_FIFO_GATHER_CODE_FIRST
#define VXGE_HW_FIFO_TXD_GATHER_CODE_LAST VXGE_HW_FIFO_GATHER_CODE_LAST
#define VXGE_HW_FIFO_TXD_LSO_EN vxge_mBIT(30)
#define VXGE_HW_FIFO_TXD_LSO_MSS(val) vxge_vBIT(val, 34, 14)
#define VXGE_HW_FIFO_TXD_BUFFER_SIZE(val) vxge_vBIT(val, 48, 16)
u64 control_1;
#define VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN vxge_mBIT(5)
#define VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN vxge_mBIT(6)
#define VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN vxge_mBIT(7)
#define VXGE_HW_FIFO_TXD_VLAN_ENABLE vxge_mBIT(15)
#define VXGE_HW_FIFO_TXD_VLAN_TAG(val) vxge_vBIT(val, 16, 16)
#define VXGE_HW_FIFO_TXD_INT_NUMBER(val) vxge_vBIT(val, 34, 6)
#define VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST vxge_mBIT(46)
#define VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ vxge_mBIT(47)
u64 buffer_pointer;
u64 host_control;
};
/**
* struct vxge_hw_ring_rxd_1 - One buffer mode RxD for ring
* @host_control: This field is exclusively for host use and is "readonly"
* from the adapter's perspective.
* @control_0:Bits 0 to 6 - RTH_Bucket get
* Bit 7 - Own Descriptor ownership bit. This bit is set to 1
* by the host, and is set to 0 by the adapter.
* 0 - Host owns RxD and buffer.
* 1 - The adapter owns RxD and buffer.
* Bit 8 - Fast_Path_Eligible When set, indicates that the
* received frame meets all of the criteria for fast path processing.
* The required criteria are as follows:
* !SYN &
* (Transfer_Code == "Transfer OK") &
* (!Is_IP_Fragment) &
* ((Is_IPv4 & computed_L3_checksum == 0xFFFF) |
* (Is_IPv6)) &
* ((Is_TCP & computed_L4_checksum == 0xFFFF) |
* (Is_UDP & (computed_L4_checksum == 0xFFFF |
* computed _L4_checksum == 0x0000)))
* (same meaning for all RxD buffer modes)
* Bit 9 - L3 Checksum Correct
* Bit 10 - L4 Checksum Correct
* Bit 11 - Reserved
* Bit 12 to 15 - This field is written by the adapter. It is
* used to report the status of the frame transfer to the host.
* 0x0 - Transfer OK
* 0x4 - RDA Failure During Transfer
* 0x5 - Unparseable Packet, such as unknown IPv6 header.
* 0x6 - Frame integrity error (FCS or ECC).
* 0x7 - Buffer Size Error. The provided buffer(s) were not
* appropriately sized and data loss occurred.
* 0x8 - Internal ECC Error. RxD corrupted.
* 0x9 - IPv4 Checksum error
* 0xA - TCP/UDP Checksum error
* 0xF - Unknown Error or Multiple Error. Indicates an
* unknown problem or that more than one of transfer codes is set.
* Bit 16 - SYN The adapter sets this field to indicate that
* the incoming frame contained a TCP segment with its SYN bit
* set and its ACK bit NOT set. (same meaning for all RxD buffer
* modes)
* Bit 17 - Is ICMP
* Bit 18 - RTH_SPDM_HIT Set to 1 if there was a match in the
* Socket Pair Direct Match Table and the frame was steered based
* on SPDM.
* Bit 19 - RTH_IT_HIT Set to 1 if there was a match in the
* Indirection Table and the frame was steered based on hash
* indirection.
* Bit 20 to 23 - RTH_HASH_TYPE Indicates the function (hash
* type) that was used to calculate the hash.
* Bit 19 - IS_VLAN Set to '1' if the frame was/is VLAN
* tagged.
* Bit 25 to 26 - ETHER_ENCAP Reflects the Ethernet encapsulation
* of the received frame.
* 0x0 - Ethernet DIX
* 0x1 - LLC
* 0x2 - SNAP (includes Jumbo-SNAP)
* 0x3 - IPX
* Bit 27 - IS_IPV4 Set to '1' if the frame contains an IPv4 packet.
* Bit 28 - IS_IPV6 Set to '1' if the frame contains an IPv6 packet.
* Bit 29 - IS_IP_FRAG Set to '1' if the frame contains a fragmented
* IP packet.
* Bit 30 - IS_TCP Set to '1' if the frame contains a TCP segment.
* Bit 31 - IS_UDP Set to '1' if the frame contains a UDP message.
* Bit 32 to 47 - L3_Checksum[0:15] The IPv4 checksum value that
* arrived with the frame. If the resulting computed IPv4 header
* checksum for the frame did not produce the expected 0xFFFF value,
* then the transfer code would be set to 0x9.
