mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
c70dcabc8e
The IADDR2DTEST() macro had some duplicated logic with bit 11 and some incorrect comments, so scrub all of that. In order to verify these aren't a problem (and won't be in the future), extend the self tests to operate on as much L1 SRAM as possible. Signed-off-by: Mike Frysinger <vapier@gentoo.org>
411 lines
10 KiB
C
411 lines
10 KiB
C
/*
|
|
* Instruction SRAM accessor functions for the Blackfin
|
|
*
|
|
* Copyright 2008 Analog Devices Inc.
|
|
*
|
|
* Licensed under the GPL-2 or later
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "isram: " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/blackfin.h>
|
|
#include <asm/dma.h>
|
|
|
|
/*
|
|
* IMPORTANT WARNING ABOUT THESE FUNCTIONS
|
|
*
|
|
* The emulator will not function correctly if a write command is left in
|
|
* ITEST_COMMAND or DTEST_COMMAND AND access to cache memory is needed by
|
|
* the emulator. To avoid such problems, ensure that both ITEST_COMMAND
|
|
* and DTEST_COMMAND are zero when exiting these functions.
|
|
*/
|
|
|
|
|
|
/*
|
|
* On the Blackfin, L1 instruction sram (which operates at core speeds) can not
|
|
* be accessed by a normal core load, so we need to go through a few hoops to
|
|
* read/write it.
|
|
* To try to make it easier - we export a memcpy interface, where either src or
|
|
* dest can be in this special L1 memory area.
|
|
* The low level read/write functions should not be exposed to the rest of the
|
|
* kernel, since they operate on 64-bit data, and need specific address alignment
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(dtest_lock);
|
|
|
|
/* Takes a void pointer */
|
|
#define IADDR2DTEST(x) \
|
|
({ unsigned long __addr = (unsigned long)(x); \
|
|
((__addr & (1 << 11)) << (26 - 11)) | /* addr bit 11 (Way0/Way1) */ \
|
|
(1 << 24) | /* instruction access = 1 */ \
|
|
((__addr & (1 << 15)) << (23 - 15)) | /* addr bit 15 (Data Bank) */ \
|
|
((__addr & (3 << 12)) << (16 - 12)) | /* addr bits 13:12 (Subbank) */ \
|
|
(__addr & 0x47F8) | /* addr bits 14 & 10:3 */ \
|
|
(1 << 2); /* data array = 1 */ \
|
|
})
|
|
|
|
/* Takes a pointer, and returns the offset (in bits) which things should be shifted */
|
|
#define ADDR2OFFSET(x) ((((unsigned long)(x)) & 0x7) * 8)
|
|
|
|
/* Takes a pointer, determines if it is the last byte in the isram 64-bit data type */
|
|
#define ADDR2LAST(x) ((((unsigned long)x) & 0x7) == 0x7)
|
|
|
|
static void isram_write(const void *addr, uint64_t data)
|
|
{
|
|
uint32_t cmd;
|
|
unsigned long flags;
|
|
|
|
if (unlikely(addr >= (void *)(L1_CODE_START + L1_CODE_LENGTH)))
|
|
return;
|
|
|
|
cmd = IADDR2DTEST(addr) | 2; /* write */
|
|
|
|
/*
|
|
* Writes to DTEST_DATA[0:1] need to be atomic with write to DTEST_COMMAND
|
|
* While in exception context - atomicity is guaranteed or double fault
|
|
*/
|
|
spin_lock_irqsave(&dtest_lock, flags);
|
|
|
|
bfin_write_DTEST_DATA0(data & 0xFFFFFFFF);
|
|
bfin_write_DTEST_DATA1(data >> 32);
