mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 17:15:09 +07:00
d2912cb15b
Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation # extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 4122 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Enrico Weigelt <info@metux.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
481 lines
12 KiB
C
481 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/current.h>
|
|
#include <asm/disasm.h>
|
|
|
|
#define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
|
|
(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
/* Attempt to probe at unaligned address */
|
|
if ((unsigned long)p->addr & 0x01)
|
|
return -EINVAL;
|
|
|
|
/* Address should not be in exception handling code */
|
|
|
|
p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
|
|
p->opcode = *p->addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = UNIMP_S_INSTRUCTION;
|
|
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = p->opcode;
|
|
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
arch_disarm_kprobe(p);
|
|
|
|
/* Can we remove the kprobe in the middle of kprobe handling? */
|
|
if (p->ainsn.t1_addr) {
|
|
*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
(unsigned long)p->ainsn.t1_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t1_addr = NULL;
|
|
}
|
|
|
|
if (p->ainsn.t2_addr) {
|
|
*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
(unsigned long)p->ainsn.t2_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t2_addr = NULL;
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static inline void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
|
|
struct pt_regs *regs)
|
|
{
|
|
/* Remove the trap instructions inserted for single step and
|
|
* restore the original instructions
|
|
*/
|
|
if (p->ainsn.t1_addr) {
|
|
*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
(unsigned long)p->ainsn.t1_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t1_addr = NULL;
|
|
}
|
|
|
|
if (p->ainsn.t2_addr) {
|
|
*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
(unsigned long)p->ainsn.t2_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t2_addr = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
unsigned long next_pc;
|
|
unsigned long tgt_if_br = 0;
|
|
int is_branch;
|
|
unsigned long bta;
|
|
|
|
/* Copy the opcode back to the kprobe location and execute the
|
|
* instruction. Because of this we will not be able to get into the
|
|
* same kprobe until this kprobe is done
|
|
*/
|
|
*(p->addr) = p->opcode;
|
|
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
|
|
/* Now we insert the trap at the next location after this instruction to
|
|
* single step. If it is a branch we insert the trap at possible branch
|
|
* targets
|
|
*/
|
|
|
|
bta = regs->bta;
|
|
|
|
if (regs->status32 & 0x40) {
|
|
/* We are in a delay slot with the branch taken */
|
|
|
|
next_pc = bta & ~0x01;
|
|
|
|
if (!p->ainsn.is_short) {
|
|
if (bta & 0x01)
|
|
regs->blink += 2;
|
|
else {
|
|
/* Branch not taken */
|
|
next_pc += 2;
|
|
|
|
/* next pc is taken from bta after executing the
|
|
* delay slot instruction
|
|
*/
|
|
regs->bta += 2;
|
|
}
|
|
}
|
|
|
|
is_branch = 0;
|
|
} else
|
|
is_branch =
|
|
disasm_next_pc((unsigned long)p->addr, regs,
|
|
(struct callee_regs *) current->thread.callee_reg,
|
|
&next_pc, &tgt_if_br);
|
|
|
|
p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
|
|
p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
|
|
*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
(unsigned long)p->ainsn.t1_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
if (is_branch) {
|
|
p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
|
|
p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
|
|
*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
(unsigned long)p->ainsn.t2_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
}
|
|
}
|
|
|
|
int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
preempt_disable();
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
p = get_kprobe((unsigned long *)addr);
|
|
|
|
if (p) {
|
|
/*
|
|
* We have reentered the kprobe_handler, since another kprobe
|
|
* was hit while within the handler, we save the original
|
|
* kprobes and single step on the instruction of the new probe
|
|
* without calling any user handlers to avoid recursive
|
|
* kprobes.
|
|
*/
|
|
if (kprobe_running()) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
return 1;
|
|
}
|
|
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/* If we have no pre-handler or it returned 0, we continue with
|
|
* normal processing. If we have a pre-handler and it returned
|
|
* non-zero - which means user handler setup registers to exit
|
|
* to another instruction, we must skip the single stepping.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
setup_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
} else {
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* no_kprobe: */
|
|
preempt_enable_no_resched();
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes arc_post_kprobe_handler(unsigned long addr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur)
|
|
return 0;
|
|
|
|
resume_execution(cur, addr, regs);
|
|
|
|
/* Rearm the kprobe */
|
|
arch_arm_kprobe(cur);
|
|
|
|
/*
|
|
* When we return from trap instruction we go to the next instruction
|
|
* We restored the actual instruction in resume_exectuiont and we to
|
|
* return to the same address and execute it
|
|
*/
|
|
regs->ret = addr;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
|
|
out:
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Fault can be for the instruction being single stepped or for the
|
|
* pre/post handlers in the module.
|
|
* This is applicable for applications like user probes, where we have the
|
|
* probe in user space and the handlers in the kernel
|
|
*/
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single stepped
|
|
* caused the fault. We reset the current kprobe and allow the
|
|
* exception handler as if it is regular exception. In our
|
|
* case it doesn't matter because the system will be halted
|
|
*/
|
|
resume_execution(cur, (unsigned long)cur->addr, regs);
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
|
|
preempt_enable_no_resched();
|
|
break;
|
|
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We are here because the instructions in the pre/post handler
|
|
* caused the fault.
|
|
*/
|
|
|
|
/* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(cur);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it first.
|
|
*/
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
return 1;
|
|
|
|
/*
|
|
* In case the user-specified fault handler returned zero,
|
|
* try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct die_args *args = data;
|
|
unsigned long addr = args->err;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_IERR:
|
|
if (arc_kprobe_handler(addr, args->regs))
|
|
return NOTIFY_STOP;
|
|
break;
|
|
|
|
case DIE_TRAP:
|
|
if (arc_post_kprobe_handler(addr, args->regs))
|
|
return NOTIFY_STOP;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __used kretprobe_trampoline_holder(void)
|
|
{
|
|
__asm__ __volatile__(".global kretprobe_trampoline\n"
|
|
"kretprobe_trampoline:\n" "nop\n");
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
|
|
ri->ret_addr = (kprobe_opcode_t *) regs->blink;
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->blink = (unsigned long)&kretprobe_trampoline;
|
|
}
|
|
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *tmp;
|
|
unsigned long flags, orig_ret_address = 0;
|
|
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because an multiple functions in the call path
|
|
* have a return probe installed on them, and/or more than one return
|
|
* return probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always inserted at the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the first instance's ret_addr will point to the
|
|
* real return address, and all the rest will point to
|
|
* kretprobe_trampoline
|
|
*/
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
if (ri->rp && ri->rp->handler)
|
|
ri->rp->handler(ri, regs);
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address) {
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
regs->ret = orig_ret_address;
|
|
|
|
kretprobe_hash_unlock(current, &flags);
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
|
|
/* By returning a non zero value, we are telling the kprobe handler
|
|
* that we don't want the post_handler to run
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
/* Registering the trampoline code for the kret probe */
|
|
return register_kprobe(&trampoline_p);
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
|
|
{
|
|
notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
|
|
}
|