* Bit 48 to 63 - L4_Checksum[0:15] The TCP/UDP checksum value that
* arrived with the frame. If the resulting computed TCP/UDP checksum
* for the frame did not produce the expected 0xFFFF value, then the
* transfer code would be set to 0xA.
* @control_1:Bits 0 to 1 - Reserved
* Bits 2 to 15 - Buffer0_Size.This field is set by the host and
* eventually overwritten by the adapter. The host writes the
* available buffer size in bytes when it passes the descriptor to
* the adapter. When a frame is delivered the host, the adapter
* populates this field with the number of bytes written into the
* buffer. The largest supported buffer is 16, 383 bytes.
* Bit 16 to 47 - RTH Hash Value 32-bit RTH hash value. Only valid if
* RTH_HASH_TYPE (Control_0, bits 20:23) is nonzero.
* Bit 48 to 63 - VLAN_Tag[0:15] The contents of the variable portion
* of the VLAN tag, if one was detected by the adapter. This field is
* populated even if VLAN-tag stripping is enabled.
* @buffer0_ptr: Pointer to buffer. This field is populated by the driver.
*
* One buffer mode RxD for ring structure
*/
struct vxge_hw_ring_rxd_1 {
u64 host_control;
u64 control_0;
#define VXGE_HW_RING_RXD_RTH_BUCKET_GET(ctrl0) vxge_bVALn(ctrl0, 0, 7)
#define VXGE_HW_RING_RXD_LIST_OWN_ADAPTER vxge_mBIT(7)
#define VXGE_HW_RING_RXD_FAST_PATH_ELIGIBLE_GET(ctrl0) vxge_bVALn(ctrl0, 8, 1)
#define VXGE_HW_RING_RXD_L3_CKSUM_CORRECT_GET(ctrl0) vxge_bVALn(ctrl0, 9, 1)
#define VXGE_HW_RING_RXD_L4_CKSUM_CORRECT_GET(ctrl0) vxge_bVALn(ctrl0, 10, 1)
#define VXGE_HW_RING_RXD_T_CODE_GET(ctrl0) vxge_bVALn(ctrl0, 12, 4)
#define VXGE_HW_RING_RXD_T_CODE(val) vxge_vBIT(val, 12, 4)
#define VXGE_HW_RING_RXD_T_CODE_UNUSED VXGE_HW_RING_T_CODE_UNUSED
#define VXGE_HW_RING_RXD_SYN_GET(ctrl0) vxge_bVALn(ctrl0, 16, 1)
#define VXGE_HW_RING_RXD_IS_ICMP_GET(ctrl0) vxge_bVALn(ctrl0, 17, 1)
#define VXGE_HW_RING_RXD_RTH_SPDM_HIT_GET(ctrl0) vxge_bVALn(ctrl0, 18, 1)
#define VXGE_HW_RING_RXD_RTH_IT_HIT_GET(ctrl0) vxge_bVALn(ctrl0, 19, 1)
#define VXGE_HW_RING_RXD_RTH_HASH_TYPE_GET(ctrl0) vxge_bVALn(ctrl0, 20, 4)
#define VXGE_HW_RING_RXD_IS_VLAN_GET(ctrl0) vxge_bVALn(ctrl0, 24, 1)
#define VXGE_HW_RING_RXD_ETHER_ENCAP_GET(ctrl0) vxge_bVALn(ctrl0, 25, 2)
#define VXGE_HW_RING_RXD_FRAME_PROTO_GET(ctrl0) vxge_bVALn(ctrl0, 27, 5)
#define VXGE_HW_RING_RXD_L3_CKSUM_GET(ctrl0) vxge_bVALn(ctrl0, 32, 16)
#define VXGE_HW_RING_RXD_L4_CKSUM_GET(ctrl0) vxge_bVALn(ctrl0, 48, 16)
u64 control_1;
#define VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(ctrl1) vxge_bVALn(ctrl1, 2, 14)
#define VXGE_HW_RING_RXD_1_BUFFER0_SIZE(val) vxge_vBIT(val, 2, 14)
#define VXGE_HW_RING_RXD_1_BUFFER0_SIZE_MASK vxge_vBIT(0x3FFF, 2, 14)
#define VXGE_HW_RING_RXD_1_RTH_HASH_VAL_GET(ctrl1) vxge_bVALn(ctrl1, 16, 32)
#define VXGE_HW_RING_RXD_VLAN_TAG_GET(ctrl1) vxge_bVALn(ctrl1, 48, 16)
u64 buffer0_ptr;
};
enum vxge_hw_rth_algoritms {
RTH_ALG_JENKINS = 0,
RTH_ALG_MS_RSS = 1,
RTH_ALG_CRC32C = 2
};
/**
* struct vxge_hw_rth_hash_types - RTH hash types.
