mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 11:11:13 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
728 lines
16 KiB
C
728 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/of.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_platform.h>
|
|
#include <asm/spitfire.h>
|
|
|
|
#include "of_device_common.h"
|
|
|
|
void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
|
|
{
|
|
unsigned long ret = res->start + offset;
|
|
struct resource *r;
|
|
|
|
if (res->flags & IORESOURCE_MEM)
|
|
r = request_mem_region(ret, size, name);
|
|
else
|
|
r = request_region(ret, size, name);
|
|
if (!r)
|
|
ret = 0;
|
|
|
|
return (void __iomem *) ret;
|
|
}
|
|
EXPORT_SYMBOL(of_ioremap);
|
|
|
|
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
|
|
{
|
|
if (res->flags & IORESOURCE_MEM)
|
|
release_mem_region((unsigned long) base, size);
|
|
else
|
|
release_region((unsigned long) base, size);
|
|
}
|
|
EXPORT_SYMBOL(of_iounmap);
|
|
|
|
/*
|
|
* PCI bus specific translator
|
|
*/
|
|
|
|
static int of_bus_pci_match(struct device_node *np)
|
|
{
|
|
if (!strcmp(np->name, "pci")) {
|
|
const char *model = of_get_property(np, "model", NULL);
|
|
|
|
if (model && !strcmp(model, "SUNW,simba"))
|
|
return 0;
|
|
|
|
/* Do not do PCI specific frobbing if the
|
|
* PCI bridge lacks a ranges property. We
|
|
* want to pass it through up to the next
|
|
* parent as-is, not with the PCI translate
|
|
* method which chops off the top address cell.
|
|
*/
|
|
if (!of_find_property(np, "ranges", NULL))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int of_bus_simba_match(struct device_node *np)
|
|
{
|
|
const char *model = of_get_property(np, "model", NULL);
|
|
|
|
if (model && !strcmp(model, "SUNW,simba"))
|
|
return 1;
|
|
|
|
/* Treat PCI busses lacking ranges property just like
|
|
* simba.
|
|
*/
|
|
if (!strcmp(np->name, "pci")) {
|
|
if (!of_find_property(np, "ranges", NULL))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int of_bus_simba_map(u32 *addr, const u32 *range,
|
|
int na, int ns, int pna)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void of_bus_pci_count_cells(struct device_node *np,
|
|
int *addrc, int *sizec)
|
|
{
|
|
if (addrc)
|
|
*addrc = 3;
|
|
if (sizec)
|
|
*sizec = 2;
|
|
}
|
|
|
|
static int of_bus_pci_map(u32 *addr, const u32 *range,
|
|
int na, int ns, int pna)
|
|
{
|
|
u32 result[OF_MAX_ADDR_CELLS];
|
|
int i;
|
|
|
|
/* Check address type match */
|
|
if (!((addr[0] ^ range[0]) & 0x03000000))
|
|
goto type_match;
|
|
|
|
/* Special exception, we can map a 64-bit address into
|
|
* a 32-bit range.
|
|
*/
|
|
if ((addr[0] & 0x03000000) == 0x03000000 &&
|
|
(range[0] & 0x03000000) == 0x02000000)
|
|
goto type_match;
|
|
|
|
return -EINVAL;
|
|
|
|
type_match:
|
|
if (of_out_of_range(addr + 1, range + 1, range + na + pna,
|
|
na - 1, ns))
|
|
return -EINVAL;
|
|
|
|
/* Start with the parent range base. */
|
|
memcpy(result, range + na, pna * 4);
|
|
|
|
/* Add in the child address offset, skipping high cell. */
|
|
for (i = 0; i < na - 1; i++)
|
|
result[pna - 1 - i] +=
|
|
(addr[na - 1 - i] -
|
|
range[na - 1 - i]);
|
|
|
|
memcpy(addr, result, pna * 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
|
|
{
|
|
u32 w = addr[0];
|
|
|
|
/* For PCI, we override whatever child busses may have used. */
|
|
flags = 0;
|
|
switch((w >> 24) & 0x03) {
|
|
case 0x01:
|
|
flags |= IORESOURCE_IO;
|
|
break;
|
|
|
|
case 0x02: /* 32 bits */
|
|
case 0x03: /* 64 bits */
|
|
flags |= IORESOURCE_MEM;
|
|
break;
|
|
}
|
|
if (w & 0x40000000)
|
|
flags |= IORESOURCE_PREFETCH;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* FHC/Central bus specific translator.