|
|
|
|
/* use the builtin, since interrupts are already turned off */
|
|
__builtin_bfin_csync();
|
|
bfin_write_DTEST_COMMAND(cmd);
|
|
__builtin_bfin_csync();
|
|
|
|
bfin_write_DTEST_COMMAND(0);
|
|
__builtin_bfin_csync();
|
|
|
|
spin_unlock_irqrestore(&dtest_lock, flags);
|
|
}
|
|
|
|
static uint64_t isram_read(const void *addr)
|
|
{
|
|
uint32_t cmd;
|
|
unsigned long flags;
|
|
uint64_t ret;
|
|
|
|
if (unlikely(addr > (void *)(L1_CODE_START + L1_CODE_LENGTH)))
|
|
return 0;
|
|
|
|
cmd = IADDR2DTEST(addr) | 0; /* read */
|
|
|
|
/*
|
|
* Reads of DTEST_DATA[0:1] need to be atomic with write to DTEST_COMMAND
|
|
* While in exception context - atomicity is guaranteed or double fault
|
|
*/
|
|
spin_lock_irqsave(&dtest_lock, flags);
|
|
/* use the builtin, since interrupts are already turned off */
|
|
__builtin_bfin_csync();
|
|
bfin_write_DTEST_COMMAND(cmd);
|
|
__builtin_bfin_csync();
|
|
ret = bfin_read_DTEST_DATA0() | ((uint64_t)bfin_read_DTEST_DATA1() << 32);
|
|
|
|
bfin_write_DTEST_COMMAND(0);
|
|
__builtin_bfin_csync();
|
|
spin_unlock_irqrestore(&dtest_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool isram_check_addr(const void *addr, size_t n)
|
|
{
|
|
if ((addr >= (void *)L1_CODE_START) &&
|
|
(addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))) {
|
|
if (unlikely((addr + n) > (void *)(L1_CODE_START + L1_CODE_LENGTH))) {
|
|
show_stack(NULL, NULL);
|
|
pr_err("copy involving %p length (%zu) too long\n", addr, n);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The isram_memcpy() function copies n bytes from memory area src to memory area dest.
|
|
* The isram_memcpy() function returns a pointer to dest.
|
|
* Either dest or src can be in L1 instruction sram.
|
|
*/
|
|
void *isram_memcpy(void *dest, const void *src, size_t n)
|
|
{
|
|
uint64_t data_in = 0, data_out = 0;
|
|
size_t count;
|
|
bool dest_in_l1, src_in_l1, need_data, put_data;
|
|
unsigned char byte, *src_byte, *dest_byte;
|
|
|
|
src_byte = (unsigned char *)src;
|
|
dest_byte = (unsigned char *)dest;
|
|
|
|
dest_in_l1 = isram_check_addr(dest, n);
|
|
src_in_l1 = isram_check_addr(src, n);
|
|
|
|
need_data = true;
|
|
put_data = true;
|
|
for (count = 0; count < n; count++) {
|
|
if (src_in_l1) {
|
|
if (need_data) {
|
|
data_in = isram_read(src + count);
|
|
need_data = false;
|
|
}
|
|
|
|
if (ADDR2LAST(src + count))
|
|
need_data = true;
|
|
|
|
byte = (unsigned char)((data_in >> ADDR2OFFSET(src + count)) & 0xff);
|
|
|
|
} else {
|
|
/* src is in L2 or L3 - so just dereference*/
|
|
byte = src_byte[count];
|
|
}
|
|
|
|
if (dest_in_l1) {
|
|
if (put_data) {
|
|
data_out = isram_read(dest + count);
|
|
put_data = false;
|
|
}
|
|
|
|
data_out &= ~((uint64_t)0xff << ADDR2OFFSET(dest + count));
|
|
data_out |= ((uint64_t)byte << ADDR2OFFSET(dest + count));
|
|
|
|
if (ADDR2LAST(dest + count)) {
|
|
put_data = true;
|
|
isram_write(dest + count, data_out);
|
|
}
|
|
} else {
|
|
/* dest in L2 or L3 - so just dereference */
