mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 04:07:47 +07:00
3479c9dcef
The site-specific OOM messages are unnecessary, because they duplicate the MM subsystem generic OOM message. Signed-off-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Roland Stigge <stigge@antcom.de> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
897 lines
24 KiB
C
897 lines
24 KiB
C
/*
|
|
* Driver for NAND MLC Controller in LPC32xx
|
|
*
|
|
* Author: Roland Stigge <stigge@antcom.de>
|
|
*
|
|
* Copyright © 2011 WORK Microwave GmbH
|
|
* Copyright © 2011, 2012 Roland Stigge
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*
|
|
* NAND Flash Controller Operation:
|
|
* - Read: Auto Decode
|
|
* - Write: Auto Encode
|
|
* - Tested Page Sizes: 2048, 4096
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_mtd.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/mtd/lpc32xx_mlc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
|
|
#define DRV_NAME "lpc32xx_mlc"
|
|
|
|
/**********************************************************************
|
|
* MLC NAND controller register offsets
|
|
**********************************************************************/
|
|
|
|
#define MLC_BUFF(x) (x + 0x00000)
|
|
#define MLC_DATA(x) (x + 0x08000)
|
|
#define MLC_CMD(x) (x + 0x10000)
|
|
#define MLC_ADDR(x) (x + 0x10004)
|
|
#define MLC_ECC_ENC_REG(x) (x + 0x10008)
|
|
#define MLC_ECC_DEC_REG(x) (x + 0x1000C)
|
|
#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
|
|
#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
|
|
#define MLC_RPR(x) (x + 0x10018)
|
|
#define MLC_WPR(x) (x + 0x1001C)
|
|
#define MLC_RUBP(x) (x + 0x10020)
|
|
#define MLC_ROBP(x) (x + 0x10024)
|
|
#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
|
|
#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
|
|
#define MLC_ICR(x) (x + 0x10030)
|
|
#define MLC_TIME_REG(x) (x + 0x10034)
|
|
#define MLC_IRQ_MR(x) (x + 0x10038)
|
|
#define MLC_IRQ_SR(x) (x + 0x1003C)
|
|
#define MLC_LOCK_PR(x) (x + 0x10044)
|
|
#define MLC_ISR(x) (x + 0x10048)
|
|
#define MLC_CEH(x) (x + 0x1004C)
|
|
|
|
/**********************************************************************
|
|
* MLC_CMD bit definitions
|
|
**********************************************************************/
|
|
#define MLCCMD_RESET 0xFF
|
|
|
|
/**********************************************************************
|
|
* MLC_ICR bit definitions
|
|
**********************************************************************/
|
|
#define MLCICR_WPROT (1 << 3)
|
|
#define MLCICR_LARGEBLOCK (1 << 2)
|
|
#define MLCICR_LONGADDR (1 << 1)
|
|
#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
|
|
|
|
/**********************************************************************
|
|
* MLC_TIME_REG bit definitions
|
|
**********************************************************************/
|
|
#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
|
|
#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
|
|
#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
|
|
#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
|
|
#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
|
|
#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
|
|
#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
|
|
|
|
/**********************************************************************
|
|
* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
|
|
**********************************************************************/
|
|
#define MLCIRQ_NAND_READY (1 << 5)
|
|
#define MLCIRQ_CONTROLLER_READY (1 << 4)
|
|
#define MLCIRQ_DECODE_FAILURE (1 << 3)
|
|
#define MLCIRQ_DECODE_ERROR (1 << 2)
|
|
#define MLCIRQ_ECC_READY (1 << 1)
|
|
#define MLCIRQ_WRPROT_FAULT (1 << 0)
