mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 13:46:47 +07:00
b886d83c5b
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation version 2 of the license extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 315 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Armijn Hemel <armijn@tjaldur.nl> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013 lines
47 KiB
C
2013 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* builtin-timechart.c - make an svg timechart of system activity
|
|
*
|
|
* (C) Copyright 2009 Intel Corporation
|
|
*
|
|
* Authors:
|
|
* Arjan van de Ven <arjan@linux.intel.com>
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <traceevent/event-parse.h>
|
|
|
|
#include "builtin.h"
|
|
|
|
#include "util/util.h"
|
|
|
|
#include "util/color.h"
|
|
#include <linux/list.h>
|
|
#include "util/cache.h"
|
|
#include "util/evlist.h"
|
|
#include "util/evsel.h"
|
|
#include <linux/kernel.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/time64.h>
|
|
#include "util/symbol.h"
|
|
#include "util/thread.h"
|
|
#include "util/callchain.h"
|
|
|
|
#include "perf.h"
|
|
#include "util/header.h"
|
|
#include <subcmd/parse-options.h>
|
|
#include "util/parse-events.h"
|
|
#include "util/event.h"
|
|
#include "util/session.h"
|
|
#include "util/svghelper.h"
|
|
#include "util/tool.h"
|
|
#include "util/data.h"
|
|
#include "util/debug.h"
|
|
|
|
#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
|
|
FILE *open_memstream(char **ptr, size_t *sizeloc);
|
|
#endif
|
|
|
|
#define SUPPORT_OLD_POWER_EVENTS 1
|
|
#define PWR_EVENT_EXIT -1
|
|
|
|
struct per_pid;
|
|
struct power_event;
|
|
struct wake_event;
|
|
|
|
struct timechart {
|
|
struct perf_tool tool;
|
|
struct per_pid *all_data;
|
|
struct power_event *power_events;
|
|
struct wake_event *wake_events;
|
|
int proc_num;
|
|
unsigned int numcpus;
|
|
u64 min_freq, /* Lowest CPU frequency seen */
|
|
max_freq, /* Highest CPU frequency seen */
|
|
turbo_frequency,
|
|
first_time, last_time;
|
|
bool power_only,
|
|
tasks_only,
|
|
with_backtrace,
|
|
topology;
|
|
bool force;
|
|
/* IO related settings */
|
|
bool io_only,
|
|
skip_eagain;
|
|
u64 io_events;
|
|
u64 min_time,
|
|
merge_dist;
|
|
};
|
|
|
|
struct per_pidcomm;
|
|
struct cpu_sample;
|
|
struct io_sample;
|
|
|
|
/*
|
|
* Datastructure layout:
|
|
* We keep an list of "pid"s, matching the kernels notion of a task struct.
|
|
* Each "pid" entry, has a list of "comm"s.
|
|
* this is because we want to track different programs different, while
|
|
* exec will reuse the original pid (by design).
|
|
* Each comm has a list of samples that will be used to draw
|
|
* final graph.
|
|
*/
|
|
|
|
struct per_pid {
|
|
struct per_pid *next;
|
|
|
|
int pid;
|
|
int ppid;
|
|
|
|
u64 start_time;
|
|
u64 end_time;
|
|
u64 total_time;
|
|
u64 total_bytes;
|
|
int display;
|
|
|
|
struct per_pidcomm *all;
|
|
struct per_pidcomm *current;
|
|
};
|
|
|
|
|
|
struct per_pidcomm {
|
|
struct per_pidcomm *next;
|
|
|
|
u64 start_time;
|
|
u64 end_time;
|
|
u64 total_time;
|
|
u64 max_bytes;
|
|
u64 total_bytes;
|
|
|
|
int Y;
|
|
int display;
|
|
|
|
long state;
|
|
u64 state_since;
|
|
|
|
char *comm;
|
|
|
|
struct cpu_sample *samples;
|
|
struct io_sample *io_samples;
|
|
};
|
|
|
|
struct sample_wrapper {
|
|
struct sample_wrapper *next;
|
|
|
|
u64 timestamp;
|
|
unsigned char data[0];
|
|
};
|
|
|
|
#define TYPE_NONE 0
|
|
#define TYPE_RUNNING 1
|
|
#define TYPE_WAITING 2
|
|
#define TYPE_BLOCKED 3
|
|
|
|
struct cpu_sample {
|
|
struct cpu_sample *next;
|
|
|
|
u64 start_time;
|
|
u64 end_time;
|
|
int type;
|
|
int cpu;
|
|
const char *backtrace;
|
|
};
|
|
|
|
enum {
|
|
IOTYPE_READ,
|
|
IOTYPE_WRITE,
|
|
IOTYPE_SYNC,
|
|
IOTYPE_TX,
|
|
IOTYPE_RX,
|
|
IOTYPE_POLL,
|
|
};
|
|
|
|
struct io_sample {
|
|
struct io_sample *next;
|
|
|
|
u64 start_time;
|
|
u64 end_time;
|
|
u64 bytes;
|
|
int type;
|
|
int fd;
|
|
int err;
|
|
int merges;
|
|
};
|
|
|
|
#define CSTATE 1
|
|
#define PSTATE 2
|
|
|
|
struct power_event {
|
|
struct power_event *next;
|
|
int type;
|
|
int state;
|
|
u64 start_time;
|
|
u64 end_time;
|
|
int cpu;
|
|
};
|
|
|
|
struct wake_event {
|
|
struct wake_event *next;
|
|
int waker;
|
|
int wakee;
|
|
u64 time;
|
|
const char *backtrace;
|
|
};
|
|
|
|
struct process_filter {
|
|
char *name;
|
|
int pid;
|
|
struct process_filter *next;
|
|
};
|
|
|
|
static struct process_filter *process_filter;
|
|
|
|
|
|
static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
|
|
{
|
|
struct per_pid *cursor = tchart->all_data;
|
|
|
|
while (cursor) {
|
|
if (cursor->pid == pid)
|
|
return cursor;
|
|
cursor = cursor->next;
|
|
}
|
|
cursor = zalloc(sizeof(*cursor));
|
|
assert(cursor != NULL);
|
|
cursor->pid = pid;
|
|
cursor->next = tchart->all_data;
|
|
tchart->all_data = cursor;
|
|
return cursor;
|
|
}
|
|
|
|
static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
p = find_create_pid(tchart, pid);
|
|
c = p->all;
|
|
while (c) {
|
|
if (c->comm && strcmp(c->comm, comm) == 0) {
|
|
p->current = c;
|
|
return;
|
|
}
|
|
if (!c->comm) {
|
|
c->comm = strdup(comm);
|
|
p->current = c;
|
|
return;
|
|
}
|
|
c = c->next;
|
|
}
|
|
c = zalloc(sizeof(*c));
|
|
assert(c != NULL);
|
|
c->comm = strdup(comm);
|
|
p->current = c;
|
|
c->next = p->all;
|
|
p->all = c;
|
|
}
|
|
|
|
static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
|
|
{
|
|
struct per_pid *p, *pp;
|
|
p = find_create_pid(tchart, pid);
|
|
pp = find_create_pid(tchart, ppid);
|
|
p->ppid = ppid;
|
|
if (pp->current && pp->current->comm && !p->current)
|
|
pid_set_comm(tchart, pid, pp->current->comm);
|
|
|
|
p->start_time = timestamp;
|
|
if (p->current && !p->current->start_time) {
|
|
p->current->start_time = timestamp;
|
|
p->current->state_since = timestamp;
|
|
}
|
|
}
|
|
|
|
static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
|
|
{
|
|
struct per_pid *p;
|
|
p = find_create_pid(tchart, pid);
|
|
p->end_time = timestamp;
|
|
if (p->current)
|
|
p->current->end_time = timestamp;
|
|
}
|
|
|
|
static void pid_put_sample(struct timechart *tchart, int pid, int type,
|
|
unsigned int cpu, u64 start, u64 end,
|
|
const char *backtrace)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
struct cpu_sample *sample;
|
|
|
|
p = find_create_pid(tchart, pid);
|
|
c = p->current;
|
|
if (!c) {
|
|
c = zalloc(sizeof(*c));
|
|
assert(c != NULL);
|
|
p->current = c;
|
|
c->next = p->all;
|
|
p->all = c;
|
|
}
|
|
|
|
sample = zalloc(sizeof(*sample));
|
|
assert(sample != NULL);
