mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 00:40:55 +07:00
0195c00244
-----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQIVAwUAT3NKzROxKuMESys7AQKElw/+JyDxJSlj+g+nymkx8IVVuU8CsEwNLgRk 8KEnRfLhGtkXFLSJYWO6jzGo16F8Uqli1PdMFte/wagSv0285/HZaKlkkBVHdJ/m u40oSjgT013bBh6MQ0Oaf8pFezFUiQB5zPOA9QGaLVGDLXCmgqUgd7exaD5wRIwB ZmyItjZeAVnDfk1R+ZiNYytHAi8A5wSB+eFDCIQYgyulA1Igd1UnRtx+dRKbvc/m rWQ6KWbZHIdvP1ksd8wHHkrlUD2pEeJ8glJLsZUhMm/5oMf/8RmOCvmo8rvE/qwl eDQ1h4cGYlfjobxXZMHqAN9m7Jg2bI946HZjdb7/7oCeO6VW3FwPZ/Ic75p+wp45 HXJTItufERYk6QxShiOKvA+QexnYwY0IT5oRP4DrhdVB/X9cl2MoaZHC+RbYLQy+ /5VNZKi38iK4F9AbFamS7kd0i5QszA/ZzEzKZ6VMuOp3W/fagpn4ZJT1LIA3m4A9 Q0cj24mqeyCfjysu0TMbPtaN+Yjeu1o1OFRvM8XffbZsp5bNzuTDEvviJ2NXw4vK 4qUHulhYSEWcu9YgAZXvEWDEM78FXCkg2v/CrZXH5tyc95kUkMPcgG+QZBB5wElR FaOKpiC/BuNIGEf02IZQ4nfDxE90QwnDeoYeV+FvNj9UEOopJ5z5bMPoTHxm4cCD NypQthI85pc= =G9mT -----END PGP SIGNATURE----- Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system Pull "Disintegrate and delete asm/system.h" from David Howells: "Here are a bunch of patches to disintegrate asm/system.h into a set of separate bits to relieve the problem of circular inclusion dependencies. I've built all the working defconfigs from all the arches that I can and made sure that they don't break. The reason for these patches is that I recently encountered a circular dependency problem that came about when I produced some patches to optimise get_order() by rewriting it to use ilog2(). This uses bitops - and on the SH arch asm/bitops.h drags in asm-generic/get_order.h by a circuituous route involving asm/system.h. The main difficulty seems to be asm/system.h. It holds a number of low level bits with no/few dependencies that are commonly used (eg. memory barriers) and a number of bits with more dependencies that aren't used in many places (eg. switch_to()). These patches break asm/system.h up into the following core pieces: (1) asm/barrier.h Move memory barriers here. This already done for MIPS and Alpha. (2) asm/switch_to.h Move switch_to() and related stuff here. (3) asm/exec.h Move arch_align_stack() here. Other process execution related bits could perhaps go here from asm/processor.h. (4) asm/cmpxchg.h Move xchg() and cmpxchg() here as they're full word atomic ops and frequently used by atomic_xchg() and atomic_cmpxchg(). (5) asm/bug.h Move die() and related bits. (6) asm/auxvec.h Move AT_VECTOR_SIZE_ARCH here. Other arch headers are created as needed on a per-arch basis." Fixed up some conflicts from other header file cleanups and moving code around that has happened in the meantime, so David's testing is somewhat weakened by that. We'll find out anything that got broken and fix it.. * tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits) Delete all instances of asm/system.h Remove all #inclusions of asm/system.h Add #includes needed to permit the removal of asm/system.h Move all declarations of free_initmem() to linux/mm.h Disintegrate asm/system.h for OpenRISC Split arch_align_stack() out from asm-generic/system.h Split the switch_to() wrapper out of asm-generic/system.h Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h Create asm-generic/barrier.h Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h Disintegrate asm/system.h for Xtensa Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt] Disintegrate asm/system.h for Tile Disintegrate asm/system.h for Sparc Disintegrate asm/system.h for SH Disintegrate asm/system.h for Score Disintegrate asm/system.h for S390 Disintegrate asm/system.h for PowerPC Disintegrate asm/system.h for PA-RISC Disintegrate asm/system.h for MN10300 ...
3317 lines
85 KiB
C
3317 lines
85 KiB
C
/*
|
|
* linux/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
|
|
*
|
|
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
|
|
* Changes to use preallocated sigqueue structures
|
|
* to allow signals to be sent reliably.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/signalfd.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/user_namespace.h>
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/signal.h>
|
|
|
|
#include <asm/param.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/siginfo.h>
|
|
#include <asm/cacheflush.h>
|
|
#include "audit.h" /* audit_signal_info() */
|
|
|
|
/*
|
|
* SLAB caches for signal bits.
|
|
*/
|
|
|
|
static struct kmem_cache *sigqueue_cachep;
|
|
|
|
int print_fatal_signals __read_mostly;
|
|
|
|
static void __user *sig_handler(struct task_struct *t, int sig)
|
|
{
|
|
return t->sighand->action[sig - 1].sa.sa_handler;
|
|
}
|
|
|
|
static int sig_handler_ignored(void __user *handler, int sig)
|
|
{
|
|
/* Is it explicitly or implicitly ignored? */
|
|
return handler == SIG_IGN ||
|
|
(handler == SIG_DFL && sig_kernel_ignore(sig));
|
|
}
|
|
|
|
static int sig_task_ignored(struct task_struct *t, int sig, bool force)
|
|
{
|
|
void __user *handler;
|
|
|
|
handler = sig_handler(t, sig);
|
|
|
|
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
|
|
handler == SIG_DFL && !force)
|
|
return 1;
|
|
|
|
return sig_handler_ignored(handler, sig);
|
|
}
|
|
|
|
static int sig_ignored(struct task_struct *t, int sig, bool force)
|
|
{
|
|
/*
|
|
* Blocked signals are never ignored, since the
|
|
* signal handler may change by the time it is
|
|
* unblocked.
|
|
*/
|
|
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
|
|
return 0;
|
|
|
|
if (!sig_task_ignored(t, sig, force))
|
|
return 0;
|
|
|
|
/*
|
|
* Tracers may want to know about even ignored signals.
|
|
*/
|
|
return !t->ptrace;
|
|
}
|
|
|
|
/*
|
|
* Re-calculate pending state from the set of locally pending
|
|
* signals, globally pending signals, and blocked signals.
|
|
*/
|
|
static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
|
|
{
|
|
unsigned long ready;
|
|
long i;
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
|
|
ready |= signal->sig[i] &~ blocked->sig[i];
|
|
break;
|
|
|
|
case 4: ready = signal->sig[3] &~ blocked->sig[3];
|
|
ready |= signal->sig[2] &~ blocked->sig[2];
|
|
ready |= signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 2: ready = signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 1: ready = signal->sig[0] &~ blocked->sig[0];
|
|
}
|
|
return ready != 0;
|
|
}
|
|
|
|
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
|
|
|
|
static int recalc_sigpending_tsk(struct task_struct *t)
|
|
{
|
|
if ((t->jobctl & JOBCTL_PENDING_MASK) ||
|
|
PENDING(&t->pending, &t->blocked) ||
|
|
PENDING(&t->signal->shared_pending, &t->blocked)) {
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
return 1;
|
|
}
|
|
/*
|
|
* We must never clear the flag in another thread, or in current
|
|
* when it's possible the current syscall is returning -ERESTART*.
|
|
* So we don't clear it here, and only callers who know they should do.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
|
|
* This is superfluous when called on current, the wakeup is a harmless no-op.
