mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 11:33:45 +07:00
a9e340dce3
Drop support for platform data passed via a C-structure and switch to device properties instead, which should make the driver compatible with all platforms: OF, ACPI and static boards. Static boards should use property sets to communicate device parameters to the driver. Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
379 lines
8.6 KiB
C
379 lines
8.6 KiB
C
/*
|
|
* rotary_encoder.c
|
|
*
|
|
* (c) 2009 Daniel Mack <daniel@caiaq.de>
|
|
* Copyright (C) 2011 Johan Hovold <jhovold@gmail.com>
|
|
*
|
|
* state machine code inspired by code from Tim Ruetz
|
|
*
|
|
* A generic driver for rotary encoders connected to GPIO lines.
|
|
* See file:Documentation/input/rotary-encoder.txt for more information
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/input.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/property.h>
|
|
|
|
#define DRV_NAME "rotary-encoder"
|
|
|
|
struct rotary_encoder {
|
|
struct input_dev *input;
|
|
|
|
struct mutex access_mutex;
|
|
|
|
u32 steps;
|
|
u32 axis;
|
|
bool relative_axis;
|
|
bool rollover;
|
|
|
|
unsigned int pos;
|
|
|
|
struct gpio_desc *gpio_a;
|
|
struct gpio_desc *gpio_b;
|
|
|
|
unsigned int irq_a;
|
|
unsigned int irq_b;
|
|
|
|
bool armed;
|
|
unsigned char dir; /* 0 - clockwise, 1 - CCW */
|
|
|
|
char last_stable;
|
|
};
|
|
|
|
static int rotary_encoder_get_state(struct rotary_encoder *encoder)
|
|
{
|
|
int a = !!gpiod_get_value_cansleep(encoder->gpio_a);
|
|
int b = !!gpiod_get_value_cansleep(encoder->gpio_b);
|
|
|
|
return ((a << 1) | b);
|
|
}
|
|
|
|
static void rotary_encoder_report_event(struct rotary_encoder *encoder)
|
|
{
|
|
if (encoder->relative_axis) {
|
|
input_report_rel(encoder->input,
|
|
encoder->axis, encoder->dir ? -1 : 1);
|
|
} else {
|
|
unsigned int pos = encoder->pos;
|
|
|
|
if (encoder->dir) {
|
|
/* turning counter-clockwise */
|
|
if (encoder->rollover)
|
|
pos += encoder->steps;
|
|
if (pos)
|
|
pos--;
|
|
} else {
|
|
/* turning clockwise */
|
|
if (encoder->rollover || pos < encoder->steps)
|
|
pos++;
|
|
}
|
|
|
|
if (encoder->rollover)
|
|
pos %= encoder->steps;
|
|
|
|
encoder->pos = pos;
|
|
input_report_abs(encoder->input, encoder->axis, encoder->pos);
|
|
}
|
|
|
|
input_sync(encoder->input);
|
|
}
|
|
|
|
static irqreturn_t rotary_encoder_irq(int irq, void *dev_id)
|
|
{
|
|
struct rotary_encoder *encoder = dev_id;
|
|
int state;
|
|
|
|
mutex_lock(&encoder->access_mutex);
|
|
|
|
state = rotary_encoder_get_state(encoder);
|
|
|
|
switch (state) {
|
|
case 0x0:
|
|
if (encoder->armed) {
|
|
rotary_encoder_report_event(encoder);
|
|
encoder->armed = false;
|
|
}
|
|
break;
|
|
|
|
case 0x1:
|
|
case 0x2:
|
|
if (encoder->armed)
|
|
encoder->dir = state - 1;
|
|
break;
|
|
|
|
case 0x3:
|
|
encoder->armed = true;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&encoder->access_mutex);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id)
|
|
{
|
|
struct rotary_encoder *encoder = dev_id;
|
|
int state;
|
|
|
|
mutex_lock(&encoder->access_mutex);
|
|
|
|
state = rotary_encoder_get_state(encoder);
|
|
|
|
switch (state) {
|
|
case 0x00:
|
|
case 0x03:
|
|
if (state != encoder->last_stable) {
|
|
rotary_encoder_report_event(encoder);
|
|
encoder->last_stable = state;
|
|
}
|
|
break;
|
|
|
|
case 0x01:
|
|
case 0x02:
|
|
encoder->dir = (encoder->last_stable + state) & 0x01;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&encoder->access_mutex);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id)
|
|
{
|
|
struct rotary_encoder *encoder = dev_id;
|
|
unsigned char sum;
|
|
int state;
|
|
|
|
mutex_lock(&encoder->access_mutex);
|
|
|
|
state = rotary_encoder_get_state(encoder);
|
|
|
|
/*
|
|
* We encode the previous and the current state using a byte.
|
|
* The previous state in the MSB nibble, the current state in the LSB
|
|
* nibble. Then use a table to decide the direction of the turn.
|
|
*/
|
|
sum = (encoder->last_stable << 4) + state;
|
|
switch (sum) {
|
|
case 0x31:
|
|
case 0x10:
|
|
case 0x02:
|
|
case 0x23:
|
|
encoder->dir = 0; /* clockwise */
|
|
break;
|
|
|
|
case 0x13:
|
|
case 0x01:
|
|
case 0x20:
|
|
case 0x32:
|
|
encoder->dir = 1; /* counter-clockwise */
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Ignore all other values. This covers the case when the
|
|
* state didn't change (a spurious interrupt) and the
|
|
* cases where the state changed by two steps, making it
|
|
* impossible to tell the direction.