|
|
sample->start_time = start;
|
|
sample->end_time = end;
|
|
sample->type = type;
|
|
sample->next = c->samples;
|
|
sample->cpu = cpu;
|
|
sample->backtrace = backtrace;
|
|
c->samples = sample;
|
|
|
|
if (sample->type == TYPE_RUNNING && end > start && start > 0) {
|
|
c->total_time += (end-start);
|
|
p->total_time += (end-start);
|
|
}
|
|
|
|
if (c->start_time == 0 || c->start_time > start)
|
|
c->start_time = start;
|
|
if (p->start_time == 0 || p->start_time > start)
|
|
p->start_time = start;
|
|
}
|
|
|
|
#define MAX_CPUS 4096
|
|
|
|
static u64 cpus_cstate_start_times[MAX_CPUS];
|
|
static int cpus_cstate_state[MAX_CPUS];
|
|
static u64 cpus_pstate_start_times[MAX_CPUS];
|
|
static u64 cpus_pstate_state[MAX_CPUS];
|
|
|
|
static int process_comm_event(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample __maybe_unused,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
struct timechart *tchart = container_of(tool, struct timechart, tool);
|
|
pid_set_comm(tchart, event->comm.tid, event->comm.comm);
|
|
return 0;
|
|
}
|
|
|
|
static int process_fork_event(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample __maybe_unused,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
struct timechart *tchart = container_of(tool, struct timechart, tool);
|
|
pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
|
|
return 0;
|
|
}
|
|
|
|
static int process_exit_event(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample __maybe_unused,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
struct timechart *tchart = container_of(tool, struct timechart, tool);
|
|
pid_exit(tchart, event->fork.pid, event->fork.time);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SUPPORT_OLD_POWER_EVENTS
|
|
static int use_old_power_events;
|
|
#endif
|
|
|
|
static void c_state_start(int cpu, u64 timestamp, int state)
|
|
{
|
|
cpus_cstate_start_times[cpu] = timestamp;
|
|
cpus_cstate_state[cpu] = state;
|
|
}
|
|
|
|
static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
|
|
{
|
|
struct power_event *pwr = zalloc(sizeof(*pwr));
|
|
|
|
if (!pwr)
|
|
return;
|
|
|
|
pwr->state = cpus_cstate_state[cpu];
|
|
pwr->start_time = cpus_cstate_start_times[cpu];
|
|
pwr->end_time = timestamp;
|
|
pwr->cpu = cpu;
|
|
pwr->type = CSTATE;
|
|
pwr->next = tchart->power_events;
|
|
|
|
tchart->power_events = pwr;
|
|
}
|
|
|
|
static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
|
|
{
|
|
struct power_event *pwr;
|
|
|
|
if (new_freq > 8000000) /* detect invalid data */
|
|
return;
|
|
|
|
pwr = zalloc(sizeof(*pwr));
|
|
if (!pwr)
|
|
return;
|
|
|
|
pwr->state = cpus_pstate_state[cpu];
|
|
pwr->start_time = cpus_pstate_start_times[cpu];
|
|
pwr->end_time = timestamp;
|
|
pwr->cpu = cpu;
|
|
pwr->type = PSTATE;
|
|
pwr->next = tchart->power_events;
|
|
|
|
if (!pwr->start_time)
|
|
pwr->start_time = tchart->first_time;
|
|
|
|
tchart->power_events = pwr;
|
|
|
|
cpus_pstate_state[cpu] = new_freq;
|
|
cpus_pstate_start_times[cpu] = timestamp;
|
|
|
|
if ((u64)new_freq > tchart->max_freq)
|
|
tchart->max_freq = new_freq;
|
|
|
|
if (new_freq < tchart->min_freq || tchart->min_freq == 0)
|
|
tchart->min_freq = new_freq;
|
|
|
|
if (new_freq == tchart->max_freq - 1000)
|
|
tchart->turbo_frequency = tchart->max_freq;
|
|
}
|
|
|
|
static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
|
|
int waker, int wakee, u8 flags, const char *backtrace)
|
|
{
|
|
struct per_pid *p;
|
|
struct wake_event *we = zalloc(sizeof(*we));
|
|
|
|
if (!we)
|
|
return;
|
|
|
|
we->time = timestamp;
|
|
we->waker = waker;
|
|
we->backtrace = backtrace;
|
|
|
|
if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
|
|
we->waker = -1;
|
|
|
|
we->wakee = wakee;
|
|
we->next = tchart->wake_events;
|
|
tchart->wake_events = we;
|
|
p = find_create_pid(tchart, we->wakee);
|
|
|
|
if (p && p->current && p->current->state == TYPE_NONE) {
|
|
p->current->state_since = timestamp;
|
|
p->current->state = TYPE_WAITING;
|
|
}
|
|
if (p && p->current && p->current->state == TYPE_BLOCKED) {
|
|
pid_put_sample(tchart, p->pid, p->current->state, cpu,
|
|
p->current->state_since, timestamp, NULL);
|
|
p->current->state_since = timestamp;
|
|
p->current->state = TYPE_WAITING;
|
|
}
|
|
}
|
|
|
|
static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
|
|
int prev_pid, int next_pid, u64 prev_state,
|
|
const char *backtrace)
|
|
{
|
|
struct per_pid *p = NULL, *prev_p;
|
|
|
|
prev_p = find_create_pid(tchart, prev_pid);
|
|
|
|
p = find_create_pid(tchart, next_pid);
|
|
|
|
if (prev_p->current && prev_p->current->state != TYPE_NONE)
|
|
pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
|
|
prev_p->current->state_since, timestamp,
|
|
backtrace);
|
|
if (p && p->current) {
|
|
if (p->current->state != TYPE_NONE)
|
|
pid_put_sample(tchart, next_pid, p->current->state, cpu,
|
|
p->current->state_since, timestamp,
|
|
backtrace);
|
|
|
|
p->current->state_since = timestamp;
|
|
p->current->state = TYPE_RUNNING;
|
|
}
|
|
|
|
if (prev_p->current) {
|
|
prev_p->current->state = TYPE_NONE;
|
|
prev_p->current->state_since = timestamp;
|
|
if (prev_state & 2)
|
|
prev_p->current->state = TYPE_BLOCKED;
|
|
if (prev_state == 0)
|
|
prev_p->current->state = TYPE_WAITING;
|
|
}
|
|
}
|
|
|
|
static const char *cat_backtrace(union perf_event *event,
|
|
struct perf_sample *sample,
|
|
struct machine *machine)
|
|
{
|
|
struct addr_location al;
|
|
unsigned int i;
|
|
char *p = NULL;
|
|
size_t p_len;
|
|
u8 cpumode = PERF_RECORD_MISC_USER;
|
|
struct addr_location tal;
|
|
struct ip_callchain *chain = sample->callchain;
|
|
FILE *f = open_memstream(&p, &p_len);
|
|
|
|
if (!f) {
|
|
perror("open_memstream error");
|
|
return NULL;
|
|
}
|
|
|
|
if (!chain)
|
|
goto exit;
|
|
|
|
if (machine__resolve(machine, &al, sample) < 0) {
|
|
fprintf(stderr, "problem processing %d event, skipping it.\n",
|
|
event->header.type);
|
|
goto exit;
|
|
}
|
|
|
|
for (i = 0; i < chain->nr; i++) {
|
|
u64 ip;
|
|
|
|
if (callchain_param.order == ORDER_CALLEE)
|
|
ip = chain->ips[i];
|
|
else
|
|
ip = chain->ips[chain->nr - i - 1];
|
|
|
|
if (ip >= PERF_CONTEXT_MAX) {
|
|
switch (ip) {
|
|
case PERF_CONTEXT_HV:
|
|
cpumode = PERF_RECORD_MISC_HYPERVISOR;
|
|
break;
|
|
case PERF_CONTEXT_KERNEL:
|
|
cpumode = PERF_RECORD_MISC_KERNEL;
|
|
break;
|
|
case PERF_CONTEXT_USER:
|
|
cpumode = PERF_RECORD_MISC_USER;
|
|
break;
|
|
default:
|
|
pr_debug("invalid callchain context: "
|
|
"%"PRId64"\n", (s64) ip);
|
|
|
|
/*
|
|
* It seems the callchain is corrupted.