|
|
*
|
|
* This is just needed to hard-code the address and size cell
|
|
* counts. 'fhc' and 'central' nodes lack the #address-cells and
|
|
* #size-cells properties, and if you walk to the root on such
|
|
* Enterprise boxes all you'll get is a #size-cells of 2 which is
|
|
* not what we want to use.
|
|
*/
|
|
static int of_bus_fhc_match(struct device_node *np)
|
|
{
|
|
return !strcmp(np->name, "fhc") ||
|
|
!strcmp(np->name, "central");
|
|
}
|
|
|
|
#define of_bus_fhc_count_cells of_bus_sbus_count_cells
|
|
|
|
/*
|
|
* Array of bus specific translators
|
|
*/
|
|
|
|
static struct of_bus of_busses[] = {
|
|
/* PCI */
|
|
{
|
|
.name = "pci",
|
|
.addr_prop_name = "assigned-addresses",
|
|
.match = of_bus_pci_match,
|
|
.count_cells = of_bus_pci_count_cells,
|
|
.map = of_bus_pci_map,
|
|
.get_flags = of_bus_pci_get_flags,
|
|
},
|
|
/* SIMBA */
|
|
{
|
|
.name = "simba",
|
|
.addr_prop_name = "assigned-addresses",
|
|
.match = of_bus_simba_match,
|
|
.count_cells = of_bus_pci_count_cells,
|
|
.map = of_bus_simba_map,
|
|
.get_flags = of_bus_pci_get_flags,
|
|
},
|
|
/* SBUS */
|
|
{
|
|
.name = "sbus",
|
|
.addr_prop_name = "reg",
|
|
.match = of_bus_sbus_match,
|
|
.count_cells = of_bus_sbus_count_cells,
|
|
.map = of_bus_default_map,
|
|
.get_flags = of_bus_default_get_flags,
|
|
},
|
|
/* FHC */
|
|
{
|
|
.name = "fhc",
|
|
.addr_prop_name = "reg",
|
|
.match = of_bus_fhc_match,
|
|
.count_cells = of_bus_fhc_count_cells,
|
|
.map = of_bus_default_map,
|
|
.get_flags = of_bus_default_get_flags,
|
|
},
|
|
/* Default */
|
|
{
|
|
.name = "default",
|
|
.addr_prop_name = "reg",
|
|
.match = NULL,
|
|
.count_cells = of_bus_default_count_cells,
|
|
.map = of_bus_default_map,
|
|
.get_flags = of_bus_default_get_flags,
|
|
},
|
|
};
|
|
|
|
static struct of_bus *of_match_bus(struct device_node *np)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
|
|
if (!of_busses[i].match || of_busses[i].match(np))
|
|
return &of_busses[i];
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static int __init build_one_resource(struct device_node *parent,
|
|
struct of_bus *bus,
|
|
struct of_bus *pbus,
|
|
u32 *addr,
|
|
int na, int ns, int pna)
|
|
{
|
|
const u32 *ranges;
|
|
int rone, rlen;
|
|
|
|
ranges = of_get_property(parent, "ranges", &rlen);
|
|
if (ranges == NULL || rlen == 0) {
|
|
u32 result[OF_MAX_ADDR_CELLS];
|
|
int i;
|
|
|
|
memset(result, 0, pna * 4);
|
|
for (i = 0; i < na; i++)
|
|
result[pna - 1 - i] =
|
|
addr[na - 1 - i];
|
|
|
|
memcpy(addr, result, pna * 4);
|
|
return 0;
|
|
}
|
|
|
|
/* Now walk through the ranges */
|
|
rlen /= 4;
|
|
rone = na + pna + ns;
|
|
for (; rlen >= rone; rlen -= rone, ranges += rone) {
|
|
if (!bus->map(addr, ranges, na, ns, pna))
|
|
return 0;
|
|
}
|
|
|
|
/* When we miss an I/O space match on PCI, just pass it up
|
|
* to the next PCI bridge and/or controller.