|
|
*/
|
|
void recalc_sigpending_and_wake(struct task_struct *t)
|
|
{
|
|
if (recalc_sigpending_tsk(t))
|
|
signal_wake_up(t, 0);
|
|
}
|
|
|
|
void recalc_sigpending(void)
|
|
{
|
|
if (!recalc_sigpending_tsk(current) && !freezing(current))
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
|
|
}
|
|
|
|
/* Given the mask, find the first available signal that should be serviced. */
|
|
|
|
#define SYNCHRONOUS_MASK \
|
|
(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
|
|
sigmask(SIGTRAP) | sigmask(SIGFPE))
|
|
|
|
int next_signal(struct sigpending *pending, sigset_t *mask)
|
|
{
|
|
unsigned long i, *s, *m, x;
|
|
int sig = 0;
|
|
|
|
s = pending->signal.sig;
|
|
m = mask->sig;
|
|
|
|
/*
|
|
* Handle the first word specially: it contains the
|
|
* synchronous signals that need to be dequeued first.
|
|
*/
|
|
x = *s &~ *m;
|
|
if (x) {
|
|
if (x & SYNCHRONOUS_MASK)
|
|
x &= SYNCHRONOUS_MASK;
|
|
sig = ffz(~x) + 1;
|
|
return sig;
|
|
}
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = 1; i < _NSIG_WORDS; ++i) {
|
|
x = *++s &~ *++m;
|
|
if (!x)
|
|
continue;
|
|
sig = ffz(~x) + i*_NSIG_BPW + 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
x = s[1] &~ m[1];
|
|
if (!x)
|
|
break;
|
|
sig = ffz(~x) + _NSIG_BPW + 1;
|
|
break;
|
|
|
|
case 1:
|
|
/* Nothing to do */
|
|
break;
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
static inline void print_dropped_signal(int sig)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
|
|
|
|
if (!print_fatal_signals)
|
|
return;
|
|
|
|
if (!__ratelimit(&ratelimit_state))
|
|
return;
|
|
|
|
printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
|
|
current->comm, current->pid, sig);
|
|
}
|
|
|
|
/**
|
|
* task_set_jobctl_pending - set jobctl pending bits
|
|
* @task: target task
|
|
* @mask: pending bits to set
|
|
*
|
|
* Clear @mask from @task->jobctl. @mask must be subset of
|
|
* %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
|
|
* %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
|
|
* cleared. If @task is already being killed or exiting, this function
|
|
* becomes noop.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*
|
|
* RETURNS:
|
|
* %true if @mask is set, %false if made noop because @task was dying.
|
|
*/
|
|
bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
|
|
{
|
|
BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
|
|
JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
|
|
BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
|
|
|
|
if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
|
|
return false;
|
|
|
|
if (mask & JOBCTL_STOP_SIGMASK)
|
|
task->jobctl &= ~JOBCTL_STOP_SIGMASK;
|
|
|
|
task->jobctl |= mask;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* task_clear_jobctl_trapping - clear jobctl trapping bit
|
|
* @task: target task
|
|
*
|
|
* If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
|
|
* Clear it and wake up the ptracer. Note that we don't need any further
|
|
* locking. @task->siglock guarantees that @task->parent points to the
|
|
* ptracer.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
void task_clear_jobctl_trapping(struct task_struct *task)
|
|
{
|
|
if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
|
|
task->jobctl &= ~JOBCTL_TRAPPING;
|
|
wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* task_clear_jobctl_pending - clear jobctl pending bits
|
|
* @task: target task
|
|
* @mask: pending bits to clear
|
|
*
|
|
* Clear @mask from @task->jobctl. @mask must be subset of
|
|
* %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
|
|
* STOP bits are cleared together.
|
|
*
|
|
* If clearing of @mask leaves no stop or trap pending, this function calls
|
|
* task_clear_jobctl_trapping().
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
|
|
{
|
|
BUG_ON(mask & ~JOBCTL_PENDING_MASK);
|
|
|
|
if (mask & JOBCTL_STOP_PENDING)
|
|
mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
|
|
|
|
task->jobctl &= ~mask;
|
|
|
|
if (!(task->jobctl & JOBCTL_PENDING_MASK))
|
|
task_clear_jobctl_trapping(task);
|
|
}
|
|
|
|
/**
|
|
* task_participate_group_stop - participate in a group stop
|
|
* @task: task participating in a group stop
|
|
*
|
|
* @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
|
|
* Group stop states are cleared and the group stop count is consumed if
|
|
* %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
|
|
* stop, the appropriate %SIGNAL_* flags are set.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*
|
|
* RETURNS:
|
|
* %true if group stop completion should be notified to the parent, %false
|
|
* otherwise.
|
|
*/
|
|
static bool task_participate_group_stop(struct task_struct *task)
|
|
{
|
|
struct signal_struct *sig = task->signal;
|
|
bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
|
|
|
|
WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
|
|
|
|
task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
|
|
|
|
if (!consume)
|
|
return false;
|
|
|
|
if (!WARN_ON_ONCE(sig->group_stop_count == 0))
|
|
sig->group_stop_count--;
|
|
|
|
/*
|
|
* Tell the caller to notify completion iff we are entering into a
|
|
* fresh group stop. Read comment in do_signal_stop() for details.
|
|
*/
|
|
if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
|
|
sig->flags = SIGNAL_STOP_STOPPED;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* allocate a new signal queue record
|
|
* - this may be called without locks if and only if t == current, otherwise an
|
|
* appropriate lock must be held to stop the target task from exiting
|
|
*/
|
|
static struct sigqueue *
|
|
__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
|
|
{
|
|
struct sigqueue *q = NULL;
|
|
struct user_struct *user;
|
|
|
|
/*
|
|
* Protect access to @t credentials. This can go away when all
|
|
* callers hold rcu read lock.
|
|
*/
|
|
rcu_read_lock();
|
|
user = get_uid(__task_cred(t)->user);
|
|
atomic_inc(&user->sigpending);
|
|
rcu_read_unlock();
|
|
|
|
if (override_rlimit ||
|
|
atomic_read(&user->sigpending) <=
|
|
task_rlimit(t, RLIMIT_SIGPENDING)) {
|
|
q = kmem_cache_alloc(sigqueue_cachep, flags);
|
|
} else {
|
|
print_dropped_signal(sig);
|
|
}
|
|
|
|
if (unlikely(q == NULL)) {
|
|
atomic_dec(&user->sigpending);
|
|
free_uid(user);
|
|
} else {
|
|
INIT_LIST_HEAD(&q->list);
|
|
q->flags = 0;
|
|
q->user = user;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
static void __sigqueue_free(struct sigqueue *q)
|
|
{
|
|
if (q->flags & SIGQUEUE_PREALLOC)
|
|
return;
|
|
atomic_dec(&q->user->sigpending);
|
|
free_uid(q->user);
|
|
kmem_cache_free(sigqueue_cachep, q);
|
|
}
|
|
|
|
void flush_sigqueue(struct sigpending *queue)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
sigemptyset(&queue->signal);
|
|
while (!list_empty(&queue->list)) {
|
|
q = list_entry(queue->list.next, struct sigqueue , list);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all pending signals for a task.
|
|
*/
|
|
void __flush_signals(struct task_struct *t)
|
|
{
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
flush_sigqueue(&t->pending);
|
|
flush_sigqueue(&t->signal->shared_pending);
|
|
}
|
|
|
|
void flush_signals(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
__flush_signals(t);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
}
|
|
|
|
static void __flush_itimer_signals(struct sigpending *pending)
|
|
{
|
|
sigset_t signal, retain;
|
|
struct sigqueue *q, *n;
|
|
|
|
signal = pending->signal;
|
|
sigemptyset(&retain);
|
|
|
|
list_for_each_entry_safe(q, n, &pending->list, list) {
|
|
int sig = q->info.si_signo;
|
|
|
|
if (likely(q->info.si_code != SI_TIMER)) {
|
|
sigaddset(&retain, sig);
|
|
} else {
|
|
sigdelset(&signal, sig);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
sigorsets(&pending->signal, &signal, &retain);
|
|
}
|
|
|
|
void flush_itimer_signals(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tsk->sighand->siglock, flags);
|
|
__flush_itimer_signals(&tsk->pending);
|
|
__flush_itimer_signals(&tsk->signal->shared_pending);
|
|
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
|
|
}
|
|
|
|
void ignore_signals(struct task_struct *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < _NSIG; ++i)
|
|
t->sighand->action[i].sa.sa_handler = SIG_IGN;
|
|
|
|
flush_signals(t);
|
|
}
|
|
|
|
/*
|
|
* Flush all handlers for a task.