* @hash_type_tcpipv4_en: Enables RTH field type HashTypeTcpIPv4
* @hash_type_ipv4_en: Enables RTH field type HashTypeIPv4
* @hash_type_tcpipv6_en: Enables RTH field type HashTypeTcpIPv6
* @hash_type_ipv6_en: Enables RTH field type HashTypeIPv6
* @hash_type_tcpipv6ex_en: Enables RTH field type HashTypeTcpIPv6Ex
* @hash_type_ipv6ex_en: Enables RTH field type HashTypeIPv6Ex
*
* Used to pass RTH hash types to rts_rts_set.
*
* See also: vxge_hw_vpath_rts_rth_set(), vxge_hw_vpath_rts_rth_get().
*/
struct vxge_hw_rth_hash_types {
u8 hash_type_tcpipv4_en;
u8 hash_type_ipv4_en;
u8 hash_type_tcpipv6_en;
u8 hash_type_ipv6_en;
u8 hash_type_tcpipv6ex_en;
u8 hash_type_ipv6ex_en;
};
u32
vxge_hw_device_debug_mask_get(struct __vxge_hw_device *devh);
void vxge_hw_device_debug_set(
struct __vxge_hw_device *devh,
enum vxge_debug_level level,
u32 mask);
u32
vxge_hw_device_error_level_get(struct __vxge_hw_device *devh);
u32
vxge_hw_device_trace_level_get(struct __vxge_hw_device *devh);
u32
vxge_hw_device_debug_mask_get(struct __vxge_hw_device *devh);
/**
* vxge_hw_ring_rxd_size_get - Get the size of ring descriptor.
* @buf_mode: Buffer mode (1, 3 or 5)
*
* This function returns the size of RxD for given buffer mode
*/
static inline u32 vxge_hw_ring_rxd_size_get(u32 buf_mode)
{
return sizeof(struct vxge_hw_ring_rxd_1);
}
/**
* vxge_hw_ring_rxds_per_block_get - Get the number of rxds per block.
* @buf_mode: Buffer mode (1 buffer mode only)
*
* This function returns the number of RxD for RxD block for given buffer mode
*/
static inline u32 vxge_hw_ring_rxds_per_block_get(u32 buf_mode)
{
return (u32)((VXGE_HW_BLOCK_SIZE-16) /
sizeof(struct vxge_hw_ring_rxd_1));
}
/**
* vxge_hw_ring_rxd_1b_set - Prepare 1-buffer-mode descriptor.
* @rxdh: Descriptor handle.
* @dma_pointer: DMA address of a single receive buffer this descriptor
* should carry. Note that by the time vxge_hw_ring_rxd_1b_set is called,
* the receive buffer should be already mapped to the device
* @size: Size of the receive @dma_pointer buffer.
*
* Prepare 1-buffer-mode Rx descriptor for posting
* (via vxge_hw_ring_rxd_post()).
*
* This inline helper-function does not return any parameters and always
* succeeds.
*
*/
static inline
void vxge_hw_ring_rxd_1b_set(
void *rxdh,
dma_addr_t dma_pointer,
u32 size)
{
struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
rxdp->buffer0_ptr = dma_pointer;
rxdp->control_1 &= ~VXGE_HW_RING_RXD_1_BUFFER0_SIZE_MASK;
rxdp->control_1 |= VXGE_HW_RING_RXD_1_BUFFER0_SIZE(size);
}
/**
* vxge_hw_ring_rxd_1b_get - Get data from the completed 1-buf
* descriptor.
* @vpath_handle: Virtual Path handle.
* @rxdh: Descriptor handle.
* @dma_pointer: DMA address of a single receive buffer this descriptor
* carries. Returned by HW.
* @pkt_length: Length (in bytes) of the data in the buffer pointed by
*
* Retrieve protocol data from the completed 1-buffer-mode Rx descriptor.
* This inline helper-function uses completed descriptor to populate receive
* buffer pointer and other "out" parameters. The function always succeeds.
*
*/
static inline
void vxge_hw_ring_rxd_1b_get(
struct __vxge_hw_ring *ring_handle,
void *rxdh,
u32 *pkt_length)
{
struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
*pkt_length =
(u32)VXGE_HW_RING_RXD_1_BUFFER0_SIZE_GET(rxdp->control_1);
}
/**
* vxge_hw_ring_rxd_1b_info_get - Get extended information associated with
* a completed receive descriptor for 1b mode.
* @vpath_handle: Virtual Path handle.
* @rxdh: Descriptor handle.
* @rxd_info: Descriptor information
*
* Retrieve extended information associated with a completed receive descriptor.