|
|
*/
|
|
if (!strcmp(bus->name, "pci") &&
|
|
(addr[0] & 0x03000000) == 0x01000000)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init use_1to1_mapping(struct device_node *pp)
|
|
{
|
|
/* If we have a ranges property in the parent, use it. */
|
|
if (of_find_property(pp, "ranges", NULL) != NULL)
|
|
return 0;
|
|
|
|
/* If the parent is the dma node of an ISA bus, pass
|
|
* the translation up to the root.
|
|
*
|
|
* Some SBUS devices use intermediate nodes to express
|
|
* hierarchy within the device itself. These aren't
|
|
* real bus nodes, and don't have a 'ranges' property.
|
|
* But, we should still pass the translation work up
|
|
* to the SBUS itself.
|
|
*/
|
|
if (!strcmp(pp->name, "dma") ||
|
|
!strcmp(pp->name, "espdma") ||
|
|
!strcmp(pp->name, "ledma") ||
|
|
!strcmp(pp->name, "lebuffer"))
|
|
return 0;
|
|
|
|
/* Similarly for all PCI bridges, if we get this far
|
|
* it lacks a ranges property, and this will include
|
|
* cases like Simba.
|
|
*/
|
|
if (!strcmp(pp->name, "pci"))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int of_resource_verbose;
|
|
|
|
static void __init build_device_resources(struct platform_device *op,
|
|
struct device *parent)
|
|
{
|
|
struct platform_device *p_op;
|
|
struct of_bus *bus;
|
|
int na, ns;
|
|
int index, num_reg;
|
|
const void *preg;
|
|
|
|
if (!parent)
|
|
return;
|
|
|
|
p_op = to_platform_device(parent);
|
|
bus = of_match_bus(p_op->dev.of_node);
|
|
bus->count_cells(op->dev.of_node, &na, &ns);
|
|
|
|
preg = of_get_property(op->dev.of_node, bus->addr_prop_name, &num_reg);
|
|
if (!preg || num_reg == 0)
|
|
return;
|
|
|
|
/* Convert to num-cells. */
|
|
num_reg /= 4;
|
|
|
|
/* Convert to num-entries. */
|
|
num_reg /= na + ns;
|
|
|
|
/* Prevent overrunning the op->resources[] array. */
|
|
if (num_reg > PROMREG_MAX) {
|
|
printk(KERN_WARNING "%s: Too many regs (%d), "
|
|
"limiting to %d.\n",
|
|
op->dev.of_node->full_name, num_reg, PROMREG_MAX);
|
|
num_reg = PROMREG_MAX;
|
|
}
|
|
|
|
op->resource = op->archdata.resource;
|
|
op->num_resources = num_reg;
|
|
for (index = 0; index < num_reg; index++) {
|
|
struct resource *r = &op->resource[index];
|
|
u32 addr[OF_MAX_ADDR_CELLS];
|
|
const u32 *reg = (preg + (index * ((na + ns) * 4)));
|
|
struct device_node *dp = op->dev.of_node;
|
|
struct device_node *pp = p_op->dev.of_node;
|
|
struct of_bus *pbus, *dbus;
|
|
u64 size, result = OF_BAD_ADDR;
|
|
unsigned long flags;
|
|
int dna, dns;
|
|
int pna, pns;
|
|
|
|
size = of_read_addr(reg + na, ns);
|
|
memcpy(addr, reg, na * 4);
|
|
|
|
flags = bus->get_flags(addr, 0);
|
|
|
|
if (use_1to1_mapping(pp)) {
|
|
result = of_read_addr(addr, na);
|
|
goto build_res;
|
|
}
|
|
|
|
dna = na;
|
|
dns = ns;
|
|
dbus = bus;
|
|
|
|
while (1) {
|
|
dp = pp;
|
|
pp = dp->parent;
|
|
if (!pp) {
|
|
result = of_read_addr(addr, dna);
|
|