|
|
*/
|
|
|
|
void
|
|
flush_signal_handlers(struct task_struct *t, int force_default)
|
|
{
|
|
int i;
|
|
struct k_sigaction *ka = &t->sighand->action[0];
|
|
for (i = _NSIG ; i != 0 ; i--) {
|
|
if (force_default || ka->sa.sa_handler != SIG_IGN)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
ka->sa.sa_flags = 0;
|
|
sigemptyset(&ka->sa.sa_mask);
|
|
ka++;
|
|
}
|
|
}
|
|
|
|
int unhandled_signal(struct task_struct *tsk, int sig)
|
|
{
|
|
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
|
|
if (is_global_init(tsk))
|
|
return 1;
|
|
if (handler != SIG_IGN && handler != SIG_DFL)
|
|
return 0;
|
|
/* if ptraced, let the tracer determine */
|
|
return !tsk->ptrace;
|
|
}
|
|
|
|
/*
|
|
* Notify the system that a driver wants to block all signals for this
|
|
* process, and wants to be notified if any signals at all were to be
|
|
* sent/acted upon. If the notifier routine returns non-zero, then the
|
|
* signal will be acted upon after all. If the notifier routine returns 0,
|
|
* then then signal will be blocked. Only one block per process is
|
|
* allowed. priv is a pointer to private data that the notifier routine
|
|
* can use to determine if the signal should be blocked or not.
|
|
*/
|
|
void
|
|
block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(¤t->sighand->siglock, flags);
|
|
current->notifier_mask = mask;
|
|
current->notifier_data = priv;
|
|
current->notifier = notifier;
|
|
spin_unlock_irqrestore(¤t->sighand->siglock, flags);
|
|
}
|
|
|
|
/* Notify the system that blocking has ended. */
|
|
|
|
void
|
|
unblock_all_signals(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(¤t->sighand->siglock, flags);
|
|
current->notifier = NULL;
|
|
current->notifier_data = NULL;
|
|
recalc_sigpending();
|
|
spin_unlock_irqrestore(¤t->sighand->siglock, flags);
|
|
}
|
|
|
|
static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
|
|
{
|
|
struct sigqueue *q, *first = NULL;
|
|
|
|
/*
|
|
* Collect the siginfo appropriate to this signal. Check if
|
|
* there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry(q, &list->list, list) {
|
|
if (q->info.si_signo == sig) {
|
|
if (first)
|
|
goto still_pending;
|
|
first = q;
|
|
}
|
|
}
|
|
|
|
sigdelset(&list->signal, sig);
|
|
|
|
if (first) {
|
|
still_pending:
|
|
list_del_init(&first->list);
|
|
copy_siginfo(info, &first->info);
|
|
__sigqueue_free(first);
|
|
} else {
|
|
/*
|
|
* Ok, it wasn't in the queue. This must be
|
|
* a fast-pathed signal or we must have been
|
|
* out of queue space. So zero out the info.
|
|
*/
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
info->si_pid = 0;
|
|
info->si_uid = 0;
|
|
}
|
|
}
|
|
|
|
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
|
|
siginfo_t *info)
|
|
{
|
|
int sig = next_signal(pending, mask);
|
|
|
|
if (sig) {
|
|
if (current->notifier) {
|
|
if (sigismember(current->notifier_mask, sig)) {
|
|
if (!(current->notifier)(current->notifier_data)) {
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
collect_signal(sig, pending, info);
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* Dequeue a signal and return the element to the caller, which is
|
|
* expected to free it.
|
|
*
|
|
* All callers have to hold the siglock.
|
|
*/
|
|
int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
|
|
{
|
|
int signr;
|
|
|
|
/* We only dequeue private signals from ourselves, we don't let
|
|
* signalfd steal them
|
|
*/
|
|
signr = __dequeue_signal(&tsk->pending, mask, info);
|
|
if (!signr) {
|
|
signr = __dequeue_signal(&tsk->signal->shared_pending,
|
|
mask, info);
|
|
/*
|
|
* itimer signal ?
|
|
*
|
|
* itimers are process shared and we restart periodic
|
|
* itimers in the signal delivery path to prevent DoS
|
|
* attacks in the high resolution timer case. This is
|
|
* compliant with the old way of self-restarting
|
|
* itimers, as the SIGALRM is a legacy signal and only
|
|
* queued once. Changing the restart behaviour to
|
|
* restart the timer in the signal dequeue path is
|
|
* reducing the timer noise on heavy loaded !highres
|
|
* systems too.
|
|
*/
|
|
if (unlikely(signr == SIGALRM)) {
|
|
struct hrtimer *tmr = &tsk->signal->real_timer;
|
|
|
|
if (!hrtimer_is_queued(tmr) &&
|
|
tsk->signal->it_real_incr.tv64 != 0) {
|
|
hrtimer_forward(tmr, tmr->base->get_time(),
|
|
tsk->signal->it_real_incr);
|
|
hrtimer_restart(tmr);
|
|
}
|
|
}
|
|
}
|
|
|
|
recalc_sigpending();
|
|
if (!signr)
|
|
return 0;
|
|
|
|
if (unlikely(sig_kernel_stop(signr))) {
|
|
/*
|
|
* Set a marker that we have dequeued a stop signal. Our
|
|
* caller might release the siglock and then the pending
|
|
* stop signal it is about to process is no longer in the
|
|
* pending bitmasks, but must still be cleared by a SIGCONT
|
|
* (and overruled by a SIGKILL). So those cases clear this
|
|
* shared flag after we've set it. Note that this flag may
|
|
* remain set after the signal we return is ignored or
|
|
* handled. That doesn't matter because its only purpose
|
|
* is to alert stop-signal processing code when another
|
|
* processor has come along and cleared the flag.
|
|
*/
|
|
current->jobctl |= JOBCTL_STOP_DEQUEUED;
|
|
}
|
|
if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
|
|
/*
|
|
* Release the siglock to ensure proper locking order
|
|
* of timer locks outside of siglocks. Note, we leave
|
|
* irqs disabled here, since the posix-timers code is
|
|
* about to disable them again anyway.
|
|
*/
|
|
spin_unlock(&tsk->sighand->siglock);
|
|
do_schedule_next_timer(info);
|
|
spin_lock(&tsk->sighand->siglock);
|
|
}
|
|
return signr;
|
|
}
|
|
|
|
/*
|
|
* Tell a process that it has a new active signal..
|
|
*
|
|
* NOTE! we rely on the previous spin_lock to
|
|
* lock interrupts for us! We can only be called with
|
|
* "siglock" held, and the local interrupt must
|
|
* have been disabled when that got acquired!
|
|
*
|
|
* No need to set need_resched since signal event passing
|
|
* goes through ->blocked
|
|
*/
|
|
void signal_wake_up(struct task_struct *t, int resume)
|
|
{
|
|
unsigned int mask;
|
|
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
|
|
/*
|
|
* For SIGKILL, we want to wake it up in the stopped/traced/killable
|
|
* case. We don't check t->state here because there is a race with it
|
|
* executing another processor and just now entering stopped state.
|
|
* By using wake_up_state, we ensure the process will wake up and
|
|
* handle its death signal.
|
|
*/
|
|
mask = TASK_INTERRUPTIBLE;
|
|
if (resume)
|
|
mask |= TASK_WAKEKILL;
|
|
if (!wake_up_state(t, mask))
|
|
kick_process(t);
|
|
}
|
|
|
|
/*
|
|
* Remove signals in mask from the pending set and queue.