*
*/
static inline
void vxge_hw_ring_rxd_1b_info_get(
struct __vxge_hw_ring *ring_handle,
void *rxdh,
struct vxge_hw_ring_rxd_info *rxd_info)
{
struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
rxd_info->syn_flag =
(u32)VXGE_HW_RING_RXD_SYN_GET(rxdp->control_0);
rxd_info->is_icmp =
(u32)VXGE_HW_RING_RXD_IS_ICMP_GET(rxdp->control_0);
rxd_info->fast_path_eligible =
(u32)VXGE_HW_RING_RXD_FAST_PATH_ELIGIBLE_GET(rxdp->control_0);
rxd_info->l3_cksum_valid =
(u32)VXGE_HW_RING_RXD_L3_CKSUM_CORRECT_GET(rxdp->control_0);
rxd_info->l3_cksum =
(u32)VXGE_HW_RING_RXD_L3_CKSUM_GET(rxdp->control_0);
rxd_info->l4_cksum_valid =
(u32)VXGE_HW_RING_RXD_L4_CKSUM_CORRECT_GET(rxdp->control_0);
rxd_info->l4_cksum =
(u32)VXGE_HW_RING_RXD_L4_CKSUM_GET(rxdp->control_0);
rxd_info->frame =
(u32)VXGE_HW_RING_RXD_ETHER_ENCAP_GET(rxdp->control_0);
rxd_info->proto =
(u32)VXGE_HW_RING_RXD_FRAME_PROTO_GET(rxdp->control_0);
rxd_info->is_vlan =
(u32)VXGE_HW_RING_RXD_IS_VLAN_GET(rxdp->control_0);
rxd_info->vlan =
(u32)VXGE_HW_RING_RXD_VLAN_TAG_GET(rxdp->control_1);
rxd_info->rth_bucket =
(u32)VXGE_HW_RING_RXD_RTH_BUCKET_GET(rxdp->control_0);
rxd_info->rth_it_hit =
(u32)VXGE_HW_RING_RXD_RTH_IT_HIT_GET(rxdp->control_0);
rxd_info->rth_spdm_hit =
(u32)VXGE_HW_RING_RXD_RTH_SPDM_HIT_GET(rxdp->control_0);
rxd_info->rth_hash_type =
(u32)VXGE_HW_RING_RXD_RTH_HASH_TYPE_GET(rxdp->control_0);
rxd_info->rth_value =
(u32)VXGE_HW_RING_RXD_1_RTH_HASH_VAL_GET(rxdp->control_1);
}
/**
* vxge_hw_ring_rxd_private_get - Get driver private per-descriptor data
* of 1b mode 3b mode ring.
* @rxdh: Descriptor handle.
*
* Returns: private driver info associated with the descriptor.
* driver requests per-descriptor space via vxge_hw_ring_attr.
*
*/
static inline void *vxge_hw_ring_rxd_private_get(void *rxdh)
{
struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
return (void *)(size_t)rxdp->host_control;
}
/**
* vxge_hw_fifo_txdl_cksum_set_bits - Offload checksum.
* @txdlh: Descriptor handle.
* @cksum_bits: Specifies which checksums are to be offloaded: IPv4,
* and/or TCP and/or UDP.
*
* Ask Titan to calculate IPv4 & transport checksums for _this_ transmit
* descriptor.
* This API is part of the preparation of the transmit descriptor for posting
* (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
* vxge_hw_fifo_txdl_mss_set(), vxge_hw_fifo_txdl_buffer_set_aligned(),
* and vxge_hw_fifo_txdl_buffer_set().
* All these APIs fill in the fields of the fifo descriptor,
* in accordance with the Titan specification.
*
*/
static inline void vxge_hw_fifo_txdl_cksum_set_bits(void *txdlh, u64 cksum_bits)
{
struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
txdp->control_1 |= cksum_bits;
}
/**
* vxge_hw_fifo_txdl_mss_set - Set MSS.
* @txdlh: Descriptor handle.
* @mss: MSS size for _this_ TCP connection. Passed by TCP stack down to the
* driver, which in turn inserts the MSS into the @txdlh.
*
* This API is part of the preparation of the transmit descriptor for posting
* (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
* vxge_hw_fifo_txdl_buffer_set(), vxge_hw_fifo_txdl_buffer_set_aligned(),
* and vxge_hw_fifo_txdl_cksum_set_bits().
* All these APIs fill in the fields of the fifo descriptor,
* in accordance with the Titan specification.
*
*/
static inline void vxge_hw_fifo_txdl_mss_set(void *txdlh, int mss)
{
struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
txdp->control_0 |= VXGE_HW_FIFO_TXD_LSO_EN;
txdp->control_0 |= VXGE_HW_FIFO_TXD_LSO_MSS(mss);
}
/**
* vxge_hw_fifo_txdl_vlan_set - Set VLAN tag.
* @txdlh: Descriptor handle.