break;
|
|
}
|
|
|
|
pbus = of_match_bus(pp);
|
|
pbus->count_cells(dp, &pna, &pns);
|
|
|
|
if (build_one_resource(dp, dbus, pbus, addr,
|
|
dna, dns, pna))
|
|
break;
|
|
|
|
flags = pbus->get_flags(addr, flags);
|
|
|
|
dna = pna;
|
|
dns = pns;
|
|
dbus = pbus;
|
|
}
|
|
|
|
build_res:
|
|
memset(r, 0, sizeof(*r));
|
|
|
|
if (of_resource_verbose)
|
|
printk("%s reg[%d] -> %llx\n",
|
|
op->dev.of_node->full_name, index,
|
|
result);
|
|
|
|
if (result != OF_BAD_ADDR) {
|
|
if (tlb_type == hypervisor)
|
|
result &= 0x0fffffffffffffffUL;
|
|
|
|
r->start = result;
|
|
r->end = result + size - 1;
|
|
r->flags = flags;
|
|
}
|
|
r->name = op->dev.of_node->name;
|
|
}
|
|
}
|
|
|
|
static struct device_node * __init
|
|
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
|
|
const u32 *imap, int imlen, const u32 *imask,
|
|
unsigned int *irq_p)
|
|
{
|
|
struct device_node *cp;
|
|
unsigned int irq = *irq_p;
|
|
struct of_bus *bus;
|
|
phandle handle;
|
|
const u32 *reg;
|
|
int na, num_reg, i;
|
|
|
|
bus = of_match_bus(pp);
|
|
bus->count_cells(dp, &na, NULL);
|
|
|
|
reg = of_get_property(dp, "reg", &num_reg);
|
|
if (!reg || !num_reg)
|
|
return NULL;
|
|
|
|
imlen /= ((na + 3) * 4);
|
|
handle = 0;
|
|
for (i = 0; i < imlen; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < na; j++) {
|
|
if ((reg[j] & imask[j]) != imap[j])
|
|
goto next;
|
|
}
|
|
if (imap[na] == irq) {
|
|
handle = imap[na + 1];
|
|
irq = imap[na + 2];
|
|
break;
|
|
}
|
|
|
|
next:
|
|
imap += (na + 3);
|
|
}
|
|
if (i == imlen) {
|
|
/* Psycho and Sabre PCI controllers can have 'interrupt-map'
|
|
* properties that do not include the on-board device
|
|
* interrupts. Instead, the device's 'interrupts' property
|
|
* is already a fully specified INO value.
|
|
*
|
|
* Handle this by deciding that, if we didn't get a
|
|
* match in the parent's 'interrupt-map', and the
|
|
* parent is an IRQ translator, then use the parent as
|
|
* our IRQ controller.
|
|
*/
|
|
if (pp->irq_trans)
|
|
return pp;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
*irq_p = irq;
|
|
cp = of_find_node_by_phandle(handle);
|
|
|
|
return cp;
|
|
}
|
|
|
|
static unsigned int __init pci_irq_swizzle(struct device_node *dp,
|
|
struct device_node *pp,
|
|
unsigned int irq)
|
|
{
|
|
const struct linux_prom_pci_registers *regs;
|
|
unsigned int bus, devfn, slot, ret;
|
|
|
|
if (irq < 1 || irq > 4)
|
|
return irq;
|
|
|
|
regs = of_get_property(dp, "reg", NULL);
|
|
if (!regs)
|
|
return irq;
|
|
|
|
bus = (regs->phys_hi >> 16) & 0xff;
|
|
devfn = (regs->phys_hi >> 8) & 0xff;
|
|
slot = (devfn >> 3) & 0x1f;
|
|
|
|
if (pp->irq_trans) {
|
|
/* Derived from Table 8-3, U2P User's Manual. This branch
|
|
* is handling a PCI controller that lacks a proper set of
|
|
* interrupt-map and interrupt-map-mask properties. The
|
|
* Ultra-E450 is one example.