|
|
* Returns 1 if any signals were found.
|
|
*
|
|
* All callers must be holding the siglock.
|
|
*
|
|
* This version takes a sigset mask and looks at all signals,
|
|
* not just those in the first mask word.
|
|
*/
|
|
static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
sigset_t m;
|
|
|
|
sigandsets(&m, mask, &s->signal);
|
|
if (sigisemptyset(&m))
|
|
return 0;
|
|
|
|
sigandnsets(&s->signal, &s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (sigismember(mask, q->info.si_signo)) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
/*
|
|
* Remove signals in mask from the pending set and queue.
|
|
* Returns 1 if any signals were found.
|
|
*
|
|
* All callers must be holding the siglock.
|
|
*/
|
|
static int rm_from_queue(unsigned long mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
|
|
if (!sigtestsetmask(&s->signal, mask))
|
|
return 0;
|
|
|
|
sigdelsetmask(&s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (q->info.si_signo < SIGRTMIN &&
|
|
(mask & sigmask(q->info.si_signo))) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline int is_si_special(const struct siginfo *info)
|
|
{
|
|
return info <= SEND_SIG_FORCED;
|
|
}
|
|
|
|
static inline bool si_fromuser(const struct siginfo *info)
|
|
{
|
|
return info == SEND_SIG_NOINFO ||
|
|
(!is_si_special(info) && SI_FROMUSER(info));
|
|
}
|
|
|
|
/*
|
|
* called with RCU read lock from check_kill_permission()
|
|
*/
|
|
static int kill_ok_by_cred(struct task_struct *t)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
const struct cred *tcred = __task_cred(t);
|
|
|
|
if (cred->user->user_ns == tcred->user->user_ns &&
|
|
(cred->euid == tcred->suid ||
|
|
cred->euid == tcred->uid ||
|
|
cred->uid == tcred->suid ||
|
|
cred->uid == tcred->uid))
|
|
return 1;
|
|
|
|
if (ns_capable(tcred->user->user_ns, CAP_KILL))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Bad permissions for sending the signal
|
|
* - the caller must hold the RCU read lock
|
|
*/
|
|
static int check_kill_permission(int sig, struct siginfo *info,
|
|
struct task_struct *t)
|
|
{
|
|
struct pid *sid;
|
|
int error;
|
|
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
if (!si_fromuser(info))
|
|
return 0;
|
|
|
|
error = audit_signal_info(sig, t); /* Let audit system see the signal */
|
|
if (error)
|
|
return error;
|
|
|
|
if (!same_thread_group(current, t) &&
|
|
!kill_ok_by_cred(t)) {
|
|
switch (sig) {
|
|
case SIGCONT:
|
|
sid = task_session(t);
|
|
/*
|
|
* We don't return the error if sid == NULL. The
|
|
* task was unhashed, the caller must notice this.
|
|
*/
|
|
if (!sid || sid == task_session(current))
|
|
break;
|
|
default:
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
return security_task_kill(t, info, sig, 0);
|
|
}
|
|
|
|
/**
|
|
* ptrace_trap_notify - schedule trap to notify ptracer
|
|
* @t: tracee wanting to notify tracer
|
|
*
|
|
* This function schedules sticky ptrace trap which is cleared on the next
|
|
* TRAP_STOP to notify ptracer of an event. @t must have been seized by
|
|
* ptracer.
|
|
*
|
|
* If @t is running, STOP trap will be taken. If trapped for STOP and
|
|
* ptracer is listening for events, tracee is woken up so that it can
|
|
* re-trap for the new event. If trapped otherwise, STOP trap will be
|
|
* eventually taken without returning to userland after the existing traps
|
|
* are finished by PTRACE_CONT.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
static void ptrace_trap_notify(struct task_struct *t)
|
|
{
|
|
WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
|
|
assert_spin_locked(&t->sighand->siglock);
|
|
|
|
task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
|
|
signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
|
|
}
|
|
|
|
/*
|
|
* Handle magic process-wide effects of stop/continue signals. Unlike
|
|
* the signal actions, these happen immediately at signal-generation
|
|
* time regardless of blocking, ignoring, or handling. This does the
|
|
* actual continuing for SIGCONT, but not the actual stopping for stop
|
|
* signals. The process stop is done as a signal action for SIG_DFL.
|
|
*
|
|
* Returns true if the signal should be actually delivered, otherwise
|
|
* it should be dropped.
|
|
*/
|
|
static int prepare_signal(int sig, struct task_struct *p, bool force)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
|
|
if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
|
|
/*
|
|
* The process is in the middle of dying, nothing to do.
|
|
*/
|
|
} else if (sig_kernel_stop(sig)) {
|
|
/*
|
|
* This is a stop signal. Remove SIGCONT from all queues.
|
|
*/
|
|
rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
|
|
t = p;
|
|
do {
|
|
rm_from_queue(sigmask(SIGCONT), &t->pending);
|
|
} while_each_thread(p, t);
|
|
} else if (sig == SIGCONT) {
|
|
unsigned int why;
|
|
/*
|
|
* Remove all stop signals from all queues, wake all threads.
|
|
*/
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
|
|
t = p;
|
|
do {
|
|
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
|
|
rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
|
|
if (likely(!(t->ptrace & PT_SEIZED)))
|
|
wake_up_state(t, __TASK_STOPPED);
|
|
else
|
|
ptrace_trap_notify(t);
|
|
} while_each_thread(p, t);
|
|
|
|
/*
|
|
* Notify the parent with CLD_CONTINUED if we were stopped.
|
|
*
|
|
* If we were in the middle of a group stop, we pretend it
|
|
* was already finished, and then continued. Since SIGCHLD
|
|
* doesn't queue we report only CLD_STOPPED, as if the next
|
|
* CLD_CONTINUED was dropped.
|
|
*/
|
|
why = 0;
|
|
if (signal->flags & SIGNAL_STOP_STOPPED)
|
|
why |= SIGNAL_CLD_CONTINUED;
|
|
else if (signal->group_stop_count)
|
|
why |= SIGNAL_CLD_STOPPED;
|
|
|
|
if (why) {
|
|
/*
|
|
* The first thread which returns from do_signal_stop()
|
|
* will take ->siglock, notice SIGNAL_CLD_MASK, and
|
|
* notify its parent. See get_signal_to_deliver().
|
|
*/
|
|
signal->flags = why | SIGNAL_STOP_CONTINUED;
|
|
signal->group_stop_count = 0;
|
|
signal->group_exit_code = 0;
|
|
}
|
|
}
|
|
|
|
return !sig_ignored(p, sig, force);
|
|
}
|
|
|
|
/*
|
|
* Test if P wants to take SIG. After we've checked all threads with this,
|
|
* it's equivalent to finding no threads not blocking SIG. Any threads not
|
|
* blocking SIG were ruled out because they are not running and already
|
|
* have pending signals. Such threads will dequeue from the shared queue
|
|
* as soon as they're available, so putting the signal on the shared queue
|
|
* will be equivalent to sending it to one such thread.
|
|
*/
|
|
static inline int wants_signal(int sig, struct task_struct *p)
|
|
{
|
|
if (sigismember(&p->blocked, sig))
|
|
return 0;
|
|
if (p->flags & PF_EXITING)
|
|
return 0;
|
|
if (sig == SIGKILL)
|
|
return 1;
|
|
if (task_is_stopped_or_traced(p))
|
|
return 0;
|
|
return task_curr(p) || !signal_pending(p);
|
|
}
|
|
|
|
static void complete_signal(int sig, struct task_struct *p, int group)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Now find a thread we can wake up to take the signal off the queue.
|
|
*
|
|
* If the main thread wants the signal, it gets first crack.
|
|
* Probably the least surprising to the average bear.
|
|
*/
|
|
if (wants_signal(sig, p))
|
|
t = p;
|
|
else if (!group || thread_group_empty(p))
|
|
/*
|
|
* There is just one thread and it does not need to be woken.