|
|
dest_byte[count] = byte;
|
|
}
|
|
}
|
|
|
|
/* make sure we dump the last byte if necessary */
|
|
if (dest_in_l1 && !put_data)
|
|
isram_write(dest + count, data_out);
|
|
|
|
return dest;
|
|
}
|
|
EXPORT_SYMBOL(isram_memcpy);
|
|
|
|
#ifdef CONFIG_BFIN_ISRAM_SELF_TEST
|
|
|
|
static int test_len = 0x20000;
|
|
|
|
static __init void hex_dump(unsigned char *buf, int len)
|
|
{
|
|
while (len--)
|
|
pr_cont("%02x", *buf++);
|
|
}
|
|
|
|
static __init int isram_read_test(char *sdram, void *l1inst)
|
|
{
|
|
int i, ret = 0;
|
|
uint64_t data1, data2;
|
|
|
|
pr_info("INFO: running isram_read tests\n");
|
|
|
|
/* setup some different data to play with */
|
|
for (i = 0; i < test_len; ++i)
|
|
sdram[i] = i % 255;
|
|
dma_memcpy(l1inst, sdram, test_len);
|
|
|
|
/* make sure we can read the L1 inst */
|
|
for (i = 0; i < test_len; i += sizeof(uint64_t)) {
|
|
data1 = isram_read(l1inst + i);
|
|
memcpy(&data2, sdram + i, sizeof(data2));
|
|
if (data1 != data2) {
|
|
pr_err("FAIL: isram_read(%p) returned %#llx but wanted %#llx\n",
|
|
l1inst + i, data1, data2);
|
|
++ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __init int isram_write_test(char *sdram, void *l1inst)
|
|
{
|
|
int i, ret = 0;
|
|
uint64_t data1, data2;
|
|
|
|
pr_info("INFO: running isram_write tests\n");
|
|
|
|
/* setup some different data to play with */
|
|
memset(sdram, 0, test_len * 2);
|
|
dma_memcpy(l1inst, sdram, test_len);
|
|
for (i = 0; i < test_len; ++i)
|
|
sdram[i] = i % 255;
|
|
|
|
/* make sure we can write the L1 inst */
|
|
for (i = 0; i < test_len; i += sizeof(uint64_t)) {
|
|
memcpy(&data1, sdram + i, sizeof(data1));
|
|
isram_write(l1inst + i, data1);
|
|
data2 = isram_read(l1inst + i);
|
|
if (data1 != data2) {
|
|
pr_err("FAIL: isram_write(%p, %#llx) != %#llx\n",
|
|
l1inst + i, data1, data2);
|
|
++ret;
|
|
}
|
|
}
|
|
|
|
dma_memcpy(sdram + test_len, l1inst, test_len);
|
|
if (memcmp(sdram, sdram + test_len, test_len)) {
|
|
pr_err("FAIL: isram_write() did not work properly\n");
|
|
++ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __init int
|
|
_isram_memcpy_test(char pattern, void *sdram, void *l1inst, const char *smemcpy,
|
|
void *(*fmemcpy)(void *, const void *, size_t))
|
|
{
|
|
memset(sdram, pattern, test_len);
|
|
fmemcpy(l1inst, sdram, test_len);
|
|
fmemcpy(sdram + test_len, l1inst, test_len);
|
|
if (memcmp(sdram, sdram + test_len, test_len)) {
|
|
pr_err("FAIL: %s(%p <=> %p, %#x) failed (data is %#x)\n",
|
|
smemcpy, l1inst, sdram, test_len, pattern);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#define _isram_memcpy_test(a, b, c, d) _isram_memcpy_test(a, b, c, #d, d)
|
|
|
|
static __init int isram_memcpy_test(char *sdram, void *l1inst)
|
|
{
|
|
int i, j, thisret, ret = 0;
|
|
|
|
/* check broad isram_memcpy() */
|
|
pr_info("INFO: running broad isram_memcpy tests\n");
|
|
for (i = 0xf; i >= 0; --i)
|
|
ret += _isram_memcpy_test(i, sdram, l1inst, isram_memcpy);
|
|
|
|