|
|
|
|
/**********************************************************************
|
|
* MLC_LOCK_PR bit definitions
|
|
**********************************************************************/
|
|
#define MLCLOCKPR_MAGIC 0xA25E
|
|
|
|
/**********************************************************************
|
|
* MLC_ISR bit definitions
|
|
**********************************************************************/
|
|
#define MLCISR_DECODER_FAILURE (1 << 6)
|
|
#define MLCISR_ERRORS ((1 << 4) | (1 << 5))
|
|
#define MLCISR_ERRORS_DETECTED (1 << 3)
|
|
#define MLCISR_ECC_READY (1 << 2)
|
|
#define MLCISR_CONTROLLER_READY (1 << 1)
|
|
#define MLCISR_NAND_READY (1 << 0)
|
|
|
|
/**********************************************************************
|
|
* MLC_CEH bit definitions
|
|
**********************************************************************/
|
|
#define MLCCEH_NORMAL (1 << 0)
|
|
|
|
struct lpc32xx_nand_cfg_mlc {
|
|
uint32_t tcea_delay;
|
|
uint32_t busy_delay;
|
|
uint32_t nand_ta;
|
|
uint32_t rd_high;
|
|
uint32_t rd_low;
|
|
uint32_t wr_high;
|
|
uint32_t wr_low;
|
|
int wp_gpio;
|
|
struct mtd_partition *parts;
|
|
unsigned num_parts;
|
|
};
|
|
|
|
static struct nand_ecclayout lpc32xx_nand_oob = {
|
|
.eccbytes = 40,
|
|
.eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
|
|
.oobfree = {
|
|
{ .offset = 0,
|
|
.length = 6, },
|
|
{ .offset = 16,
|
|
.length = 6, },
|
|
{ .offset = 32,
|
|
.length = 6, },
|
|
{ .offset = 48,
|
|
.length = 6, },
|
|
},
|
|
};
|
|
|
|
static struct nand_bbt_descr lpc32xx_nand_bbt = {
|
|
.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
|
|
NAND_BBT_WRITE,
|
|
.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
|
|
};
|
|
|
|
static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
|
|
.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
|
|
NAND_BBT_WRITE,
|
|
.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
|
|
};
|
|
|
|
struct lpc32xx_nand_host {
|
|
struct nand_chip nand_chip;
|
|
struct lpc32xx_mlc_platform_data *pdata;
|
|
struct clk *clk;
|
|
struct mtd_info mtd;
|
|
void __iomem *io_base;
|
|
int irq;
|
|
struct lpc32xx_nand_cfg_mlc *ncfg;
|
|
struct completion comp_nand;
|
|
struct completion comp_controller;
|
|
uint32_t llptr;
|
|
/*
|
|
* Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
|
|
*/
|
|
dma_addr_t oob_buf_phy;
|
|
/*
|
|
* Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
|
|
*/
|
|
uint8_t *oob_buf;
|
|
/* Physical address of DMA base address */
|
|
dma_addr_t io_base_phy;
|
|
|
|
struct completion comp_dma;
|
|
struct dma_chan *dma_chan;
|
|
struct dma_slave_config dma_slave_config;
|
|
struct scatterlist sgl;
|
|
uint8_t *dma_buf;
|
|
uint8_t *dummy_buf;
|
|
int mlcsubpages; /* number of 512bytes-subpages */
|
|
};
|
|
|
|
/*
|
|
* Activate/Deactivate DMA Operation:
|
|
*
|
|
* Using the PL080 DMA Controller for transferring the 512 byte subpages
|
|
* instead of doing readl() / writel() in a loop slows it down significantly.
|
|
* Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
|
|
*
|
|
* - readl() of 128 x 32 bits in a loop: ~20us
|
|
* - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
|
|
* - DMA read of 512 bytes (32 bit, no bursts): ~100us
|
|
*
|
|
* This applies to the transfer itself. In the DMA case: only the
|
|
* wait_for_completion() (DMA setup _not_ included).
|
|
*
|
|
* Note that the 512 bytes subpage transfer is done directly from/to a
|
|
* FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
|
|
* 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
|
|
* controller transferring data between its internal buffer to/from the NAND
|
|
* chip.)
|
|
*
|
|
* Therefore, using the PL080 DMA is disabled by default, for now.