|
|
* It will dequeue unblocked signals before it runs again.
|
|
*/
|
|
return;
|
|
else {
|
|
/*
|
|
* Otherwise try to find a suitable thread.
|
|
*/
|
|
t = signal->curr_target;
|
|
while (!wants_signal(sig, t)) {
|
|
t = next_thread(t);
|
|
if (t == signal->curr_target)
|
|
/*
|
|
* No thread needs to be woken.
|
|
* Any eligible threads will see
|
|
* the signal in the queue soon.
|
|
*/
|
|
return;
|
|
}
|
|
signal->curr_target = t;
|
|
}
|
|
|
|
/*
|
|
* Found a killable thread. If the signal will be fatal,
|
|
* then start taking the whole group down immediately.
|
|
*/
|
|
if (sig_fatal(p, sig) &&
|
|
!(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
|
|
!sigismember(&t->real_blocked, sig) &&
|
|
(sig == SIGKILL || !t->ptrace)) {
|
|
/*
|
|
* This signal will be fatal to the whole group.
|
|
*/
|
|
if (!sig_kernel_coredump(sig)) {
|
|
/*
|
|
* Start a group exit and wake everybody up.
|
|
* This way we don't have other threads
|
|
* running and doing things after a slower
|
|
* thread has the fatal signal pending.
|
|
*/
|
|
signal->flags = SIGNAL_GROUP_EXIT;
|
|
signal->group_exit_code = sig;
|
|
signal->group_stop_count = 0;
|
|
t = p;
|
|
do {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
} while_each_thread(p, t);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The signal is already in the shared-pending queue.
|
|
* Tell the chosen thread to wake up and dequeue it.
|
|
*/
|
|
signal_wake_up(t, sig == SIGKILL);
|
|
return;
|
|
}
|
|
|
|
static inline int legacy_queue(struct sigpending *signals, int sig)
|
|
{
|
|
return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
|
|
}
|
|
|
|
/*
|
|
* map the uid in struct cred into user namespace *ns
|
|
*/
|
|
static inline uid_t map_cred_ns(const struct cred *cred,
|
|
struct user_namespace *ns)
|
|
{
|
|
return user_ns_map_uid(ns, cred, cred->uid);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_NS
|
|
static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
|
|
{
|
|
if (current_user_ns() == task_cred_xxx(t, user_ns))
|
|
return;
|
|
|
|
if (SI_FROMKERNEL(info))
|
|
return;
|
|
|
|
info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
|
|
current_cred(), info->si_uid);
|
|
}
|
|
#else
|
|
static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
|
int group, int from_ancestor_ns)
|
|
{
|
|
struct sigpending *pending;
|
|
struct sigqueue *q;
|
|
int override_rlimit;
|
|
int ret = 0, result;
|
|
|
|
assert_spin_locked(&t->sighand->siglock);
|
|
|
|
result = TRACE_SIGNAL_IGNORED;
|
|
if (!prepare_signal(sig, t,
|
|
from_ancestor_ns || (info == SEND_SIG_FORCED)))
|
|
goto ret;
|
|
|
|
pending = group ? &t->signal->shared_pending : &t->pending;
|
|
/*
|
|
* Short-circuit ignored signals and support queuing
|
|
* exactly one non-rt signal, so that we can get more
|
|
* detailed information about the cause of the signal.
|
|
*/
|
|
result = TRACE_SIGNAL_ALREADY_PENDING;
|
|
if (legacy_queue(pending, sig))
|
|
goto ret;
|
|
|
|
result = TRACE_SIGNAL_DELIVERED;
|
|
/*
|
|
* fast-pathed signals for kernel-internal things like SIGSTOP
|
|
* or SIGKILL.
|
|
*/
|
|
if (info == SEND_SIG_FORCED)
|
|
goto out_set;
|
|
|
|
/*
|
|
* Real-time signals must be queued if sent by sigqueue, or
|
|
* some other real-time mechanism. It is implementation
|
|
* defined whether kill() does so. We attempt to do so, on
|
|
* the principle of least surprise, but since kill is not
|
|
* allowed to fail with EAGAIN when low on memory we just
|
|
* make sure at least one signal gets delivered and don't
|
|
* pass on the info struct.
|
|
*/
|
|
if (sig < SIGRTMIN)
|
|
override_rlimit = (is_si_special(info) || info->si_code >= 0);
|
|
else
|
|
override_rlimit = 0;
|
|
|
|
q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
|
|
override_rlimit);
|
|
if (q) {
|
|
list_add_tail(&q->list, &pending->list);
|
|
switch ((unsigned long) info) {
|
|
case (unsigned long) SEND_SIG_NOINFO:
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_USER;
|
|
q->info.si_pid = task_tgid_nr_ns(current,
|
|
task_active_pid_ns(t));
|
|
q->info.si_uid = current_uid();
|
|
break;
|
|
case (unsigned long) SEND_SIG_PRIV:
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_KERNEL;
|
|
q->info.si_pid = 0;
|
|
q->info.si_uid = 0;
|
|
break;
|
|
default:
|
|
copy_siginfo(&q->info, info);
|
|
if (from_ancestor_ns)
|
|
q->info.si_pid = 0;
|
|
break;
|
|
}
|
|
|
|
userns_fixup_signal_uid(&q->info, t);
|
|
|
|
} else if (!is_si_special(info)) {
|
|
if (sig >= SIGRTMIN && info->si_code != SI_USER) {
|
|
/*
|
|
* Queue overflow, abort. We may abort if the
|
|
* signal was rt and sent by user using something
|
|
* other than kill().
|
|
*/
|
|
result = TRACE_SIGNAL_OVERFLOW_FAIL;
|
|
ret = -EAGAIN;
|
|
goto ret;
|
|
} else {
|
|
/*
|
|
* This is a silent loss of information. We still
|
|
* send the signal, but the *info bits are lost.
|
|
*/
|
|
result = TRACE_SIGNAL_LOSE_INFO;
|
|
}
|
|
}
|
|
|
|
out_set:
|
|
signalfd_notify(t, sig);
|
|
sigaddset(&pending->signal, sig);
|
|
complete_signal(sig, t, group);
|
|
ret:
|
|
trace_signal_generate(sig, info, t, group, result);
|
|
return ret;
|
|
}
|
|
|
|
static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
|
int group)
|
|
{
|
|
int from_ancestor_ns = 0;
|
|
|
|
#ifdef CONFIG_PID_NS
|
|
from_ancestor_ns = si_fromuser(info) &&
|
|
!task_pid_nr_ns(current, task_active_pid_ns(t));
|
|
#endif
|
|
|
|
return __send_signal(sig, info, t, group, from_ancestor_ns);
|
|
}
|
|
|
|
static void print_fatal_signal(struct pt_regs *regs, int signr)
|
|
{
|
|
printk("%s/%d: potentially unexpected fatal signal %d.\n",
|
|
current->comm, task_pid_nr(current), signr);
|
|
|
|
#if defined(__i386__) && !defined(__arch_um__)
|
|
printk("code at %08lx: ", regs->ip);
|
|
{
|
|
int i;
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned char insn;
|
|
|
|
if (get_user(insn, (unsigned char *)(regs->ip + i)))
|
|
break;
|
|
printk("%02x ", insn);
|
|
}
|
|
}
|
|
#endif
|
|
printk("\n");
|
|
preempt_disable();
|
|
show_regs(regs);
|
|
preempt_enable();
|
|
}
|
|
|
|
static int __init setup_print_fatal_signals(char *str)
|
|
{
|
|
get_option (&str, &print_fatal_signals);
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("print-fatal-signals=", setup_print_fatal_signals);
|
|
|
|
int
|
|
__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
return send_signal(sig, info, p, 1);
|
|
}
|
|
|
|
static int
|
|
specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
|
|
{
|
|
return send_signal(sig, info, t, 0);
|
|
}
|
|
|
|
int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
|
|
bool group)
|
|
{
|
|
unsigned long flags;
|
|
int ret = -ESRCH;
|
|
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = send_signal(sig, info, p, group);
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Force a signal that the process can't ignore: if necessary
|
|
* we unblock the signal and change any SIG_IGN to SIG_DFL.