|
|
* Discard all.
|
|
*/
|
|
zfree(&p);
|
|
goto exit_put;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
tal.filtered = 0;
|
|
if (thread__find_symbol(al.thread, cpumode, ip, &tal))
|
|
fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
|
|
else
|
|
fprintf(f, "..... %016" PRIx64 "\n", ip);
|
|
}
|
|
exit_put:
|
|
addr_location__put(&al);
|
|
exit:
|
|
fclose(f);
|
|
|
|
return p;
|
|
}
|
|
|
|
typedef int (*tracepoint_handler)(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace);
|
|
|
|
static int process_sample_event(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample,
|
|
struct perf_evsel *evsel,
|
|
struct machine *machine)
|
|
{
|
|
struct timechart *tchart = container_of(tool, struct timechart, tool);
|
|
|
|
if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
|
|
if (!tchart->first_time || tchart->first_time > sample->time)
|
|
tchart->first_time = sample->time;
|
|
if (tchart->last_time < sample->time)
|
|
tchart->last_time = sample->time;
|
|
}
|
|
|
|
if (evsel->handler != NULL) {
|
|
tracepoint_handler f = evsel->handler;
|
|
return f(tchart, evsel, sample,
|
|
cat_backtrace(event, sample, machine));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace __maybe_unused)
|
|
{
|
|
u32 state = perf_evsel__intval(evsel, sample, "state");
|
|
u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
|
|
|
|
if (state == (u32)PWR_EVENT_EXIT)
|
|
c_state_end(tchart, cpu_id, sample->time);
|
|
else
|
|
c_state_start(cpu_id, sample->time, state);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_sample_cpu_frequency(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace __maybe_unused)
|
|
{
|
|
u32 state = perf_evsel__intval(evsel, sample, "state");
|
|
u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
|
|
|
|
p_state_change(tchart, cpu_id, sample->time, state);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_sample_sched_wakeup(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace)
|
|
{
|
|
u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
|
|
int waker = perf_evsel__intval(evsel, sample, "common_pid");
|
|
int wakee = perf_evsel__intval(evsel, sample, "pid");
|
|
|
|
sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_sample_sched_switch(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace)
|
|
{
|
|
int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
|
|
int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
|
|
u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
|
|
|
|
sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
|
|
prev_state, backtrace);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SUPPORT_OLD_POWER_EVENTS
|
|
static int
|
|
process_sample_power_start(struct timechart *tchart __maybe_unused,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace __maybe_unused)
|
|
{
|
|
u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
|
|
u64 value = perf_evsel__intval(evsel, sample, "value");
|
|
|
|
c_state_start(cpu_id, sample->time, value);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_sample_power_end(struct timechart *tchart,
|
|
struct perf_evsel *evsel __maybe_unused,
|
|
struct perf_sample *sample,
|
|
const char *backtrace __maybe_unused)
|
|
{
|
|
c_state_end(tchart, sample->cpu, sample->time);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_sample_power_frequency(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample,
|
|
const char *backtrace __maybe_unused)
|
|
{
|
|
u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
|
|
u64 value = perf_evsel__intval(evsel, sample, "value");
|
|
|
|
p_state_change(tchart, cpu_id, sample->time, value);
|
|
return 0;
|
|
}
|
|
#endif /* SUPPORT_OLD_POWER_EVENTS */
|
|
|
|
/*
|
|
* After the last sample we need to wrap up the current C/P state
|
|
* and close out each CPU for these.
|
|
*/
|
|
static void end_sample_processing(struct timechart *tchart)
|
|
{
|
|
u64 cpu;
|
|
struct power_event *pwr;
|
|
|
|
for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
|
|
/* C state */
|
|
#if 0
|
|
pwr = zalloc(sizeof(*pwr));
|
|
if (!pwr)
|
|
return;
|
|
|
|
pwr->state = cpus_cstate_state[cpu];
|
|
pwr->start_time = cpus_cstate_start_times[cpu];
|
|
pwr->end_time = tchart->last_time;
|
|
pwr->cpu = cpu;
|
|
pwr->type = CSTATE;
|
|
pwr->next = tchart->power_events;
|
|
|
|
tchart->power_events = pwr;
|
|
#endif
|
|
/* P state */
|
|
|
|
pwr = zalloc(sizeof(*pwr));
|
|
if (!pwr)
|
|
return;
|
|
|
|
pwr->state = cpus_pstate_state[cpu];
|
|
pwr->start_time = cpus_pstate_start_times[cpu];
|
|
pwr->end_time = tchart->last_time;
|
|
pwr->cpu = cpu;
|
|
pwr->type = PSTATE;
|
|
pwr->next = tchart->power_events;
|
|
|
|
if (!pwr->start_time)
|
|
pwr->start_time = tchart->first_time;
|
|
if (!pwr->state)
|
|
pwr->state = tchart->min_freq;
|
|
tchart->power_events = pwr;
|
|
}
|
|
}
|
|
|
|
static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
|
|
u64 start, int fd)
|
|
{
|
|
struct per_pid *p = find_create_pid(tchart, pid);
|
|
struct per_pidcomm *c = p->current;
|
|
struct io_sample *sample;
|
|
struct io_sample *prev;
|
|
|
|
if (!c) {
|
|
c = zalloc(sizeof(*c));
|
|
if (!c)
|
|
return -ENOMEM;
|
|
p->current = c;
|
|
c->next = p->all;
|
|
p->all = c;
|
|
}
|
|
|
|
prev = c->io_samples;
|
|
|
|
if (prev && prev->start_time && !prev->end_time) {
|
|
pr_warning("Skip invalid start event: "
|
|
"previous event already started!\n");
|
|
|
|
/* remove previous event that has been started,
|
|
* we are not sure we will ever get an end for it */
|
|
c->io_samples = prev->next;
|
|
free(prev);
|
|
return 0;
|
|
}
|
|
|
|
sample = zalloc(sizeof(*sample));
|
|
if (!sample)
|
|
return -ENOMEM;
|
|
sample->start_time = start;
|
|
sample->type = type;
|
|
sample->fd = fd;
|
|
sample->next = c->io_samples;
|
|
c->io_samples = sample;
|
|
|
|
if (c->start_time == 0 || c->start_time > start)
|
|
c->start_time = start;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
|
|
u64 end, long ret)
|
|
{
|
|
struct per_pid *p = find_create_pid(tchart, pid);
|
|
struct per_pidcomm *c = p->current;
|
|
struct io_sample *sample, *prev;
|
|
|
|
if (!c) {
|
|
pr_warning("Invalid pidcomm!\n");
|
|
return -1;
|
|
}
|
|
|
|
sample = c->io_samples;
|
|
|
|
if (!sample) /* skip partially captured events */
|
|