|
|
*
|
|
* The bit layout is BSSLL, where:
|
|
* B: 0 on bus A, 1 on bus B
|
|
* D: 2-bit slot number, derived from PCI device number as
|
|
* (dev - 1) for bus A, or (dev - 2) for bus B
|
|
* L: 2-bit line number
|
|
*/
|
|
if (bus & 0x80) {
|
|
/* PBM-A */
|
|
bus = 0x00;
|
|
slot = (slot - 1) << 2;
|
|
} else {
|
|
/* PBM-B */
|
|
bus = 0x10;
|
|
slot = (slot - 2) << 2;
|
|
}
|
|
irq -= 1;
|
|
|
|
ret = (bus | slot | irq);
|
|
} else {
|
|
/* Going through a PCI-PCI bridge that lacks a set of
|
|
* interrupt-map and interrupt-map-mask properties.
|
|
*/
|
|
ret = ((irq - 1 + (slot & 3)) & 3) + 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int of_irq_verbose;
|
|
|
|
static unsigned int __init build_one_device_irq(struct platform_device *op,
|
|
struct device *parent,
|
|
unsigned int irq)
|
|
{
|
|
struct device_node *dp = op->dev.of_node;
|
|
struct device_node *pp, *ip;
|
|
unsigned int orig_irq = irq;
|
|
int nid;
|
|
|
|
if (irq == 0xffffffff)
|
|
return irq;
|
|
|
|
if (dp->irq_trans) {
|
|
irq = dp->irq_trans->irq_build(dp, irq,
|
|
dp->irq_trans->data);
|
|
|
|
if (of_irq_verbose)
|
|
printk("%s: direct translate %x --> %x\n",
|
|
dp->full_name, orig_irq, irq);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* Something more complicated. Walk up to the root, applying
|
|
* interrupt-map or bus specific translations, until we hit
|
|
* an IRQ translator.
|
|
*
|
|
* If we hit a bus type or situation we cannot handle, we
|
|
* stop and assume that the original IRQ number was in a
|
|
* format which has special meaning to it's immediate parent.
|
|
*/
|
|
pp = dp->parent;
|
|
ip = NULL;
|
|
while (pp) {
|
|
const void *imap, *imsk;
|
|
int imlen;
|
|
|
|
imap = of_get_property(pp, "interrupt-map", &imlen);
|
|
imsk = of_get_property(pp, "interrupt-map-mask", NULL);
|
|
if (imap && imsk) {
|
|
struct device_node *iret;
|
|
int this_orig_irq = irq;
|
|
|
|
iret = apply_interrupt_map(dp, pp,
|
|
imap, imlen, imsk,
|
|
&irq);
|
|
|
|
if (of_irq_verbose)
|
|
printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
|
|
op->dev.of_node->full_name,
|
|
pp->full_name, this_orig_irq,
|
|
of_node_full_name(iret), irq);
|
|
|
|
if (!iret)
|
|
break;
|
|
|
|
if (iret->irq_trans) {
|
|
ip = iret;
|
|
break;
|
|
}
|
|
} else {
|
|
if (!strcmp(pp->name, "pci")) {
|
|
unsigned int this_orig_irq = irq;
|
|
|
|
irq = pci_irq_swizzle(dp, pp, irq);
|
|
if (of_irq_verbose)
|
|
printk("%s: PCI swizzle [%s] "
|
|
"%x --> %x\n",
|
|
op->dev.of_node->full_name,
|
|
pp->full_name, this_orig_irq,
|
|
irq);
|
|
|
|
}
|
|
|
|
if (pp->irq_trans) {
|
|
ip = pp;
|
|
break;
|
|
}
|
|
}
|
|
dp = pp;
|
|
pp = pp->parent;
|
|
}
|
|
if (!ip)
|
|
return orig_irq;
|
|
|