|
|
*
|
|
* Note: If we unblock the signal, we always reset it to SIG_DFL,
|
|
* since we do not want to have a signal handler that was blocked
|
|
* be invoked when user space had explicitly blocked it.
|
|
*
|
|
* We don't want to have recursive SIGSEGV's etc, for example,
|
|
* that is why we also clear SIGNAL_UNKILLABLE.
|
|
*/
|
|
int
|
|
force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
|
|
{
|
|
unsigned long int flags;
|
|
int ret, blocked, ignored;
|
|
struct k_sigaction *action;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
action = &t->sighand->action[sig-1];
|
|
ignored = action->sa.sa_handler == SIG_IGN;
|
|
blocked = sigismember(&t->blocked, sig);
|
|
if (blocked || ignored) {
|
|
action->sa.sa_handler = SIG_DFL;
|
|
if (blocked) {
|
|
sigdelset(&t->blocked, sig);
|
|
recalc_sigpending_and_wake(t);
|
|
}
|
|
}
|
|
if (action->sa.sa_handler == SIG_DFL)
|
|
t->signal->flags &= ~SIGNAL_UNKILLABLE;
|
|
ret = specific_send_sig_info(sig, info, t);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Nuke all other threads in the group.
|
|
*/
|
|
int zap_other_threads(struct task_struct *p)
|
|
{
|
|
struct task_struct *t = p;
|
|
int count = 0;
|
|
|
|
p->signal->group_stop_count = 0;
|
|
|
|
while_each_thread(p, t) {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
count++;
|
|
|
|
/* Don't bother with already dead threads */
|
|
if (t->exit_state)
|
|
continue;
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
|
|
unsigned long *flags)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
|
|
for (;;) {
|
|
local_irq_save(*flags);
|
|
rcu_read_lock();
|
|
sighand = rcu_dereference(tsk->sighand);
|
|
if (unlikely(sighand == NULL)) {
|
|
rcu_read_unlock();
|
|
local_irq_restore(*flags);
|
|
break;
|
|
}
|
|
|
|
spin_lock(&sighand->siglock);
|
|
if (likely(sighand == tsk->sighand)) {
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
spin_unlock(&sighand->siglock);
|
|
rcu_read_unlock();
|
|
local_irq_restore(*flags);
|
|
}
|
|
|
|
return sighand;
|
|
}
|
|
|
|
/*
|
|
* send signal info to all the members of a group
|
|
*/
|
|
int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
ret = check_kill_permission(sig, info, p);
|
|
rcu_read_unlock();
|
|
|
|
if (!ret && sig)
|
|
ret = do_send_sig_info(sig, info, p, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __kill_pgrp_info() sends a signal to a process group: this is what the tty
|
|
* control characters do (^C, ^Z etc)
|
|
* - the caller must hold at least a readlock on tasklist_lock
|
|
*/
|
|
int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
int retval, success;
|
|
|
|
success = 0;
|
|
retval = -ESRCH;
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
int err = group_send_sig_info(sig, info, p);
|
|
success |= !err;
|
|
retval = err;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
return success ? 0 : retval;
|
|
}
|
|
|
|
int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
|
|
{
|
|
int error = -ESRCH;
|
|
struct task_struct *p;
|
|
|
|
rcu_read_lock();
|
|
retry:
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (p) {
|
|
error = group_send_sig_info(sig, info, p);
|
|
if (unlikely(error == -ESRCH))
|
|
/*
|
|
* The task was unhashed in between, try again.
|
|
* If it is dead, pid_task() will return NULL,
|
|
* if we race with de_thread() it will find the
|
|
* new leader.
|
|
*/
|
|
goto retry;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
|
|
{
|
|
int error;
|
|
rcu_read_lock();
|
|
error = kill_pid_info(sig, info, find_vpid(pid));
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|
|
|
|
static int kill_as_cred_perm(const struct cred *cred,
|
|
struct task_struct *target)
|
|
{
|
|
const struct cred *pcred = __task_cred(target);
|
|
if (cred->user_ns != pcred->user_ns)
|
|
return 0;
|
|
if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
|
|
cred->uid != pcred->suid && cred->uid != pcred->uid)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* like kill_pid_info(), but doesn't use uid/euid of "current" */
|
|
int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
|
|
const struct cred *cred, u32 secid)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
|
|
if (!valid_signal(sig))
|
|
return ret;
|
|
|
|
rcu_read_lock();
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (!p) {
|
|
ret = -ESRCH;
|
|
goto out_unlock;
|
|
}
|
|
if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
|
|
ret = -EPERM;
|
|
goto out_unlock;
|
|
}
|
|
ret = security_task_kill(p, info, sig, secid);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
if (sig) {
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = __send_signal(sig, info, p, 1, 0);
|
|
unlock_task_sighand(p, &flags);
|
|
} else
|
|
ret = -ESRCH;
|
|
}
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
|
|
|
|
/*
|
|
* kill_something_info() interprets pid in interesting ways just like kill(2).
|
|
*
|
|
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
|
|
* is probably wrong. Should make it like BSD or SYSV.
|
|
*/
|
|
|
|
static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
|
|
{
|
|
int ret;
|
|
|
|
if (pid > 0) {
|
|
rcu_read_lock();
|
|
ret = kill_pid_info(sig, info, find_vpid(pid));
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
if (pid != -1) {
|
|
ret = __kill_pgrp_info(sig, info,
|
|
pid ? find_vpid(-pid) : task_pgrp(current));
|
|
} else {
|
|
int retval = 0, count = 0;
|
|
struct task_struct * p;
|
|
|
|
for_each_process(p) {
|
|
if (task_pid_vnr(p) > 1 &&
|
|
!same_thread_group(p, current)) {
|
|
int err = group_send_sig_info(sig, info, p);
|
|
++count;
|
|
if (err != -EPERM)
|
|
retval = err;
|
|
}
|
|
}
|
|
ret = count ? retval : -ESRCH;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These are for backward compatibility with the rest of the kernel source.
|
|
*/
|
|
|
|
int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Make sure legacy kernel users don't send in bad values
|
|
* (normal paths check this in check_kill_permission).
|
|
*/
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
return do_send_sig_info(sig, info, p, false);
|
|
}
|
|
|
|
#define __si_special(priv) \
|
|
((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
|
|
|
|
int
|
|
send_sig(int sig, struct task_struct *p, int priv)
|
|
{
|
|
return send_sig_info(sig, __si_special(priv), p);
|
|
}
|
|
|
|
void
|
|
force_sig(int sig, struct task_struct *p)
|
|
{
|
|
force_sig_info(sig, SEND_SIG_PRIV, p);
|
|
}
|
|
|
|
/*
|
|
* When things go south during signal handling, we
|
|
* will force a SIGSEGV. And if the signal that caused
|
|
* the problem was already a SIGSEGV, we'll want to
|
|
* make sure we don't even try to deliver the signal..
|
|
*/
|
|
int
|
|
force_sigsegv(int sig, struct task_struct *p)
|
|
{
|
|
if (sig == SIGSEGV) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
force_sig(SIGSEGV, p);
|
|
return 0;
|
|
}
|
|
|
|
int kill_pgrp(struct pid *pid, int sig, int priv)
|
|
{
|
|
int ret;
|
|
|
|
read_lock(&tasklist_lock);
|
|
ret = __kill_pgrp_info(sig, __si_special(priv), pid);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kill_pgrp);
|
|
|
|
int kill_pid(struct pid *pid, int sig, int priv)
|
|
{
|
|
return kill_pid_info(sig, __si_special(priv), pid);
|
|
}
|
|
EXPORT_SYMBOL(kill_pid);
|
|
|
|
/*
|
|
* These functions support sending signals using preallocated sigqueue
|
|
* structures. This is needed "because realtime applications cannot
|
|
* afford to lose notifications of asynchronous events, like timer
|
|
* expirations or I/O completions". In the case of POSIX Timers
|
|
* we allocate the sigqueue structure from the timer_create. If this
|
|
* allocation fails we are able to report the failure to the application
|
|
* with an EAGAIN error.