* @vlan_tag: 16bit VLAN tag.
*
* Insert VLAN tag into specified transmit descriptor.
* The actual insertion of the tag into outgoing frame is done by the hardware.
*/
static inline void vxge_hw_fifo_txdl_vlan_set(void *txdlh, u16 vlan_tag)
{
struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
txdp->control_1 |= VXGE_HW_FIFO_TXD_VLAN_ENABLE;
txdp->control_1 |= VXGE_HW_FIFO_TXD_VLAN_TAG(vlan_tag);
}
/**
* vxge_hw_fifo_txdl_private_get - Retrieve per-descriptor private data.
* @txdlh: Descriptor handle.
*
* Retrieve per-descriptor private data.
* Note that driver requests per-descriptor space via
* struct vxge_hw_fifo_attr passed to
* vxge_hw_vpath_open().
*
* Returns: private driver data associated with the descriptor.
*/
static inline void *vxge_hw_fifo_txdl_private_get(void *txdlh)
{
struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)txdlh;
return (void *)(size_t)txdp->host_control;
}
/**
* struct vxge_hw_ring_attr - Ring open "template".
* @callback: Ring completion callback. HW invokes the callback when there
* are new completions on that ring. In many implementations
* the @callback executes in the hw interrupt context.
* @rxd_init: Ring's descriptor-initialize callback.
* See vxge_hw_ring_rxd_init_f{}.
* If not NULL, HW invokes the callback when opening
* the ring.
* @rxd_term: Ring's descriptor-terminate callback. If not NULL,
* HW invokes the callback when closing the corresponding ring.
* See also vxge_hw_ring_rxd_term_f{}.
* @userdata: User-defined "context" of _that_ ring. Passed back to the
* user as one of the @callback, @rxd_init, and @rxd_term arguments.
* @per_rxd_space: If specified (i.e., greater than zero): extra space
* reserved by HW per each receive descriptor.
* Can be used to store
* and retrieve on completion, information specific
* to the driver.
*
* Ring open "template". User fills the structure with ring
* attributes and passes it to vxge_hw_vpath_open().
*/
struct vxge_hw_ring_attr {
enum vxge_hw_status (*callback)(
struct __vxge_hw_ring *ringh,
void *rxdh,
u8 t_code,
void *userdata);
enum vxge_hw_status (*rxd_init)(
void *rxdh,
void *userdata);
void (*rxd_term)(
void *rxdh,
enum vxge_hw_rxd_state state,
void *userdata);
void *userdata;
u32 per_rxd_space;
};
/**
* function vxge_hw_fifo_callback_f - FIFO callback.
* @vpath_handle: Virtual path whose Fifo "containing" 1 or more completed
* descriptors.
* @txdlh: First completed descriptor.
* @txdl_priv: Pointer to per txdl space allocated
* @t_code: Transfer code, as per Titan User Guide.
* Returned by HW.
* @host_control: Opaque 64bit data stored by driver inside the Titan
* descriptor prior to posting the latter on the fifo
* via vxge_hw_fifo_txdl_post(). The @host_control is returned
* as is to the driver with each completed descriptor.
* @userdata: Opaque per-fifo data specified at fifo open
* time, via vxge_hw_vpath_open().
*
* Fifo completion callback (type declaration). A single per-fifo
* callback is specified at fifo open time, via
* vxge_hw_vpath_open(). Typically gets called as part of the processing
* of the Interrupt Service Routine.
*
* Fifo callback gets called by HW if, and only if, there is at least
* one new completion on a given fifo. Upon processing the first @txdlh driver
* is _supposed_ to continue consuming completions using:
* - vxge_hw_fifo_txdl_next_completed()
*
* Note that failure to process new completions in a timely fashion
* leads to VXGE_HW_INF_OUT_OF_DESCRIPTORS condition.
*
* Non-zero @t_code means failure to process transmit descriptor.
*
* In the "transmit" case the failure could happen, for instance, when the
* link is down, in which case Titan completes the descriptor because it
* is not able to send the data out.
*
* For details please refer to Titan User Guide.
*
* See also: vxge_hw_fifo_txdl_next_completed(), vxge_hw_fifo_txdl_term_f{}.
*/
/**
* function vxge_hw_fifo_txdl_term_f - Terminate descriptor callback.
* @txdlh: First completed descriptor.
* @txdl_priv: Pointer to per txdl space allocated
* @state: One of the enum vxge_hw_txdl_state{} enumerated states.
* @userdata: Per-fifo user data (a.k.a. context) specified at
* fifo open time, via vxge_hw_vpath_open().
*
* Terminate descriptor callback. Unless NULL is specified in the
* struct vxge_hw_fifo_attr{} structure passed to vxge_hw_vpath_open()),
* HW invokes the callback as part of closing fifo, prior to
* de-allocating the ring and associated data structures
* (including descriptors).