return 0;
|
|
|
|
if (sample->end_time) {
|
|
pr_warning("Skip invalid end event: "
|
|
"previous event already ended!\n");
|
|
return 0;
|
|
}
|
|
|
|
if (sample->type != type) {
|
|
pr_warning("Skip invalid end event: invalid event type!\n");
|
|
return 0;
|
|
}
|
|
|
|
sample->end_time = end;
|
|
prev = sample->next;
|
|
|
|
/* we want to be able to see small and fast transfers, so make them
|
|
* at least min_time long, but don't overlap them */
|
|
if (sample->end_time - sample->start_time < tchart->min_time)
|
|
sample->end_time = sample->start_time + tchart->min_time;
|
|
if (prev && sample->start_time < prev->end_time) {
|
|
if (prev->err) /* try to make errors more visible */
|
|
sample->start_time = prev->end_time;
|
|
else
|
|
prev->end_time = sample->start_time;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
sample->err = ret;
|
|
} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
|
|
type == IOTYPE_TX || type == IOTYPE_RX) {
|
|
|
|
if ((u64)ret > c->max_bytes)
|
|
c->max_bytes = ret;
|
|
|
|
c->total_bytes += ret;
|
|
p->total_bytes += ret;
|
|
sample->bytes = ret;
|
|
}
|
|
|
|
/* merge two requests to make svg smaller and render-friendly */
|
|
if (prev &&
|
|
prev->type == sample->type &&
|
|
prev->err == sample->err &&
|
|
prev->fd == sample->fd &&
|
|
prev->end_time + tchart->merge_dist >= sample->start_time) {
|
|
|
|
sample->bytes += prev->bytes;
|
|
sample->merges += prev->merges + 1;
|
|
|
|
sample->start_time = prev->start_time;
|
|
sample->next = prev->next;
|
|
free(prev);
|
|
|
|
if (!sample->err && sample->bytes > c->max_bytes)
|
|
c->max_bytes = sample->bytes;
|
|
}
|
|
|
|
tchart->io_events++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
process_enter_read(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long fd = perf_evsel__intval(evsel, sample, "fd");
|
|
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
|
|
sample->time, fd);
|
|
}
|
|
|
|
static int
|
|
process_exit_read(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long ret = perf_evsel__intval(evsel, sample, "ret");
|
|
return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
|
|
sample->time, ret);
|
|
}
|
|
|
|
static int
|
|
process_enter_write(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long fd = perf_evsel__intval(evsel, sample, "fd");
|
|
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
|
|
sample->time, fd);
|
|
}
|
|
|
|
static int
|
|
process_exit_write(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long ret = perf_evsel__intval(evsel, sample, "ret");
|
|
return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
|
|
sample->time, ret);
|
|
}
|
|
|
|
static int
|
|
process_enter_sync(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long fd = perf_evsel__intval(evsel, sample, "fd");
|
|
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
|
|
sample->time, fd);
|
|
}
|
|
|
|
static int
|
|
process_exit_sync(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long ret = perf_evsel__intval(evsel, sample, "ret");
|
|
return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
|
|
sample->time, ret);
|
|
}
|
|
|
|
static int
|
|
process_enter_tx(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long fd = perf_evsel__intval(evsel, sample, "fd");
|
|
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
|
|
sample->time, fd);
|
|
}
|
|
|
|
static int
|
|
process_exit_tx(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long ret = perf_evsel__intval(evsel, sample, "ret");
|
|
return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
|
|
sample->time, ret);
|
|
}
|
|
|
|
static int
|
|
process_enter_rx(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long fd = perf_evsel__intval(evsel, sample, "fd");
|
|
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
|
|
sample->time, fd);
|
|
}
|
|
|
|
static int
|
|
process_exit_rx(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long ret = perf_evsel__intval(evsel, sample, "ret");
|
|
return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
|
|
sample->time, ret);
|
|
}
|
|
|
|
static int
|
|
process_enter_poll(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long fd = perf_evsel__intval(evsel, sample, "fd");
|
|
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
|
|
sample->time, fd);
|
|
}
|
|
|
|
static int
|
|
process_exit_poll(struct timechart *tchart,
|
|
struct perf_evsel *evsel,
|
|
struct perf_sample *sample)
|
|
{
|
|
long ret = perf_evsel__intval(evsel, sample, "ret");
|
|
return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
|
|
sample->time, ret);
|
|
}
|
|
|
|
/*
|
|
* Sort the pid datastructure
|
|
*/
|
|
static void sort_pids(struct timechart *tchart)
|
|
{
|
|
struct per_pid *new_list, *p, *cursor, *prev;
|
|
/* sort by ppid first, then by pid, lowest to highest */
|
|
|
|
new_list = NULL;
|
|
|
|
while (tchart->all_data) {
|
|
p = tchart->all_data;
|
|
tchart->all_data = p->next;
|
|
p->next = NULL;
|
|
|
|
if (new_list == NULL) {
|
|
new_list = p;
|
|
p->next = NULL;
|
|
continue;
|
|
}
|
|
prev = NULL;
|
|
cursor = new_list;
|
|
while (cursor) {
|
|
if (cursor->ppid > p->ppid ||
|
|
(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
|
|
/* must insert before */
|
|
if (prev) {
|
|
p->next = prev->next;
|
|
prev->next = p;
|
|
cursor = NULL;
|
|
continue;
|
|
} else {
|
|
p->next = new_list;
|
|
new_list = p;
|
|
cursor = NULL;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
prev = cursor;
|
|
cursor = cursor->next;
|
|
if (!cursor)
|
|
prev->next = p;
|
|
}
|
|
}
|
|
tchart->all_data = new_list;
|
|
}
|
|
|
|
|
|
static void draw_c_p_states(struct timechart *tchart)
|
|
{
|
|
struct power_event *pwr;
|
|
pwr = tchart->power_events;
|
|
|
|
/*
|
|
* two pass drawing so that the P state bars are on top of the C state blocks
|
|
*/
|
|
while (pwr) {
|
|
if (pwr->type == CSTATE)
|
|
svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
|
|
pwr = pwr->next;
|
|
}
|
|
|
|
pwr = tchart->power_events;
|
|
while (pwr) {
|
|
if (pwr->type == PSTATE) {
|
|
if (!pwr->state)
|
|
pwr->state = tchart->min_freq;
|
|
svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
|
|
}
|
|
pwr = pwr->next;
|
|
}
|
|
}
|
|
|
|
static void draw_wakeups(struct timechart *tchart)
|
|
{
|
|
struct wake_event *we;