|
|
*
|
|
*/
|
|
static int use_dma;
|
|
|
|
static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
|
|
{
|
|
uint32_t clkrate, tmp;
|
|
|
|
/* Reset MLC controller */
|
|
writel(MLCCMD_RESET, MLC_CMD(host->io_base));
|
|
udelay(1000);
|
|
|
|
/* Get base clock for MLC block */
|
|
clkrate = clk_get_rate(host->clk);
|
|
if (clkrate == 0)
|
|
clkrate = 104000000;
|
|
|
|
/* Unlock MLC_ICR
|
|
* (among others, will be locked again automatically) */
|
|
writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
|
|
|
|
/* Configure MLC Controller: Large Block, 5 Byte Address */
|
|
tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
|
|
writel(tmp, MLC_ICR(host->io_base));
|
|
|
|
/* Unlock MLC_TIME_REG
|
|
* (among others, will be locked again automatically) */
|
|
writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
|
|
|
|
/* Compute clock setup values, see LPC and NAND manual */
|
|
tmp = 0;
|
|
tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
|
|
tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
|
|
tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
|
|
tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
|
|
tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
|
|
tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
|
|
tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
|
|
writel(tmp, MLC_TIME_REG(host->io_base));
|
|
|
|
/* Enable IRQ for CONTROLLER_READY and NAND_READY */
|
|
writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
|
|
MLC_IRQ_MR(host->io_base));
|
|
|
|
/* Normal nCE operation: nCE controlled by controller */
|
|
writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
|
|
}
|
|
|
|
/*
|
|
* Hardware specific access to control lines
|
|
*/
|
|
static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct lpc32xx_nand_host *host = nand_chip->priv;
|
|
|
|
if (cmd != NAND_CMD_NONE) {
|
|
if (ctrl & NAND_CLE)
|
|
writel(cmd, MLC_CMD(host->io_base));
|
|
else
|
|
writel(cmd, MLC_ADDR(host->io_base));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read Device Ready (NAND device _and_ controller ready)
|
|
*/
|
|
static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct lpc32xx_nand_host *host = nand_chip->priv;
|
|
|
|
if ((readb(MLC_ISR(host->io_base)) &
|
|
(MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
|
|
(MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
|
|
{
|
|
uint8_t sr;
|
|
|
|
/* Clear interrupt flag by reading status */
|
|
sr = readb(MLC_IRQ_SR(host->io_base));
|
|
if (sr & MLCIRQ_NAND_READY)
|
|
complete(&host->comp_nand);
|
|
if (sr & MLCIRQ_CONTROLLER_READY)
|
|
complete(&host->comp_controller);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct lpc32xx_nand_host *host = chip->priv;
|
|
|
|
if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
|
|
goto exit;
|
|
|
|
wait_for_completion(&host->comp_nand);
|
|
|
|
while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
|
|
/* Seems to be delayed sometimes by controller */
|
|
dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
|
|
cpu_relax();
|
|
}
|
|
|
|
exit:
|
|
return NAND_STATUS_READY;
|
|
}
|
|
|
|
static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
|
|
struct nand_chip *chip)
|
|
{
|
|
struct lpc32xx_nand_host *host = chip->priv;
|
|
|
|
if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
|
|
goto exit;
|
|
|
|
wait_for_completion(&host->comp_controller);
|
|
|
|
while (!(readb(MLC_ISR(host->io_base)) &
|
|
MLCISR_CONTROLLER_READY)) {
|
|
dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
|
|
cpu_relax();
|
|
}
|
|
|
|
exit:
|
|
return NAND_STATUS_READY;
|
|
}
|
|
|
|
static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
lpc32xx_waitfunc_nand(mtd, chip);
|
|
lpc32xx_waitfunc_controller(mtd, chip);
|
|
|
|
return NAND_STATUS_READY;
|
|
}
|
|
|
|
/*
|
|
* Enable NAND write protect
|
|
*/
|
|
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
|
|
{
|
|
if (gpio_is_valid(host->ncfg->wp_gpio))
|
|
gpio_set_value(host->ncfg->wp_gpio, 0);
|
|
}
|
|
|
|
/*
|
|
* Disable NAND write protect
|
|
*/
|
|
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
|
|
{
|
|
if (gpio_is_valid(host->ncfg->wp_gpio))
|
|
gpio_set_value(host->ncfg->wp_gpio, 1);
|
|
}
|
|
|
|
static void lpc32xx_dma_complete_func(void *completion)
|
|
{
|
|
complete(completion);
|
|
}
|
|
|
|
static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
|
|
enum dma_transfer_direction dir)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct lpc32xx_nand_host *host = chip->priv;
|
|
struct dma_async_tx_descriptor *desc;
|
|
int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
|