* driver should utilize the callback to (for instance) unmap
* and free DMA data buffers associated with the posted (state =
* VXGE_HW_TXDL_STATE_POSTED) descriptors,
* as well as other relevant cleanup functions.
*
* See also: struct vxge_hw_fifo_attr{}
*/
/**
* struct vxge_hw_fifo_attr - Fifo open "template".
* @callback: Fifo completion callback. HW invokes the callback when there
* are new completions on that fifo. In many implementations
* the @callback executes in the hw interrupt context.
* @txdl_term: Fifo's descriptor-terminate callback. If not NULL,
* HW invokes the callback when closing the corresponding fifo.
* See also vxge_hw_fifo_txdl_term_f{}.
* @userdata: User-defined "context" of _that_ fifo. Passed back to the
* user as one of the @callback, and @txdl_term arguments.
* @per_txdl_space: If specified (i.e., greater than zero): extra space
* reserved by HW per each transmit descriptor. Can be used to
* store, and retrieve on completion, information specific
* to the driver.
*
* Fifo open "template". User fills the structure with fifo
* attributes and passes it to vxge_hw_vpath_open().
*/
struct vxge_hw_fifo_attr {
enum vxge_hw_status (*callback)(
struct __vxge_hw_fifo *fifo_handle,
void *txdlh,
enum vxge_hw_fifo_tcode t_code,
void *userdata,
struct sk_buff ***skb_ptr,
int nr_skb, int *more);
void (*txdl_term)(
void *txdlh,
enum vxge_hw_txdl_state state,
void *userdata);
void *userdata;
u32 per_txdl_space;
};
/**
* struct vxge_hw_vpath_attr - Attributes of virtual path
* @vp_id: Identifier of Virtual Path
* @ring_attr: Attributes of ring for non-offload receive
* @fifo_attr: Attributes of fifo for non-offload transmit
*
* Attributes of virtual path. This structure is passed as parameter
* to the vxge_hw_vpath_open() routine to set the attributes of ring and fifo.
*/
struct vxge_hw_vpath_attr {
u32 vp_id;
struct vxge_hw_ring_attr ring_attr;
struct vxge_hw_fifo_attr fifo_attr;
};
enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
struct __vxge_hw_blockpool *blockpool,
u32 pool_size,
u32 pool_max);
void
__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool);
struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *hldev,
u32 size);
void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device *hldev,
struct __vxge_hw_blockpool_entry *entry);
void *
__vxge_hw_blockpool_malloc(struct __vxge_hw_device *hldev,
u32 size,
struct vxge_hw_mempool_dma *dma_object);
void
__vxge_hw_blockpool_free(struct __vxge_hw_device *hldev,
void *memblock,
u32 size,
struct vxge_hw_mempool_dma *dma_object);
enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config);
enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config *new_config);
enum vxge_hw_status
vxge_hw_mgmt_device_config(struct __vxge_hw_device *devh,
struct vxge_hw_device_config *dev_config, int size);
enum vxge_hw_status __devinit vxge_hw_device_hw_info_get(
void __iomem *bar0,
struct vxge_hw_device_hw_info *hw_info);
enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg,
struct vxge_hw_device_hw_info *hw_info);
enum vxge_hw_status
__vxge_hw_vpath_card_info_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg,
struct vxge_hw_device_hw_info *hw_info);
enum vxge_hw_status __devinit vxge_hw_device_config_default_get(
struct vxge_hw_device_config *device_config);
/**
* vxge_hw_device_link_state_get - Get link state.
* @devh: HW device handle.
*
* Get link state.
* Returns: link state.