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
|
|
we = tchart->wake_events;
|
|
while (we) {
|
|
int from = 0, to = 0;
|
|
char *task_from = NULL, *task_to = NULL;
|
|
|
|
/* locate the column of the waker and wakee */
|
|
p = tchart->all_data;
|
|
while (p) {
|
|
if (p->pid == we->waker || p->pid == we->wakee) {
|
|
c = p->all;
|
|
while (c) {
|
|
if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
|
|
if (p->pid == we->waker && !from) {
|
|
from = c->Y;
|
|
task_from = strdup(c->comm);
|
|
}
|
|
if (p->pid == we->wakee && !to) {
|
|
to = c->Y;
|
|
task_to = strdup(c->comm);
|
|
}
|
|
}
|
|
c = c->next;
|
|
}
|
|
c = p->all;
|
|
while (c) {
|
|
if (p->pid == we->waker && !from) {
|
|
from = c->Y;
|
|
task_from = strdup(c->comm);
|
|
}
|
|
if (p->pid == we->wakee && !to) {
|
|
to = c->Y;
|
|
task_to = strdup(c->comm);
|
|
}
|
|
c = c->next;
|
|
}
|
|
}
|
|
p = p->next;
|
|
}
|
|
|
|
if (!task_from) {
|
|
task_from = malloc(40);
|
|
sprintf(task_from, "[%i]", we->waker);
|
|
}
|
|
if (!task_to) {
|
|
task_to = malloc(40);
|
|
sprintf(task_to, "[%i]", we->wakee);
|
|
}
|
|
|
|
if (we->waker == -1)
|
|
svg_interrupt(we->time, to, we->backtrace);
|
|
else if (from && to && abs(from - to) == 1)
|
|
svg_wakeline(we->time, from, to, we->backtrace);
|
|
else
|
|
svg_partial_wakeline(we->time, from, task_from, to,
|
|
task_to, we->backtrace);
|
|
we = we->next;
|
|
|
|
free(task_from);
|
|
free(task_to);
|
|
}
|
|
}
|
|
|
|
static void draw_cpu_usage(struct timechart *tchart)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
struct cpu_sample *sample;
|
|
p = tchart->all_data;
|
|
while (p) {
|
|
c = p->all;
|
|
while (c) {
|
|
sample = c->samples;
|
|
while (sample) {
|
|
if (sample->type == TYPE_RUNNING) {
|
|
svg_process(sample->cpu,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
p->pid,
|
|
c->comm,
|
|
sample->backtrace);
|
|
}
|
|
|
|
sample = sample->next;
|
|
}
|
|
c = c->next;
|
|
}
|
|
p = p->next;
|
|
}
|
|
}
|
|
|
|
static void draw_io_bars(struct timechart *tchart)
|
|
{
|
|
const char *suf;
|
|
double bytes;
|
|
char comm[256];
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
struct io_sample *sample;
|
|
int Y = 1;
|
|
|
|
p = tchart->all_data;
|
|
while (p) {
|
|
c = p->all;
|
|
while (c) {
|
|
if (!c->display) {
|
|
c->Y = 0;
|
|
c = c->next;
|
|
continue;
|
|
}
|
|
|
|
svg_box(Y, c->start_time, c->end_time, "process3");
|
|
sample = c->io_samples;
|
|
for (sample = c->io_samples; sample; sample = sample->next) {
|
|
double h = (double)sample->bytes / c->max_bytes;
|
|
|
|
if (tchart->skip_eagain &&
|
|
sample->err == -EAGAIN)
|
|
continue;
|
|
|
|
if (sample->err)
|
|
h = 1;
|
|
|
|
if (sample->type == IOTYPE_SYNC)
|
|
svg_fbox(Y,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
1,
|
|
sample->err ? "error" : "sync",
|
|
sample->fd,
|
|
sample->err,
|
|
sample->merges);
|
|
else if (sample->type == IOTYPE_POLL)
|
|
svg_fbox(Y,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
1,
|
|
sample->err ? "error" : "poll",
|
|
sample->fd,
|
|
sample->err,
|
|
sample->merges);
|
|
else if (sample->type == IOTYPE_READ)
|
|
svg_ubox(Y,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
h,
|
|
sample->err ? "error" : "disk",
|
|
sample->fd,
|
|
sample->err,
|
|
sample->merges);
|
|
else if (sample->type == IOTYPE_WRITE)
|
|
svg_lbox(Y,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
h,
|
|
sample->err ? "error" : "disk",
|
|
sample->fd,
|
|
sample->err,
|
|
sample->merges);
|
|
else if (sample->type == IOTYPE_RX)
|
|
svg_ubox(Y,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
h,
|
|
sample->err ? "error" : "net",
|
|
sample->fd,
|
|
sample->err,
|
|
sample->merges);
|
|
else if (sample->type == IOTYPE_TX)
|
|
svg_lbox(Y,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
h,
|
|
sample->err ? "error" : "net",
|
|
sample->fd,
|
|
sample->err,
|
|
sample->merges);
|
|
}
|
|
|
|
suf = "";
|
|
bytes = c->total_bytes;
|
|
if (bytes > 1024) {
|
|
bytes = bytes / 1024;
|
|
suf = "K";
|
|
}
|
|
if (bytes > 1024) {
|
|
bytes = bytes / 1024;
|
|
suf = "M";
|
|
}
|
|
if (bytes > 1024) {
|
|
bytes = bytes / 1024;
|
|
suf = "G";
|
|
}
|
|
|
|
|
|
sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
|
|
svg_text(Y, c->start_time, comm);
|
|
|
|
c->Y = Y;
|
|
Y++;
|
|
c = c->next;
|
|
}
|
|
p = p->next;
|
|
}
|
|
}
|
|
|
|
static void draw_process_bars(struct timechart *tchart)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
struct cpu_sample *sample;
|
|
int Y = 0;
|
|
|
|
Y = 2 * tchart->numcpus + 2;
|
|
|
|
p = tchart->all_data;
|
|
while (p) {
|
|
c = p->all;
|
|
while (c) {
|
|
if (!c->display) {
|
|
c->Y = 0;
|
|
c = c->next;
|
|
continue;
|
|
}
|
|
|
|
svg_box(Y, c->start_time, c->end_time, "process");
|
|
sample = c->samples;
|
|
while (sample) {
|
|
if (sample->type == TYPE_RUNNING)
|
|
svg_running(Y, sample->cpu,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
sample->backtrace);
|
|
if (sample->type == TYPE_BLOCKED)
|
|
svg_blocked(Y, sample->cpu,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
sample->backtrace);
|
|
if (sample->type == TYPE_WAITING)
|
|
svg_waiting(Y, sample->cpu,
|
|
sample->start_time,
|
|
sample->end_time,
|
|
sample->backtrace);
|
|
sample = sample->next;
|
|
}
|
|
|
|
if (c->comm) {
|
|
char comm[256];
|
|
if (c->total_time > 5000000000) /* 5 seconds */
|
|
sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
|
|
else
|
|
sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
|
|
|
|
svg_text(Y, c->start_time, comm);
|
|
}
|
|
c->Y = Y;
|
|
Y++;
|
|
c = c->next;
|
|
}
|
|
p = p->next;
|
|
}
|
|
}
|
|
|
|
static void add_process_filter(const char *string)
|
|
{
|
|
int pid = strtoull(string, NULL, 10);
|
|
struct process_filter *filt = malloc(sizeof(*filt));
|
|
|
|
if (!filt)
|
|
return;
|
|
|
|
filt->name = strdup(string);
|
|
filt->pid = pid;
|
|
filt->next = process_filter;
|
|
|
|
process_filter = filt;
|
|
}
|
|
|
|
static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
|
|
{
|
|
struct process_filter *filt;
|
|
if (!process_filter)
|
|
return 1;
|
|
|
|
filt = process_filter;
|
|
while (filt) {
|
|
if (filt->pid && p->pid == filt->pid)
|
|
return 1;
|
|
if (strcmp(filt->name, c->comm) == 0)
|
|
return 1;
|
|