int res;
|
|
|
|
sg_init_one(&host->sgl, mem, len);
|
|
|
|
res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
|
|
DMA_BIDIRECTIONAL);
|
|
if (res != 1) {
|
|
dev_err(mtd->dev.parent, "Failed to map sg list\n");
|
|
return -ENXIO;
|
|
}
|
|
desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
|
|
flags);
|
|
if (!desc) {
|
|
dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
|
|
goto out1;
|
|
}
|
|
|
|
init_completion(&host->comp_dma);
|
|
desc->callback = lpc32xx_dma_complete_func;
|
|
desc->callback_param = &host->comp_dma;
|
|
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(host->dma_chan);
|
|
|
|
wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
|
|
|
|
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
|
|
DMA_BIDIRECTIONAL);
|
|
return 0;
|
|
out1:
|
|
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
|
|
DMA_BIDIRECTIONAL);
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct lpc32xx_nand_host *host = chip->priv;
|
|
int i, j;
|
|
uint8_t *oobbuf = chip->oob_poi;
|
|
uint32_t mlc_isr;
|
|
int res;
|
|
uint8_t *dma_buf;
|
|
bool dma_mapped;
|
|
|
|
if ((void *)buf <= high_memory) {
|
|
dma_buf = buf;
|
|
dma_mapped = true;
|
|
} else {
|
|
dma_buf = host->dma_buf;
|
|
dma_mapped = false;
|
|
}
|
|
|
|
/* Writing Command and Address */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
|
|
/* For all sub-pages */
|
|
for (i = 0; i < host->mlcsubpages; i++) {
|
|
/* Start Auto Decode Command */
|
|
writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
|
|
|
|
/* Wait for Controller Ready */
|
|
lpc32xx_waitfunc_controller(mtd, chip);
|
|
|
|
/* Check ECC Error status */
|
|
mlc_isr = readl(MLC_ISR(host->io_base));
|
|
if (mlc_isr & MLCISR_DECODER_FAILURE) {
|
|
mtd->ecc_stats.failed++;
|
|
dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
|
|
} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
|
|
mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
|
|
}
|
|
|
|
/* Read 512 + 16 Bytes */
|
|
if (use_dma) {
|
|
res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
|
|
DMA_DEV_TO_MEM);
|
|
if (res)
|
|
return res;
|
|
} else {
|
|
for (j = 0; j < (512 >> 2); j++) {
|
|
*((uint32_t *)(buf)) =
|
|
readl(MLC_BUFF(host->io_base));
|
|
buf += 4;
|
|
}
|
|
}
|
|
for (j = 0; j < (16 >> 2); j++) {
|
|
*((uint32_t *)(oobbuf)) =
|
|
readl(MLC_BUFF(host->io_base));
|
|
oobbuf += 4;
|
|
}
|
|
}
|
|
|
|
if (use_dma && !dma_mapped)
|
|
memcpy(buf, dma_buf, mtd->writesize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required)
|
|
{
|
|
struct lpc32xx_nand_host *host = chip->priv;
|
|
const uint8_t *oobbuf = chip->oob_poi;
|
|
uint8_t *dma_buf = (uint8_t *)buf;
|
|
int res;
|
|
int i, j;
|
|
|
|
if (use_dma && (void *)buf >= high_memory) {
|
|
dma_buf = host->dma_buf;
|
|
memcpy(dma_buf, buf, mtd->writesize);
|
|
}
|
|
|
|
for (i = 0; i < host->mlcsubpages; i++) {
|
|
/* Start Encode */
|
|
writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
|
|
|
|
/* Write 512 + 6 Bytes to Buffer */
|
|
if (use_dma) {
|
|
res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
|
|
DMA_MEM_TO_DEV);
|
|
if (res)
|
|
return res;
|
|
} else {
|
|
for (j = 0; j < (512 >> 2); j++) {
|
|
writel(*((uint32_t *)(buf)),
|
|
MLC_BUFF(host->io_base));
|
|
buf += 4;
|
|
}
|
|
}
|
|
writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
|
|
oobbuf += 4;
|
|
writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
|
|
oobbuf += 12;
|
|
|
|
/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
|
|
writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
|
|
|
|
/* Wait for Controller Ready */
|
|
lpc32xx_waitfunc_controller(mtd, chip);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct lpc32xx_nand_host *host = chip->priv;
|
|
|
|
/* Read whole page - necessary with MLC controller! */
|
|
lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
|
|
return 0;
|
|
}
|
|
|
|
/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
|
|
static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
|
|
{
|
|
/* Always enabled! */
|
|
}
|
|
|
|
static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
|
|
{
|
|
struct mtd_info *mtd = &host->mtd;
|
|
dma_cap_mask_t mask;
|
|
|
|
if (!host->pdata || !host->pdata->dma_filter) {
|
|
dev_err(mtd->dev.parent, "no DMA platform data\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
|
|
"nand-mlc");
|
|
if (!host->dma_chan) {
|
|
dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Set direction to a sensible value even if the dmaengine driver
|
|
* should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
|
|
* driver criticizes it as "alien transfer direction".