*/
static inline
enum vxge_hw_device_link_state vxge_hw_device_link_state_get(
struct __vxge_hw_device *devh)
{
return devh->link_state;
}
void vxge_hw_device_terminate(struct __vxge_hw_device *devh);
const u8 *
vxge_hw_device_serial_number_get(struct __vxge_hw_device *devh);
u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *devh);
const u8 *
vxge_hw_device_product_name_get(struct __vxge_hw_device *devh);
enum vxge_hw_status __devinit vxge_hw_device_initialize(
struct __vxge_hw_device **devh,
struct vxge_hw_device_attr *attr,
struct vxge_hw_device_config *device_config);
enum vxge_hw_status vxge_hw_device_getpause_data(
struct __vxge_hw_device *devh,
u32 port,
u32 *tx,
u32 *rx);
enum vxge_hw_status vxge_hw_device_setpause_data(
struct __vxge_hw_device *devh,
u32 port,
u32 tx,
u32 rx);
static inline void *vxge_os_dma_malloc(struct pci_dev *pdev,
unsigned long size,
struct pci_dev **p_dmah,
struct pci_dev **p_dma_acch)
{
gfp_t flags;
void *vaddr;
unsigned long misaligned = 0;
int realloc_flag = 0;
*p_dma_acch = *p_dmah = NULL;
if (in_interrupt())
flags = GFP_ATOMIC | GFP_DMA;
else
flags = GFP_KERNEL | GFP_DMA;
realloc:
vaddr = kmalloc((size), flags);
if (vaddr == NULL)
return vaddr;
misaligned = (unsigned long)VXGE_ALIGN((unsigned long)vaddr,
VXGE_CACHE_LINE_SIZE);
if (realloc_flag)
goto out;
if (misaligned) {
/* misaligned, free current one and try allocating
* size + VXGE_CACHE_LINE_SIZE memory
*/
kfree((void *) vaddr);
size += VXGE_CACHE_LINE_SIZE;
realloc_flag = 1;
goto realloc;
}
out:
*(unsigned long *)p_dma_acch = misaligned;
vaddr = (void *)((u8 *)vaddr + misaligned);
return vaddr;
}
extern void vxge_hw_blockpool_block_add(
struct __vxge_hw_device *devh,
void *block_addr,
u32 length,
struct pci_dev *dma_h,
struct pci_dev *acc_handle);
static inline void vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh,
unsigned long size)
{
gfp_t flags;
void *vaddr;
if (in_interrupt())
flags = GFP_ATOMIC | GFP_DMA;
else
flags = GFP_KERNEL | GFP_DMA;
vaddr = kmalloc((size), flags);
vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
}
static inline void vxge_os_dma_free(struct pci_dev *pdev, const void *vaddr,
struct pci_dev **p_dma_acch)
{
unsigned long misaligned = *(unsigned long *)p_dma_acch;
u8 *tmp = (u8 *)vaddr;
tmp -= misaligned;
kfree((void *)tmp);
}
/*
* __vxge_hw_mempool_item_priv - will return pointer on per item private space
*/
static inline void*
__vxge_hw_mempool_item_priv(
struct vxge_hw_mempool *mempool,
u32 memblock_idx,
void *item,
u32 *memblock_item_idx)
{
ptrdiff_t offset;
void *memblock = mempool->memblocks_arr[memblock_idx];
offset = (u32)((u8 *)item - (u8 *)memblock);
vxge_assert(offset >= 0 && (u32)offset < mempool->memblock_size);
(*memblock_item_idx) = (u32) offset / mempool->item_size;
vxge_assert((*memblock_item_idx) < mempool->items_per_memblock);
return (u8 *)mempool->memblocks_priv_arr[memblock_idx] +
(*memblock_item_idx) * mempool->items_priv_size;
}
enum vxge_hw_status
__vxge_hw_mempool_grow(
struct vxge_hw_mempool *mempool,
u32 num_allocate,
u32 *num_allocated);
struct vxge_hw_mempool*
__vxge_hw_mempool_create(
struct __vxge_hw_device *devh,
u32 memblock_size,
u32 item_size,
u32 private_size,
u32 items_initial,
u32 items_max,
struct vxge_hw_mempool_cbs *mp_callback,
void *userdata);
struct __vxge_hw_channel*
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
enum __vxge_hw_channel_type type, u32 length,
u32 per_dtr_space, void *userdata);
void
__vxge_hw_channel_free(
struct __vxge_hw_channel *channel);
enum vxge_hw_status
__vxge_hw_channel_initialize(
struct __vxge_hw_channel *channel);
enum vxge_hw_status
__vxge_hw_channel_reset(
struct __vxge_hw_channel *channel);
/*
* __vxge_hw_fifo_txdl_priv - Return the max fragments allocated
* for the fifo.