filt = filt->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int determine_display_tasks_filtered(struct timechart *tchart)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
int count = 0;
|
|
|
|
p = tchart->all_data;
|
|
while (p) {
|
|
p->display = 0;
|
|
if (p->start_time == 1)
|
|
p->start_time = tchart->first_time;
|
|
|
|
/* no exit marker, task kept running to the end */
|
|
if (p->end_time == 0)
|
|
p->end_time = tchart->last_time;
|
|
|
|
c = p->all;
|
|
|
|
while (c) {
|
|
c->display = 0;
|
|
|
|
if (c->start_time == 1)
|
|
c->start_time = tchart->first_time;
|
|
|
|
if (passes_filter(p, c)) {
|
|
c->display = 1;
|
|
p->display = 1;
|
|
count++;
|
|
}
|
|
|
|
if (c->end_time == 0)
|
|
c->end_time = tchart->last_time;
|
|
|
|
c = c->next;
|
|
}
|
|
p = p->next;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int determine_display_tasks(struct timechart *tchart, u64 threshold)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
int count = 0;
|
|
|
|
p = tchart->all_data;
|
|
while (p) {
|
|
p->display = 0;
|
|
if (p->start_time == 1)
|
|
p->start_time = tchart->first_time;
|
|
|
|
/* no exit marker, task kept running to the end */
|
|
if (p->end_time == 0)
|
|
p->end_time = tchart->last_time;
|
|
if (p->total_time >= threshold)
|
|
p->display = 1;
|
|
|
|
c = p->all;
|
|
|
|
while (c) {
|
|
c->display = 0;
|
|
|
|
if (c->start_time == 1)
|
|
c->start_time = tchart->first_time;
|
|
|
|
if (c->total_time >= threshold) {
|
|
c->display = 1;
|
|
count++;
|
|
}
|
|
|
|
if (c->end_time == 0)
|
|
c->end_time = tchart->last_time;
|
|
|
|
c = c->next;
|
|
}
|
|
p = p->next;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
|
|
{
|
|
struct per_pid *p;
|
|
struct per_pidcomm *c;
|
|
int count = 0;
|
|
|
|
p = timechart->all_data;
|
|
while (p) {
|
|
/* no exit marker, task kept running to the end */
|
|
if (p->end_time == 0)
|
|
p->end_time = timechart->last_time;
|
|
|
|
c = p->all;
|
|
|
|
while (c) {
|
|
c->display = 0;
|
|
|
|
if (c->total_bytes >= threshold) {
|
|
c->display = 1;
|
|
count++;
|
|
}
|
|
|
|
if (c->end_time == 0)
|
|
c->end_time = timechart->last_time;
|
|
|
|
c = c->next;
|
|
}
|
|
p = p->next;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define BYTES_THRESH (1 * 1024 * 1024)
|
|
#define TIME_THRESH 10000000
|
|
|
|
static void write_svg_file(struct timechart *tchart, const char *filename)
|
|
{
|
|
u64 i;
|
|
int count;
|
|
int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
|
|
|
|
if (tchart->power_only)
|
|
tchart->proc_num = 0;
|
|
|
|
/* We'd like to show at least proc_num tasks;
|
|
* be less picky if we have fewer */
|
|
do {
|
|
if (process_filter)
|
|
count = determine_display_tasks_filtered(tchart);
|
|
else if (tchart->io_events)
|
|
count = determine_display_io_tasks(tchart, thresh);
|
|
else
|
|
count = determine_display_tasks(tchart, thresh);
|
|
thresh /= 10;
|
|
} while (!process_filter && thresh && count < tchart->proc_num);
|
|
|
|
if (!tchart->proc_num)
|
|
count = 0;
|
|
|
|
if (tchart->io_events) {
|
|
open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
|
|
|
|
svg_time_grid(0.5);
|
|
svg_io_legenda();
|
|
|
|
draw_io_bars(tchart);
|
|
} else {
|
|
open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
|
|
|
|
svg_time_grid(0);
|
|
|
|
svg_legenda();
|
|
|
|
for (i = 0; i < tchart->numcpus; i++)
|
|
svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
|
|
|
|
draw_cpu_usage(tchart);
|
|
if (tchart->proc_num)
|
|
draw_process_bars(tchart);
|
|
if (!tchart->tasks_only)
|
|
draw_c_p_states(tchart);
|
|
if (tchart->proc_num)
|
|
draw_wakeups(tchart);
|
|
}
|
|
|
|
svg_close();
|
|
}
|
|
|
|
static int process_header(struct perf_file_section *section __maybe_unused,
|
|
struct perf_header *ph,
|
|
int feat,
|
|
int fd __maybe_unused,
|
|
void *data)
|
|
{
|
|
struct timechart *tchart = data;
|
|
|
|
switch (feat) {
|
|
case HEADER_NRCPUS:
|
|
tchart->numcpus = ph->env.nr_cpus_avail;
|
|
break;
|
|
|
|
case HEADER_CPU_TOPOLOGY:
|
|
if (!tchart->topology)
|
|
break;
|
|
|
|
if (svg_build_topology_map(ph->env.sibling_cores,
|
|
ph->env.nr_sibling_cores,
|
|
ph->env.sibling_threads,
|
|
ph->env.nr_sibling_threads))
|
|
fprintf(stderr, "problem building topology\n");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __cmd_timechart(struct timechart *tchart, const char *output_name)
|
|
{
|
|
const struct perf_evsel_str_handler power_tracepoints[] = {
|
|
{ "power:cpu_idle", process_sample_cpu_idle },
|
|
{ "power:cpu_frequency", process_sample_cpu_frequency },
|
|
{ "sched:sched_wakeup", process_sample_sched_wakeup },
|
|
{ "sched:sched_switch", process_sample_sched_switch },
|
|
#ifdef SUPPORT_OLD_POWER_EVENTS
|
|
{ "power:power_start", process_sample_power_start },
|
|
{ "power:power_end", process_sample_power_end },
|
|
{ "power:power_frequency", process_sample_power_frequency },
|
|
#endif
|
|
|
|
{ "syscalls:sys_enter_read", process_enter_read },
|
|
{ "syscalls:sys_enter_pread64", process_enter_read },
|
|
{ "syscalls:sys_enter_readv", process_enter_read },
|
|
{ "syscalls:sys_enter_preadv", process_enter_read },
|
|
{ "syscalls:sys_enter_write", process_enter_write },
|
|
{ "syscalls:sys_enter_pwrite64", process_enter_write },
|
|
{ "syscalls:sys_enter_writev", process_enter_write },
|
|
{ "syscalls:sys_enter_pwritev", process_enter_write },
|
|
{ "syscalls:sys_enter_sync", process_enter_sync },
|
|
{ "syscalls:sys_enter_sync_file_range", process_enter_sync },
|
|
{ "syscalls:sys_enter_fsync", process_enter_sync },
|
|
{ "syscalls:sys_enter_msync", process_enter_sync },
|
|
{ "syscalls:sys_enter_recvfrom", process_enter_rx },
|
|
{ "syscalls:sys_enter_recvmmsg", process_enter_rx },
|
|
{ "syscalls:sys_enter_recvmsg", process_enter_rx },
|
|
{ "syscalls:sys_enter_sendto", process_enter_tx },
|
|
{ "syscalls:sys_enter_sendmsg", process_enter_tx },
|
|
{ "syscalls:sys_enter_sendmmsg", process_enter_tx },
|
|
{ "syscalls:sys_enter_epoll_pwait", process_enter_poll },
|
|
{ "syscalls:sys_enter_epoll_wait", process_enter_poll },
|
|
{ "syscalls:sys_enter_poll", process_enter_poll },
|
|
{ "syscalls:sys_enter_ppoll", process_enter_poll },
|
|
{ "syscalls:sys_enter_pselect6", process_enter_poll },
|
|
{ "syscalls:sys_enter_select", process_enter_poll },
|
|
|
|