|
irq = ip->irq_trans->irq_build(op->dev.of_node, irq,
|
|
ip->irq_trans->data);
|
|
if (of_irq_verbose)
|
|
printk("%s: Apply IRQ trans [%s] %x --> %x\n",
|
|
op->dev.of_node->full_name, ip->full_name, orig_irq, irq);
|
|
|
|
out:
|
|
nid = of_node_to_nid(dp);
|
|
if (nid != -1) {
|
|
cpumask_t numa_mask;
|
|
|
|
cpumask_copy(&numa_mask, cpumask_of_node(nid));
|
|
irq_set_affinity(irq, &numa_mask);
|
|
}
|
|
|
|
return irq;
|
|
}
|
|
|
|
static struct platform_device * __init scan_one_device(struct device_node *dp,
|
|
struct device *parent)
|
|
{
|
|
struct platform_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
|
|
const unsigned int *irq;
|
|
struct dev_archdata *sd;
|
|
int len, i;
|
|
|
|
if (!op)
|
|
return NULL;
|
|
|
|
sd = &op->dev.archdata;
|
|
sd->op = op;
|
|
|
|
op->dev.of_node = dp;
|
|
|
|
irq = of_get_property(dp, "interrupts", &len);
|
|
if (irq) {
|
|
op->archdata.num_irqs = len / 4;
|
|
|
|
/* Prevent overrunning the op->irqs[] array. */
|
|
if (op->archdata.num_irqs > PROMINTR_MAX) {
|
|
printk(KERN_WARNING "%s: Too many irqs (%d), "
|
|
"limiting to %d.\n",
|
|
dp->full_name, op->archdata.num_irqs, PROMINTR_MAX);
|
|
op->archdata.num_irqs = PROMINTR_MAX;
|
|
}
|
|
memcpy(op->archdata.irqs, irq, op->archdata.num_irqs * 4);
|
|
} else {
|
|
op->archdata.num_irqs = 0;
|
|
}
|
|
|
|
build_device_resources(op, parent);
|
|
for (i = 0; i < op->archdata.num_irqs; i++)
|
|
op->archdata.irqs[i] = build_one_device_irq(op, parent, op->archdata.irqs[i]);
|
|
|
|
op->dev.parent = parent;
|
|
op->dev.bus = &platform_bus_type;
|
|
if (!parent)
|
|
dev_set_name(&op->dev, "root");
|
|
else
|
|
dev_set_name(&op->dev, "%08x", dp->phandle);
|
|
|
|
if (of_device_register(op)) {
|
|
printk("%s: Could not register of device.\n",
|
|
dp->full_name);
|
|
kfree(op);
|
|
op = NULL;
|
|
}
|
|
|
|
return op;
|
|
}
|
|
|
|
static void __init scan_tree(struct device_node *dp, struct device *parent)
|
|
{
|
|
while (dp) {
|
|
struct platform_device *op = scan_one_device(dp, parent);
|
|
|
|
if (op)
|
|
scan_tree(dp->child, &op->dev);
|
|
|
|
dp = dp->sibling;
|
|
}
|
|
}
|
|
|
|
static int __init scan_of_devices(void)
|
|
{
|
|
struct device_node *root = of_find_node_by_path("/");
|
|
struct platform_device *parent;
|
|
|
|
parent = scan_one_device(root, NULL);
|
|
if (!parent)
|
|
return 0;
|
|
|
|
scan_tree(root->child, &parent->dev);
|
|
return 0;
|
|
}
|
|
postcore_initcall(scan_of_devices);
|
|
|
|
static int __init of_debug(char *str)
|
|
{
|
|
int val = 0;
|
|
|
|
get_option(&str, &val);
|
|
if (val & 1)
|
|
of_resource_verbose = 1;
|
|
if (val & 2)
|
|
of_irq_verbose = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("of_debug=", of_debug);
|