* @fifo: Fifo
* @txdp: Poniter to a TxD
*/
static inline struct __vxge_hw_fifo_txdl_priv *
__vxge_hw_fifo_txdl_priv(
struct __vxge_hw_fifo *fifo,
struct vxge_hw_fifo_txd *txdp)
{
return (struct __vxge_hw_fifo_txdl_priv *)
(((char *)((ulong)txdp->host_control)) +
fifo->per_txdl_space);
}
enum vxge_hw_status vxge_hw_vpath_open(
struct __vxge_hw_device *devh,
struct vxge_hw_vpath_attr *attr,
struct __vxge_hw_vpath_handle **vpath_handle);
enum vxge_hw_status
__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog);
enum vxge_hw_status vxge_hw_vpath_close(
struct __vxge_hw_vpath_handle *vpath_handle);
enum vxge_hw_status
vxge_hw_vpath_reset(
struct __vxge_hw_vpath_handle *vpath_handle);
enum vxge_hw_status
vxge_hw_vpath_recover_from_reset(
struct __vxge_hw_vpath_handle *vpath_handle);
void
vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp);
enum vxge_hw_status
vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ringh);
enum vxge_hw_status vxge_hw_vpath_mtu_set(
struct __vxge_hw_vpath_handle *vpath_handle,
u32 new_mtu);
enum vxge_hw_status vxge_hw_vpath_stats_enable(
struct __vxge_hw_vpath_handle *vpath_handle);
enum vxge_hw_status
__vxge_hw_vpath_stats_access(
struct __vxge_hw_virtualpath *vpath,
u32 operation,
u32 offset,
u64 *stat);
enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(
struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats);
enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(
struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats);
enum vxge_hw_status
__vxge_hw_vpath_stats_get(
struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_vpath_stats_hw_info *hw_stats);
void
vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp);
enum vxge_hw_status
__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config);
void
__vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev);
enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg);
enum vxge_hw_status
__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg);
enum vxge_hw_status
__vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
struct vxge_hw_vpath_reg __iomem *vpath_reg);
enum vxge_hw_status
__vxge_hw_device_register_poll(
void __iomem *reg,
u64 mask, u32 max_millis);
#ifndef readq
static inline u64 readq(void __iomem *addr)
{
u64 ret = 0;
ret = readl(addr + 4);
ret <<= 32;
ret |= readl(addr);
return ret;
}
#endif
#ifndef writeq
static inline void writeq(u64 val, void __iomem *addr)
{
writel((u32) (val), addr);
writel((u32) (val >> 32), (addr + 4));
}
#endif
static inline void __vxge_hw_pio_mem_write32_upper(u32 val, void __iomem *addr)
{
writel(val, addr + 4);
}
static inline void __vxge_hw_pio_mem_write32_lower(u32 val, void __iomem *addr)
{
writel(val, addr);
}
static inline enum vxge_hw_status
__vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
u64 mask, u32 max_millis)
{
enum vxge_hw_status status = VXGE_HW_OK;
__vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
wmb();
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
wmb();
status = __vxge_hw_device_register_poll(addr, mask, max_millis);
return status;
}
struct vxge_hw_toc_reg __iomem *
__vxge_hw_device_toc_get(void __iomem *bar0);
enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev);
void
__vxge_hw_device_id_get(struct __vxge_hw_device *hldev);
void
__vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev);
enum vxge_hw_status
vxge_hw_device_flick_link_led(struct __vxge_hw_device *devh, u64 on_off);
enum vxge_hw_status
__vxge_hw_device_initialize(struct __vxge_hw_device *hldev);
enum vxge_hw_status
__vxge_hw_vpath_pci_read(
struct __vxge_hw_virtualpath *vpath,
u32 phy_func_0,
u32 offset,
u32 *val);
enum vxge_hw_status
__vxge_hw_vpath_addr_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg,
u8 (macaddr)[ETH_ALEN],
u8 (macaddr_mask)[ETH_ALEN]);
u32
__vxge_hw_vpath_func_id_get(
u32 vp_id, struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg);
enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath);
enum vxge_hw_status
vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask);
/**
* vxge_debug
* @level: level of debug verbosity.
* @mask: mask for the debug
* @buf: Circular buffer for tracing
* @fmt: printf like format string
*
* Provides logging facilities. Can be customized on per-module
* basis or/and with debug levels. Input parameters, except
* module and level, are the same as posix printf. This function
* may be compiled out if DEBUG macro was never defined.
* See also: enum vxge_debug_level{}.
*/
#define vxge_trace_aux(level, mask, fmt, ...) \
{\
vxge_os_vaprintf(level, mask, fmt, __VA_ARGS__);\
}
#define vxge_debug(module, level, mask, fmt, ...) { \
if ((level >= VXGE_TRACE && ((module & VXGE_DEBUG_TRACE_MASK) == module)) || \
(level >= VXGE_ERR && ((module & VXGE_DEBUG_ERR_MASK) == module))) {\
if ((mask & VXGE_DEBUG_MASK) == mask)\
vxge_trace_aux(level, mask, fmt, __VA_ARGS__); \
} \
}
#if (VXGE_COMPONENT_LL & VXGE_DEBUG_MODULE_MASK)
#define vxge_debug_ll(level, mask, fmt, ...) \
{\
vxge_debug(VXGE_COMPONENT_LL, level, mask, fmt, __VA_ARGS__);\
}
#else
#define vxge_debug_ll(level, mask, fmt, ...)
#endif
enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
struct __vxge_hw_vpath_handle **vpath_handles,
u32 vpath_count,
u8 *mtable,
u8 *itable,
u32 itable_size);
enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
struct __vxge_hw_vpath_handle *vpath_handle,
enum vxge_hw_rth_algoritms algorithm,
struct vxge_hw_rth_hash_types *hash_type,
u16 bucket_size);
enum vxge_hw_status
__vxge_hw_device_is_privilaged(u32 host_type, u32 func_id);
#endif