{ "syscalls:sys_exit_read", process_exit_read },
|
|
{ "syscalls:sys_exit_pread64", process_exit_read },
|
|
{ "syscalls:sys_exit_readv", process_exit_read },
|
|
{ "syscalls:sys_exit_preadv", process_exit_read },
|
|
{ "syscalls:sys_exit_write", process_exit_write },
|
|
{ "syscalls:sys_exit_pwrite64", process_exit_write },
|
|
{ "syscalls:sys_exit_writev", process_exit_write },
|
|
{ "syscalls:sys_exit_pwritev", process_exit_write },
|
|
{ "syscalls:sys_exit_sync", process_exit_sync },
|
|
{ "syscalls:sys_exit_sync_file_range", process_exit_sync },
|
|
{ "syscalls:sys_exit_fsync", process_exit_sync },
|
|
{ "syscalls:sys_exit_msync", process_exit_sync },
|
|
{ "syscalls:sys_exit_recvfrom", process_exit_rx },
|
|
{ "syscalls:sys_exit_recvmmsg", process_exit_rx },
|
|
{ "syscalls:sys_exit_recvmsg", process_exit_rx },
|
|
{ "syscalls:sys_exit_sendto", process_exit_tx },
|
|
{ "syscalls:sys_exit_sendmsg", process_exit_tx },
|
|
{ "syscalls:sys_exit_sendmmsg", process_exit_tx },
|
|
{ "syscalls:sys_exit_epoll_pwait", process_exit_poll },
|
|
{ "syscalls:sys_exit_epoll_wait", process_exit_poll },
|
|
{ "syscalls:sys_exit_poll", process_exit_poll },
|
|
{ "syscalls:sys_exit_ppoll", process_exit_poll },
|
|
{ "syscalls:sys_exit_pselect6", process_exit_poll },
|
|
{ "syscalls:sys_exit_select", process_exit_poll },
|
|
};
|
|
struct perf_data data = {
|
|
.path = input_name,
|
|
.mode = PERF_DATA_MODE_READ,
|
|
.force = tchart->force,
|
|
};
|
|
|
|
struct perf_session *session = perf_session__new(&data, false,
|
|
&tchart->tool);
|
|
int ret = -EINVAL;
|
|
|
|
if (session == NULL)
|
|
return -1;
|
|
|
|
symbol__init(&session->header.env);
|
|
|
|
(void)perf_header__process_sections(&session->header,
|
|
perf_data__fd(session->data),
|
|
tchart,
|
|
process_header);
|
|
|
|
if (!perf_session__has_traces(session, "timechart record"))
|
|
goto out_delete;
|
|
|
|
if (perf_session__set_tracepoints_handlers(session,
|
|
power_tracepoints)) {
|
|
pr_err("Initializing session tracepoint handlers failed\n");
|
|
goto out_delete;
|
|
}
|
|
|
|
ret = perf_session__process_events(session);
|
|
if (ret)
|
|
goto out_delete;
|
|
|
|
end_sample_processing(tchart);
|
|
|
|
sort_pids(tchart);
|
|
|
|
write_svg_file(tchart, output_name);
|
|
|
|
pr_info("Written %2.1f seconds of trace to %s.\n",
|
|
(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
|
|
out_delete:
|
|
perf_session__delete(session);
|
|
return ret;
|
|
}
|
|
|
|
static int timechart__io_record(int argc, const char **argv)
|
|
{
|
|
unsigned int rec_argc, i;
|
|
const char **rec_argv;
|
|
const char **p;
|
|
char *filter = NULL;
|
|
|
|
const char * const common_args[] = {
|
|
"record", "-a", "-R", "-c", "1",
|
|
};
|
|
unsigned int common_args_nr = ARRAY_SIZE(common_args);
|
|
|
|
const char * const disk_events[] = {
|
|
"syscalls:sys_enter_read",
|
|
"syscalls:sys_enter_pread64",
|
|
"syscalls:sys_enter_readv",
|
|
"syscalls:sys_enter_preadv",
|
|
"syscalls:sys_enter_write",
|
|
"syscalls:sys_enter_pwrite64",
|
|
"syscalls:sys_enter_writev",
|
|
"syscalls:sys_enter_pwritev",
|
|
"syscalls:sys_enter_sync",
|
|
"syscalls:sys_enter_sync_file_range",
|
|
"syscalls:sys_enter_fsync",
|
|
"syscalls:sys_enter_msync",
|
|
|
|
"syscalls:sys_exit_read",
|
|
"syscalls:sys_exit_pread64",
|
|
"syscalls:sys_exit_readv",
|
|
"syscalls:sys_exit_preadv",
|
|
"syscalls:sys_exit_write",
|
|
"syscalls:sys_exit_pwrite64",
|
|
"syscalls:sys_exit_writev",
|
|
"syscalls:sys_exit_pwritev",
|
|
"syscalls:sys_exit_sync",
|
|
"syscalls:sys_exit_sync_file_range",
|
|
"syscalls:sys_exit_fsync",
|
|
"syscalls:sys_exit_msync",
|
|
};
|
|
unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
|
|
|
|
const char * const net_events[] = {
|
|
"syscalls:sys_enter_recvfrom",
|
|
"syscalls:sys_enter_recvmmsg",
|
|
"syscalls:sys_enter_recvmsg",
|
|
"syscalls:sys_enter_sendto",
|
|
"syscalls:sys_enter_sendmsg",
|
|
"syscalls:sys_enter_sendmmsg",
|
|
|
|
"syscalls:sys_exit_recvfrom",
|
|
"syscalls:sys_exit_recvmmsg",
|
|
"syscalls:sys_exit_recvmsg",
|
|
"syscalls:sys_exit_sendto",
|
|
"syscalls:sys_exit_sendmsg",
|
|
"syscalls:sys_exit_sendmmsg",
|
|
};
|
|
unsigned int net_events_nr = ARRAY_SIZE(net_events);
|
|
|
|
const char * const poll_events[] = {
|
|
"syscalls:sys_enter_epoll_pwait",
|
|
"syscalls:sys_enter_epoll_wait",
|
|
"syscalls:sys_enter_poll",
|
|
"syscalls:sys_enter_ppoll",
|
|
"syscalls:sys_enter_pselect6",
|
|
"syscalls:sys_enter_select",
|
|
|
|
"syscalls:sys_exit_epoll_pwait",
|
|
"syscalls:sys_exit_epoll_wait",
|
|
"syscalls:sys_exit_poll",
|
|
"syscalls:sys_exit_ppoll",
|
|
"syscalls:sys_exit_pselect6",
|
|
"syscalls:sys_exit_select",
|
|
};
|
|
unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
|
|
|
|
rec_argc = common_args_nr +
|
|
disk_events_nr * 4 +
|
|
net_events_nr * 4 +
|
|
poll_events_nr * 4 +
|
|
argc;
|
|
rec_argv = calloc(rec_argc + 1, sizeof(char *));
|
|
|
|
if (rec_argv == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
|
|
free(rec_argv);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
p = rec_argv;
|
|
for (i = 0; i < common_args_nr; i++)
|
|
*p++ = strdup(common_args[i]);
|
|
|
|
for (i = 0; i < disk_events_nr; i++) {
|
|
if (!is_valid_tracepoint(disk_events[i])) {
|
|
rec_argc -= 4;
|
|
continue;
|
|
}
|
|
|
|
*p++ = "-e";
|
|
*p++ = strdup(disk_events[i]);
|
|
*p++ = "--filter";
|
|
*p++ = filter;
|
|
}
|
|
for (i = 0; i < net_events_nr; i++) {
|
|
if (!is_valid_tracepoint(net_events[i])) {
|
|
rec_argc -= 4;
|
|
continue;
|
|
}
|
|
|
|
*p++ = "-e";
|
|
*p++ = strdup(net_events[i]);
|
|
*p++ = "--filter";
|
|
*p++ = filter;
|
|
}
|
|
for (i = 0; i < poll_events_nr; i++) {
|
|
if (!is_valid_tracepoint(poll_events[i])) {
|
|
rec_argc -= 4;
|
|
continue;
|
|
}
|
|
|
|
*p++ = "-e";
|
|
*p++ = strdup(poll_events[i]);
|
|
*p++ = "--filter";
|
|
*p++ = filter;
|
|
}
|
|
|
|
for (i = 0; i < (unsigned int)argc; i++)
|
|
*p++ = argv[i];
|
|
|
|
return cmd_record(rec_argc, rec_argv);
|
|
}
|
|
|
|
|
|
static int timechart__record(struct timechart *tchart, int argc, const char **argv)
|
|
{
|
|
unsigned int rec_argc, i, j;
|
|
const char **rec_argv;
|
|
const char **p;
|
|
unsigned int record_elems;
|
|
|
|
const char * const common_args[] = {
|
|
"record", "-a", "-R", "-c", "1",
|
|
};
|
|