|
|
*/
|
|
struct sigqueue *sigqueue_alloc(void)
|
|
{
|
|
struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
|
|
|
|
if (q)
|
|
q->flags |= SIGQUEUE_PREALLOC;
|
|
|
|
return q;
|
|
}
|
|
|
|
void sigqueue_free(struct sigqueue *q)
|
|
{
|
|
unsigned long flags;
|
|
spinlock_t *lock = ¤t->sighand->siglock;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
/*
|
|
* We must hold ->siglock while testing q->list
|
|
* to serialize with collect_signal() or with
|
|
* __exit_signal()->flush_sigqueue().
|
|
*/
|
|
spin_lock_irqsave(lock, flags);
|
|
q->flags &= ~SIGQUEUE_PREALLOC;
|
|
/*
|
|
* If it is queued it will be freed when dequeued,
|
|
* like the "regular" sigqueue.
|
|
*/
|
|
if (!list_empty(&q->list))
|
|
q = NULL;
|
|
spin_unlock_irqrestore(lock, flags);
|
|
|
|
if (q)
|
|
__sigqueue_free(q);
|
|
}
|
|
|
|
int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
|
|
{
|
|
int sig = q->info.si_signo;
|
|
struct sigpending *pending;
|
|
unsigned long flags;
|
|
int ret, result;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
|
|
ret = -1;
|
|
if (!likely(lock_task_sighand(t, &flags)))
|
|
goto ret;
|
|
|
|
ret = 1; /* the signal is ignored */
|
|
result = TRACE_SIGNAL_IGNORED;
|
|
if (!prepare_signal(sig, t, false))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
/*
|
|
* If an SI_TIMER entry is already queue just increment
|
|
* the overrun count.
|
|
*/
|
|
BUG_ON(q->info.si_code != SI_TIMER);
|
|
q->info.si_overrun++;
|
|
result = TRACE_SIGNAL_ALREADY_PENDING;
|
|
goto out;
|
|
}
|
|
q->info.si_overrun = 0;
|
|
|
|
signalfd_notify(t, sig);
|
|
pending = group ? &t->signal->shared_pending : &t->pending;
|
|
list_add_tail(&q->list, &pending->list);
|
|
sigaddset(&pending->signal, sig);
|
|
complete_signal(sig, t, group);
|
|
result = TRACE_SIGNAL_DELIVERED;
|
|
out:
|
|
trace_signal_generate(sig, &q->info, t, group, result);
|
|
unlock_task_sighand(t, &flags);
|
|
ret:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Let a parent know about the death of a child.
|
|
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
|
|
*
|
|
* Returns true if our parent ignored us and so we've switched to
|
|
* self-reaping.
|
|
*/
|
|
bool do_notify_parent(struct task_struct *tsk, int sig)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
struct sighand_struct *psig;
|
|
bool autoreap = false;
|
|
|
|
BUG_ON(sig == -1);
|
|
|
|
/* do_notify_parent_cldstop should have been called instead. */
|
|
BUG_ON(task_is_stopped_or_traced(tsk));
|
|
|
|
BUG_ON(!tsk->ptrace &&
|
|
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
|
|
|
|
if (sig != SIGCHLD) {
|
|
/*
|
|
* This is only possible if parent == real_parent.
|
|
* Check if it has changed security domain.
|
|
*/
|
|
if (tsk->parent_exec_id != tsk->parent->self_exec_id)
|
|
sig = SIGCHLD;
|
|
}
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
/*
|
|
* we are under tasklist_lock here so our parent is tied to
|
|
* us and cannot exit and release its namespace.
|
|
*
|
|
* the only it can is to switch its nsproxy with sys_unshare,
|
|
* bu uncharing pid namespaces is not allowed, so we'll always
|
|
* see relevant namespace
|
|
*
|
|
* write_lock() currently calls preempt_disable() which is the
|
|
* same as rcu_read_lock(), but according to Oleg, this is not
|
|
* correct to rely on this
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
|
|
info.si_uid = map_cred_ns(__task_cred(tsk),
|
|
task_cred_xxx(tsk->parent, user_ns));
|
|
rcu_read_unlock();
|
|
|
|
info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
|
|
info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
|
|
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
if (tsk->exit_code & 0x80)
|
|
info.si_code = CLD_DUMPED;
|
|
else if (tsk->exit_code & 0x7f)
|
|
info.si_code = CLD_KILLED;
|
|
else {
|
|
info.si_code = CLD_EXITED;
|
|
info.si_status = tsk->exit_code >> 8;
|
|
}
|
|
|
|
psig = tsk->parent->sighand;
|
|
spin_lock_irqsave(&psig->siglock, flags);
|
|
if (!tsk->ptrace && sig == SIGCHLD &&
|
|
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
|
|
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
|
|
/*
|
|
* We are exiting and our parent doesn't care. POSIX.1
|
|
* defines special semantics for setting SIGCHLD to SIG_IGN
|
|
* or setting the SA_NOCLDWAIT flag: we should be reaped
|
|
* automatically and not left for our parent's wait4 call.
|
|
* Rather than having the parent do it as a magic kind of
|
|
* signal handler, we just set this to tell do_exit that we
|
|
* can be cleaned up without becoming a zombie. Note that
|
|
* we still call __wake_up_parent in this case, because a
|
|
* blocked sys_wait4 might now return -ECHILD.
|
|
*
|
|
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
|
|
* is implementation-defined: we do (if you don't want
|
|
* it, just use SIG_IGN instead).
|
|
*/
|
|
autoreap = true;
|
|
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
|
|
sig = 0;
|
|
}
|
|
if (valid_signal(sig) && sig)
|
|
__group_send_sig_info(sig, &info, tsk->parent);
|
|
__wake_up_parent(tsk, tsk->parent);
|
|
spin_unlock_irqrestore(&psig->siglock, flags);
|
|
|
|
return autoreap;
|
|
}
|
|
|
|
/**
|
|
* do_notify_parent_cldstop - notify parent of stopped/continued state change
|
|
* @tsk: task reporting the state change
|
|
* @for_ptracer: the notification is for ptracer
|
|
* @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
|
|
*
|
|
* Notify @tsk's parent that the stopped/continued state has changed. If
|
|
* @for_ptracer is %false, @tsk's group leader notifies to its real parent.
|
|
* If %true, @tsk reports to @tsk->parent which should be the ptracer.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with tasklist_lock at least read locked.
|
|
*/
|
|
static void do_notify_parent_cldstop(struct task_struct *tsk,
|
|
bool for_ptracer, int why)
|
|
{
|
|
struct siginfo info;
|
|
unsigned long flags;
|
|
struct task_struct *parent;
|
|
struct sighand_struct *sighand;
|
|
|
|
if (for_ptracer) {
|
|
parent = tsk->parent;
|
|
} else {
|
|
tsk = tsk->group_leader;
|
|
parent = tsk->real_parent;
|
|
}
|
|
|
|
info.si_signo = SIGCHLD;
|
|
info.si_errno = 0;
|
|
/*
|
|
* see comment in do_notify_parent() about the following 4 lines
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
|
|
info.si_uid = map_cred_ns(__task_cred(tsk),
|
|
task_cred_xxx(parent, user_ns));
|
|
rcu_read_unlock();
|
|
|
|
info.si_utime = cputime_to_clock_t(tsk->utime);
|
|
info.si_stime = cputime_to_clock_t(tsk->stime);
|
|
|
|
info.si_code = why;
|
|
switch (why) {
|
|
case CLD_CONTINUED:
|
|
info.si_status = SIGCONT;
|
|
break;
|
|
case CLD_STOPPED:
|
|
info.si_status = tsk->signal->group_exit_code & 0x7f;
|
|
break;
|
|
case CLD_TRAPPED:
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
sighand = parent->sighand;
|
|
spin_lock_irqsave(&sighand->siglock, flags);
|
|
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
|
|
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
|
|
__group_send_sig_info(SIGCHLD, &info, parent);
|
|
/*
|
|
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
|
|
*/
|
|
__wake_up_parent(tsk, parent);
|
|
spin_unlock_irqrestore(&sighand->siglock, flags);
|
|
}
|
|
|
|
static inline int may_ptrace_stop(void)
|
|
{
|
|
if (!likely(current->ptrace))
|
|
return 0;
|
|
/*
|
|
* Are we in the middle of do_coredump?