/* check read of small, unaligned, and hardware 64bit limits */
|
|
pr_info("INFO: running isram_memcpy (read) tests\n");
|
|
|
|
/* setup some different data to play with */
|
|
for (i = 0; i < test_len; ++i)
|
|
sdram[i] = i % 255;
|
|
dma_memcpy(l1inst, sdram, test_len);
|
|
|
|
thisret = 0;
|
|
for (i = 0; i < test_len - 32; ++i) {
|
|
unsigned char cmp[32];
|
|
for (j = 1; j <= 32; ++j) {
|
|
memset(cmp, 0, sizeof(cmp));
|
|
isram_memcpy(cmp, l1inst + i, j);
|
|
if (memcmp(cmp, sdram + i, j)) {
|
|
pr_err("FAIL: %p:", l1inst + 1);
|
|
hex_dump(cmp, j);
|
|
pr_cont(" SDRAM:");
|
|
hex_dump(sdram + i, j);
|
|
pr_cont("\n");
|
|
if (++thisret > 20) {
|
|
pr_err("FAIL: skipping remaining series\n");
|
|
i = test_len;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ret += thisret;
|
|
|
|
/* check write of small, unaligned, and hardware 64bit limits */
|
|
pr_info("INFO: running isram_memcpy (write) tests\n");
|
|
|
|
memset(sdram + test_len, 0, test_len);
|
|
dma_memcpy(l1inst, sdram + test_len, test_len);
|
|
|
|
thisret = 0;
|
|
for (i = 0; i < test_len - 32; ++i) {
|
|
unsigned char cmp[32];
|
|
for (j = 1; j <= 32; ++j) {
|
|
isram_memcpy(l1inst + i, sdram + i, j);
|
|
dma_memcpy(cmp, l1inst + i, j);
|
|
if (memcmp(cmp, sdram + i, j)) {
|
|
pr_err("FAIL: %p:", l1inst + i);
|
|
hex_dump(cmp, j);
|
|
pr_cont(" SDRAM:");
|
|
hex_dump(sdram + i, j);
|
|
pr_cont("\n");
|
|
if (++thisret > 20) {
|
|
pr_err("FAIL: skipping remaining series\n");
|
|
i = test_len;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ret += thisret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __init int isram_test_init(void)
|
|
{
|
|
int ret;
|
|
char *sdram;
|
|
void *l1inst;
|
|
|
|
/* Try to test as much of L1SRAM as possible */
|
|
while (test_len) {
|
|
test_len >>= 1;
|
|
l1inst = l1_inst_sram_alloc(test_len);
|
|
if (l1inst)
|
|
break;
|
|
}
|
|
if (!l1inst) {
|
|
pr_warning("SKIP: could not allocate L1 inst\n");
|
|
return 0;
|
|
}
|
|
pr_info("INFO: testing %#x bytes (%p - %p)\n",
|
|
test_len, l1inst, l1inst + test_len);
|
|
|
|
sdram = kmalloc(test_len * 2, GFP_KERNEL);
|
|
if (!sdram) {
|
|
sram_free(l1inst);
|
|
pr_warning("SKIP: could not allocate sdram\n");
|
|
return 0;
|
|
}
|
|
|
|
/* sanity check initial L1 inst state */
|
|
ret = 1;
|
|
pr_info("INFO: running initial dma_memcpy checks %p\n", sdram);
|
|
if (_isram_memcpy_test(0xa, sdram, l1inst, dma_memcpy))
|
|
goto abort;
|
|
if (_isram_memcpy_test(0x5, sdram, l1inst, dma_memcpy))
|
|
goto abort;
|
|
|
|
ret = 0;
|
|
ret += isram_read_test(sdram, l1inst);
|
|
ret += isram_write_test(sdram, l1inst);
|
|
ret += isram_memcpy_test(sdram, l1inst);
|
|
|
|
abort:
|
|
sram_free(l1inst);
|
|
kfree(sdram);
|
|
|
|
if (ret)
|
|
return -EIO;
|
|
|
|
pr_info("PASS: all tests worked !\n");
|
|
return 0;
|
|
}
|
|
late_initcall(isram_test_init);
|
|
|
|
static __exit void isram_test_exit(void)
|
|
{
|
|
/* stub to allow unloading */
|
|
}
|
|
module_exit(isram_test_exit);
|
|
|
|
#endif
|