unsigned int common_args_nr = ARRAY_SIZE(common_args);
|
|
|
|
const char * const backtrace_args[] = {
|
|
"-g",
|
|
};
|
|
unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
|
|
|
|
const char * const power_args[] = {
|
|
"-e", "power:cpu_frequency",
|
|
"-e", "power:cpu_idle",
|
|
};
|
|
unsigned int power_args_nr = ARRAY_SIZE(power_args);
|
|
|
|
const char * const old_power_args[] = {
|
|
#ifdef SUPPORT_OLD_POWER_EVENTS
|
|
"-e", "power:power_start",
|
|
"-e", "power:power_end",
|
|
"-e", "power:power_frequency",
|
|
#endif
|
|
};
|
|
unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
|
|
|
|
const char * const tasks_args[] = {
|
|
"-e", "sched:sched_wakeup",
|
|
"-e", "sched:sched_switch",
|
|
};
|
|
unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
|
|
|
|
#ifdef SUPPORT_OLD_POWER_EVENTS
|
|
if (!is_valid_tracepoint("power:cpu_idle") &&
|
|
is_valid_tracepoint("power:power_start")) {
|
|
use_old_power_events = 1;
|
|
power_args_nr = 0;
|
|
} else {
|
|
old_power_args_nr = 0;
|
|
}
|
|
#endif
|
|
|
|
if (tchart->power_only)
|
|
tasks_args_nr = 0;
|
|
|
|
if (tchart->tasks_only) {
|
|
power_args_nr = 0;
|
|
old_power_args_nr = 0;
|
|
}
|
|
|
|
if (!tchart->with_backtrace)
|
|
backtrace_args_no = 0;
|
|
|
|
record_elems = common_args_nr + tasks_args_nr +
|
|
power_args_nr + old_power_args_nr + backtrace_args_no;
|
|
|
|
rec_argc = record_elems + argc;
|
|
rec_argv = calloc(rec_argc + 1, sizeof(char *));
|
|
|
|
if (rec_argv == NULL)
|
|
return -ENOMEM;
|
|
|
|
p = rec_argv;
|
|
for (i = 0; i < common_args_nr; i++)
|
|
*p++ = strdup(common_args[i]);
|
|
|
|
for (i = 0; i < backtrace_args_no; i++)
|
|
*p++ = strdup(backtrace_args[i]);
|
|
|
|
for (i = 0; i < tasks_args_nr; i++)
|
|
*p++ = strdup(tasks_args[i]);
|
|
|
|
for (i = 0; i < power_args_nr; i++)
|
|
*p++ = strdup(power_args[i]);
|
|
|
|
for (i = 0; i < old_power_args_nr; i++)
|
|
*p++ = strdup(old_power_args[i]);
|
|
|
|
for (j = 0; j < (unsigned int)argc; j++)
|
|
*p++ = argv[j];
|
|
|
|
return cmd_record(rec_argc, rec_argv);
|
|
}
|
|
|
|
static int
|
|
parse_process(const struct option *opt __maybe_unused, const char *arg,
|
|
int __maybe_unused unset)
|
|
{
|
|
if (arg)
|
|
add_process_filter(arg);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_highlight(const struct option *opt __maybe_unused, const char *arg,
|
|
int __maybe_unused unset)
|
|
{
|
|
unsigned long duration = strtoul(arg, NULL, 0);
|
|
|
|
if (svg_highlight || svg_highlight_name)
|
|
return -1;
|
|
|
|
if (duration)
|
|
svg_highlight = duration;
|
|
else
|
|
svg_highlight_name = strdup(arg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
|
|
{
|
|
char unit = 'n';
|
|
u64 *value = opt->value;
|
|
|
|
if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
|
|
switch (unit) {
|
|
case 'm':
|
|
*value *= NSEC_PER_MSEC;
|
|
break;
|
|
case 'u':
|
|
*value *= NSEC_PER_USEC;
|
|
break;
|
|
case 'n':
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cmd_timechart(int argc, const char **argv)
|
|
{
|
|
struct timechart tchart = {
|
|
.tool = {
|
|
.comm = process_comm_event,
|
|
.fork = process_fork_event,
|
|
.exit = process_exit_event,
|
|
.sample = process_sample_event,
|
|
.ordered_events = true,
|
|
},
|
|
.proc_num = 15,
|
|
.min_time = NSEC_PER_MSEC,
|
|
.merge_dist = 1000,
|
|
};
|
|
const char *output_name = "output.svg";
|
|
const struct option timechart_common_options[] = {
|
|
OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
|
|
OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
|
|
OPT_END()
|
|
};
|
|
const struct option timechart_options[] = {
|
|
OPT_STRING('i', "input", &input_name, "file", "input file name"),
|
|
OPT_STRING('o', "output", &output_name, "file", "output file name"),
|
|
OPT_INTEGER('w', "width", &svg_page_width, "page width"),
|
|
OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
|
|
"highlight tasks. Pass duration in ns or process name.",
|
|
parse_highlight),
|
|
OPT_CALLBACK('p', "process", NULL, "process",
|
|
"process selector. Pass a pid or process name.",
|
|
parse_process),
|
|
OPT_CALLBACK(0, "symfs", NULL, "directory",
|
|
"Look for files with symbols relative to this directory",
|
|
symbol__config_symfs),
|
|
OPT_INTEGER('n', "proc-num", &tchart.proc_num,
|
|
"min. number of tasks to print"),
|
|
OPT_BOOLEAN('t', "topology", &tchart.topology,
|
|
"sort CPUs according to topology"),
|
|
OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
|
|
"skip EAGAIN errors"),
|
|
OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
|
|
"all IO faster than min-time will visually appear longer",
|
|
parse_time),
|
|
OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
|
|
"merge events that are merge-dist us apart",
|
|
parse_time),
|
|
OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
|
|
OPT_PARENT(timechart_common_options),
|
|
};
|
|
const char * const timechart_subcommands[] = { "record", NULL };
|
|
const char *timechart_usage[] = {
|
|
"perf timechart [<options>] {record}",
|
|
NULL
|
|
};
|
|
const struct option timechart_record_options[] = {
|
|
OPT_BOOLEAN('I', "io-only", &tchart.io_only,
|
|
"record only IO data"),
|
|
OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
|
|
OPT_PARENT(timechart_common_options),
|
|
};
|
|
const char * const timechart_record_usage[] = {
|
|
"perf timechart record [<options>]",
|
|
NULL
|
|
};
|
|
argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
|
|
timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
|
|
|
|
if (tchart.power_only && tchart.tasks_only) {
|
|
pr_err("-P and -T options cannot be used at the same time.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (argc && !strncmp(argv[0], "rec", 3)) {
|
|
argc = parse_options(argc, argv, timechart_record_options,
|
|
timechart_record_usage,
|
|
PARSE_OPT_STOP_AT_NON_OPTION);
|
|
|
|
if (tchart.power_only && tchart.tasks_only) {
|
|
pr_err("-P and -T options cannot be used at the same time.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (tchart.io_only)
|
|
return timechart__io_record(argc, argv);
|
|
else
|
|
return timechart__record(&tchart, argc, argv);
|
|
} else if (argc)
|
|
usage_with_options(timechart_usage, timechart_options);
|
|
|
|
setup_pager();
|
|
|
|
return __cmd_timechart(&tchart, output_name);
|
|
}
|