|
|
*/
|
|
host->dma_slave_config.direction = DMA_DEV_TO_MEM;
|
|
host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
host->dma_slave_config.src_maxburst = 128;
|
|
host->dma_slave_config.dst_maxburst = 128;
|
|
/* DMA controller does flow control: */
|
|
host->dma_slave_config.device_fc = false;
|
|
host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
|
|
host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
|
|
if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
|
|
dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
|
|
goto out1;
|
|
}
|
|
|
|
return 0;
|
|
out1:
|
|
dma_release_channel(host->dma_chan);
|
|
return -ENXIO;
|
|
}
|
|
|
|
static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
|
|
{
|
|
struct lpc32xx_nand_cfg_mlc *ncfg;
|
|
struct device_node *np = dev->of_node;
|
|
|
|
ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
|
|
if (!ncfg)
|
|
return NULL;
|
|
|
|
of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
|
|
of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
|
|
of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
|
|
of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
|
|
of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
|
|
of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
|
|
of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
|
|
|
|
if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
|
|
!ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
|
|
!ncfg->wr_low) {
|
|
dev_err(dev, "chip parameters not specified correctly\n");
|
|
return NULL;
|
|
}
|
|
|
|
ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
|
|
|
|
return ncfg;
|
|
}
|
|
|
|
/*
|
|
* Probe for NAND controller
|
|
*/
|
|
static int lpc32xx_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct lpc32xx_nand_host *host;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand_chip;
|
|
struct resource *rc;
|
|
int res;
|
|
struct mtd_part_parser_data ppdata = {};
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
host->io_base = devm_ioremap_resource(&pdev->dev, rc);
|
|
if (IS_ERR(host->io_base))
|
|
return PTR_ERR(host->io_base);
|
|
|
|
host->io_base_phy = rc->start;
|
|
|
|
mtd = &host->mtd;
|
|
nand_chip = &host->nand_chip;
|
|
if (pdev->dev.of_node)
|
|
host->ncfg = lpc32xx_parse_dt(&pdev->dev);
|
|
if (!host->ncfg) {
|
|
dev_err(&pdev->dev,
|
|
"Missing or bad NAND config from device tree\n");
|
|
return -ENOENT;
|
|
}
|
|
if (host->ncfg->wp_gpio == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
if (gpio_is_valid(host->ncfg->wp_gpio) &&
|
|
gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
|
|
dev_err(&pdev->dev, "GPIO not available\n");
|
|
return -EBUSY;
|
|
}
|
|
lpc32xx_wp_disable(host);
|
|
|
|
host->pdata = dev_get_platdata(&pdev->dev);
|
|
|
|
nand_chip->priv = host; /* link the private data structures */
|
|
mtd->priv = nand_chip;
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
/* Get NAND clock */
|
|
host->clk = clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(host->clk)) {
|
|
dev_err(&pdev->dev, "Clock initialization failure\n");
|
|
res = -ENOENT;
|
|
goto err_exit1;
|
|
}
|
|
clk_enable(host->clk);
|
|
|
|
nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
|
|
nand_chip->dev_ready = lpc32xx_nand_device_ready;
|
|
nand_chip->chip_delay = 25; /* us */
|
|
nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
|
|
nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
|
|
|
|
/* Init NAND controller */
|
|
lpc32xx_nand_setup(host);
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
|
|
/* Initialize function pointers */
|
|
nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
|
|
nand_chip->ecc.read_page_raw = lpc32xx_read_page;
|
|
nand_chip->ecc.read_page = lpc32xx_read_page;
|
|
nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
|
|
nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
|
|
nand_chip->ecc.write_oob = lpc32xx_write_oob;
|
|
nand_chip->ecc.read_oob = lpc32xx_read_oob;
|
|
nand_chip->ecc.strength = 4;
|
|
nand_chip->waitfunc = lpc32xx_waitfunc;
|
|
|
|
nand_chip->options = NAND_NO_SUBPAGE_WRITE;
|
|
nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
|
|
nand_chip->bbt_td = &lpc32xx_nand_bbt;
|
|
nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
|
|
|
|
/* bitflip_threshold's default is defined as ecc_strength anyway.