|
|
*
|
|
* In either case, don't report any event and save the
|
|
* state for later.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
rotary_encoder_report_event(encoder);
|
|
|
|
out:
|
|
encoder->last_stable = state;
|
|
mutex_unlock(&encoder->access_mutex);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int rotary_encoder_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct rotary_encoder *encoder;
|
|
struct input_dev *input;
|
|
irq_handler_t handler;
|
|
u32 steps_per_period;
|
|
int err;
|
|
|
|
encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL);
|
|
if (!encoder)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&encoder->access_mutex);
|
|
|
|
device_property_read_u32(dev, "rotary-encoder,steps", &encoder->steps);
|
|
|
|
err = device_property_read_u32(dev, "rotary-encoder,steps-per-period",
|
|
&steps_per_period);
|
|
if (err) {
|
|
/*
|
|
* The 'half-period' property has been deprecated, you must
|
|
* use 'steps-per-period' and set an appropriate value, but
|
|
* we still need to parse it to maintain compatibility. If
|
|
* neither property is present we fall back to the one step
|
|
* per period behavior.
|
|
*/
|
|
steps_per_period = device_property_read_bool(dev,
|
|
"rotary-encoder,half-period") ? 2 : 1;
|
|
}
|
|
|
|
encoder->rollover =
|
|
device_property_read_bool(dev, "rotary-encoder,rollover");
|
|
|
|
device_property_read_u32(dev, "linux,axis", &encoder->axis);
|
|
encoder->relative_axis =
|
|
device_property_read_bool(dev, "rotary-encoder,relative-axis");
|
|
|
|
encoder->gpio_a = devm_gpiod_get_index(dev, NULL, 0, GPIOD_IN);
|
|
if (IS_ERR(encoder->gpio_a)) {
|
|
err = PTR_ERR(encoder->gpio_a);
|
|
dev_err(dev, "unable to get GPIO at index 0: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
encoder->irq_a = gpiod_to_irq(encoder->gpio_a);
|
|
|
|
encoder->gpio_b = devm_gpiod_get_index(dev, NULL, 1, GPIOD_IN);
|
|
if (IS_ERR(encoder->gpio_b)) {
|
|
err = PTR_ERR(encoder->gpio_b);
|
|
dev_err(dev, "unable to get GPIO at index 1: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
encoder->irq_b = gpiod_to_irq(encoder->gpio_b);
|
|
|
|
input = devm_input_allocate_device(dev);
|
|
if (!input)
|
|
return -ENOMEM;
|
|
|
|
encoder->input = input;
|
|
|
|
input->name = pdev->name;
|
|
input->id.bustype = BUS_HOST;
|
|
input->dev.parent = dev;
|
|
|
|
if (encoder->relative_axis)
|
|
input_set_capability(input, EV_REL, encoder->axis);
|
|
else
|
|
input_set_abs_params(input,
|
|
encoder->axis, 0, encoder->steps, 0, 1);
|
|
|
|
switch (steps_per_period) {
|
|
case 4:
|
|
handler = &rotary_encoder_quarter_period_irq;
|
|
encoder->last_stable = rotary_encoder_get_state(encoder);
|
|
break;
|
|
case 2:
|
|
handler = &rotary_encoder_half_period_irq;
|
|
encoder->last_stable = rotary_encoder_get_state(encoder);
|
|
break;
|
|
case 1:
|
|
handler = &rotary_encoder_irq;
|
|
break;
|
|
default:
|
|
dev_err(dev, "'%d' is not a valid steps-per-period value\n",
|
|
steps_per_period);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = devm_request_threaded_irq(dev, encoder->irq_a, NULL, handler,
|
|
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
|
|
IRQF_ONESHOT,
|
|
DRV_NAME, encoder);
|
|
if (err) {
|
|
dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a);
|
|
return err;
|
|
}
|
|
|
|
err = devm_request_threaded_irq(dev, encoder->irq_b, NULL, handler,
|
|
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
|
|
IRQF_ONESHOT,
|
|
DRV_NAME, encoder);
|
|
if (err) {
|
|
dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b);
|
|
return err;
|
|
}
|
|
|
|
err = input_register_device(input);
|
|
if (err) {
|
|
dev_err(dev, "failed to register input device\n");
|
|
return err;
|
|
}
|
|
|
|
device_init_wakeup(dev,
|
|
device_property_read_bool(dev, "wakeup-source"));
|
|
|
|
platform_set_drvdata(pdev, encoder);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused rotary_encoder_suspend(struct device *dev)
|
|
{
|
|
struct rotary_encoder *encoder = dev_get_drvdata(dev);
|
|
|
|
if (device_may_wakeup(dev)) {
|
|
enable_irq_wake(encoder->irq_a);
|
|
enable_irq_wake(encoder->irq_b);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused rotary_encoder_resume(struct device *dev)
|
|
{
|
|
struct rotary_encoder *encoder = dev_get_drvdata(dev);
|
|
|
|
if (device_may_wakeup(dev)) {
|
|
disable_irq_wake(encoder->irq_a);
|
|
disable_irq_wake(encoder->irq_b);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops,
|
|
rotary_encoder_suspend, rotary_encoder_resume);
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id rotary_encoder_of_match[] = {
|
|
{ .compatible = "rotary-encoder", },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, rotary_encoder_of_match);
|
|
#endif
|
|
|
|
static struct platform_driver rotary_encoder_driver = {
|
|
.probe = rotary_encoder_probe,
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.pm = &rotary_encoder_pm_ops,
|
|
.of_match_table = of_match_ptr(rotary_encoder_of_match),
|
|
}
|
|
};
|
|
module_platform_driver(rotary_encoder_driver);
|
|
|
|
MODULE_ALIAS("platform:" DRV_NAME);
|
|
MODULE_DESCRIPTION("GPIO rotary encoder driver");
|
|
MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>, Johan Hovold");
|
|
MODULE_LICENSE("GPL v2");
|