|
|
* Unfortunately, it is set only later at add_mtd_device(). Meanwhile
|
|
* being 0, it causes bad block table scanning errors in
|
|
* nand_scan_tail(), so preparing it here. */
|
|
mtd->bitflip_threshold = nand_chip->ecc.strength;
|
|
|
|
if (use_dma) {
|
|
res = lpc32xx_dma_setup(host);
|
|
if (res) {
|
|
res = -EIO;
|
|
goto err_exit2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan to find existance of the device and
|
|
* Get the type of NAND device SMALL block or LARGE block
|
|
*/
|
|
if (nand_scan_ident(mtd, 1, NULL)) {
|
|
res = -ENXIO;
|
|
goto err_exit3;
|
|
}
|
|
|
|
host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
|
|
if (!host->dma_buf) {
|
|
res = -ENOMEM;
|
|
goto err_exit3;
|
|
}
|
|
|
|
host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
|
|
if (!host->dummy_buf) {
|
|
res = -ENOMEM;
|
|
goto err_exit3;
|
|
}
|
|
|
|
nand_chip->ecc.mode = NAND_ECC_HW;
|
|
nand_chip->ecc.size = mtd->writesize;
|
|
nand_chip->ecc.layout = &lpc32xx_nand_oob;
|
|
host->mlcsubpages = mtd->writesize / 512;
|
|
|
|
/* initially clear interrupt status */
|
|
readb(MLC_IRQ_SR(host->io_base));
|
|
|
|
init_completion(&host->comp_nand);
|
|
init_completion(&host->comp_controller);
|
|
|
|
host->irq = platform_get_irq(pdev, 0);
|
|
if ((host->irq < 0) || (host->irq >= NR_IRQS)) {
|
|
dev_err(&pdev->dev, "failed to get platform irq\n");
|
|
res = -EINVAL;
|
|
goto err_exit3;
|
|
}
|
|
|
|
if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
|
|
IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
|
|
dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
|
|
res = -ENXIO;
|
|
goto err_exit3;
|
|
}
|
|
|
|
/*
|
|
* Fills out all the uninitialized function pointers with the defaults
|
|
* And scans for a bad block table if appropriate.
|
|
*/
|
|
if (nand_scan_tail(mtd)) {
|
|
res = -ENXIO;
|
|
goto err_exit4;
|
|
}
|
|
|
|
mtd->name = DRV_NAME;
|
|
|
|
ppdata.of_node = pdev->dev.of_node;
|
|
res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
|
|
host->ncfg->num_parts);
|
|
if (!res)
|
|
return res;
|
|
|
|
nand_release(mtd);
|
|
|
|
err_exit4:
|
|
free_irq(host->irq, host);
|
|
err_exit3:
|
|
if (use_dma)
|
|
dma_release_channel(host->dma_chan);
|
|
err_exit2:
|
|
clk_disable(host->clk);
|
|
clk_put(host->clk);
|
|
err_exit1:
|
|
lpc32xx_wp_enable(host);
|
|
gpio_free(host->ncfg->wp_gpio);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Remove NAND device
|
|
*/
|
|
static int lpc32xx_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
|
|
struct mtd_info *mtd = &host->mtd;
|
|
|
|
nand_release(mtd);
|
|
free_irq(host->irq, host);
|
|
if (use_dma)
|
|
dma_release_channel(host->dma_chan);
|
|
|
|
clk_disable(host->clk);
|
|
clk_put(host->clk);
|
|
|
|
lpc32xx_wp_enable(host);
|
|
gpio_free(host->ncfg->wp_gpio);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int lpc32xx_nand_resume(struct platform_device *pdev)
|
|
{
|
|
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
|
|
|
|
/* Re-enable NAND clock */
|
|
clk_enable(host->clk);
|
|
|
|
/* Fresh init of NAND controller */
|
|
lpc32xx_nand_setup(host);
|
|
|
|
/* Disable write protect */
|
|
lpc32xx_wp_disable(host);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
|
|
{
|
|
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
|
|
|
|
/* Enable write protect for safety */
|
|
lpc32xx_wp_enable(host);
|
|
|
|
/* Disable clock */
|
|
clk_disable(host->clk);
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
#define lpc32xx_nand_resume NULL
|
|
#define lpc32xx_nand_suspend NULL
|
|
#endif
|
|
|
|
static const struct of_device_id lpc32xx_nand_match[] = {
|
|
{ .compatible = "nxp,lpc3220-mlc" },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
|
|
|
|
static struct platform_driver lpc32xx_nand_driver = {
|
|
.probe = lpc32xx_nand_probe,
|
|
.remove = lpc32xx_nand_remove,
|
|
.resume = lpc32xx_nand_resume,
|
|
.suspend = lpc32xx_nand_suspend,
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = lpc32xx_nand_match,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(lpc32xx_nand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
|
|
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
|