|
|
* If so and our tracer is also part of the coredump stopping
|
|
* is a deadlock situation, and pointless because our tracer
|
|
* is dead so don't allow us to stop.
|
|
* If SIGKILL was already sent before the caller unlocked
|
|
* ->siglock we must see ->core_state != NULL. Otherwise it
|
|
* is safe to enter schedule().
|
|
*/
|
|
if (unlikely(current->mm->core_state) &&
|
|
unlikely(current->mm == current->parent->mm))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return non-zero if there is a SIGKILL that should be waking us up.
|
|
* Called with the siglock held.
|
|
*/
|
|
static int sigkill_pending(struct task_struct *tsk)
|
|
{
|
|
return sigismember(&tsk->pending.signal, SIGKILL) ||
|
|
sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* This must be called with current->sighand->siglock held.
|
|
*
|
|
* This should be the path for all ptrace stops.
|
|
* We always set current->last_siginfo while stopped here.
|
|
* That makes it a way to test a stopped process for
|
|
* being ptrace-stopped vs being job-control-stopped.
|
|
*
|
|
* If we actually decide not to stop at all because the tracer
|
|
* is gone, we keep current->exit_code unless clear_code.
|
|
*/
|
|
static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
|
|
__releases(¤t->sighand->siglock)
|
|
__acquires(¤t->sighand->siglock)
|
|
{
|
|
bool gstop_done = false;
|
|
|
|
if (arch_ptrace_stop_needed(exit_code, info)) {
|
|
/*
|
|
* The arch code has something special to do before a
|
|
* ptrace stop. This is allowed to block, e.g. for faults
|
|
* on user stack pages. We can't keep the siglock while
|
|
* calling arch_ptrace_stop, so we must release it now.
|
|
* To preserve proper semantics, we must do this before
|
|
* any signal bookkeeping like checking group_stop_count.
|
|
* Meanwhile, a SIGKILL could come in before we retake the
|
|
* siglock. That must prevent us from sleeping in TASK_TRACED.
|
|
* So after regaining the lock, we must check for SIGKILL.
|
|
*/
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
arch_ptrace_stop(exit_code, info);
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (sigkill_pending(current))
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We're committing to trapping. TRACED should be visible before
|
|
* TRAPPING is cleared; otherwise, the tracer might fail do_wait().
|
|
* Also, transition to TRACED and updates to ->jobctl should be
|
|
* atomic with respect to siglock and should be done after the arch
|
|
* hook as siglock is released and regrabbed across it.
|
|
*/
|
|
set_current_state(TASK_TRACED);
|
|
|
|
current->last_siginfo = info;
|
|
current->exit_code = exit_code;
|
|
|
|
/*
|
|
* If @why is CLD_STOPPED, we're trapping to participate in a group
|
|
* stop. Do the bookkeeping. Note that if SIGCONT was delievered
|
|
* across siglock relocks since INTERRUPT was scheduled, PENDING
|
|
* could be clear now. We act as if SIGCONT is received after
|
|
* TASK_TRACED is entered - ignore it.
|
|
*/
|
|
if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
|
|
gstop_done = task_participate_group_stop(current);
|
|
|
|
/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
|
|
task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
|
|
if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
|
|
task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
|
|
|
|
/* entering a trap, clear TRAPPING */
|
|
task_clear_jobctl_trapping(current);
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_lock(&tasklist_lock);
|
|
if (may_ptrace_stop()) {
|
|
/*
|
|
* Notify parents of the stop.
|
|
*
|
|
* While ptraced, there are two parents - the ptracer and
|
|
* the real_parent of the group_leader. The ptracer should
|
|
* know about every stop while the real parent is only
|
|
* interested in the completion of group stop. The states
|
|
* for the two don't interact with each other. Notify
|
|
* separately unless they're gonna be duplicates.
|
|
*/
|
|
do_notify_parent_cldstop(current, true, why);
|
|
if (gstop_done && ptrace_reparented(current))
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
/*
|
|
* Don't want to allow preemption here, because
|
|
* sys_ptrace() needs this task to be inactive.
|
|
*
|
|
* XXX: implement read_unlock_no_resched().
|
|
*/
|
|
preempt_disable();
|
|
read_unlock(&tasklist_lock);
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
} else {
|
|
/*
|
|
* By the time we got the lock, our tracer went away.
|
|
* Don't drop the lock yet, another tracer may come.
|
|
*
|
|
* If @gstop_done, the ptracer went away between group stop
|
|
* completion and here. During detach, it would have set
|
|
* JOBCTL_STOP_PENDING on us and we'll re-enter
|
|
* TASK_STOPPED in do_signal_stop() on return, so notifying
|
|
* the real parent of the group stop completion is enough.
|
|
*/
|
|
if (gstop_done)
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
if (clear_code)
|
|
current->exit_code = 0;
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
/*
|
|
* While in TASK_TRACED, we were considered "frozen enough".
|
|
* Now that we woke up, it's crucial if we're supposed to be
|
|
* frozen that we freeze now before running anything substantial.
|
|
*/
|
|
try_to_freeze();
|
|
|
|
/*
|
|
* We are back. Now reacquire the siglock before touching
|
|
* last_siginfo, so that we are sure to have synchronized with
|
|
* any signal-sending on another CPU that wants to examine it.
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->last_siginfo = NULL;
|
|
|
|
/* LISTENING can be set only during STOP traps, clear it */
|
|
current->jobctl &= ~JOBCTL_LISTENING;
|
|
|
|
/*
|
|
* Queued signals ignored us while we were stopped for tracing.
|
|
* So check for any that we should take before resuming user mode.
|
|
* This sets TIF_SIGPENDING, but never clears it.
|
|
*/
|
|
recalc_sigpending_tsk(current);
|
|
}
|
|
|
|
static void ptrace_do_notify(int signr, int exit_code, int why)
|
|
{
|
|
siginfo_t info;
|
|
|
|
memset(&info, 0, sizeof info);
|
|
info.si_signo = signr;
|
|
info.si_code = exit_code;
|
|
info.si_pid = task_pid_vnr(current);
|
|
info.si_uid = current_uid();
|
|
|
|
/* Let the debugger run. */
|
|
ptrace_stop(exit_code, why, 1, &info);
|
|
}
|
|
|
|
void ptrace_notify(int exit_code)
|
|
{
|
|
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
/**
|
|
* do_signal_stop - handle group stop for SIGSTOP and other stop signals
|
|
* @signr: signr causing group stop if initiating
|
|
*
|
|
* If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
|
|
* and participate in it. If already set, participate in the existing
|
|
* group stop. If participated in a group stop (and thus slept), %true is
|
|
* returned with siglock released.
|
|
*
|
|
* If ptraced, this function doesn't handle stop itself. Instead,
|
|
* %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
|
|
* untouched. The caller must ensure that INTERRUPT trap handling takes
|
|
* places afterwards.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held, which is released
|
|
* on %true return.
|
|
*
|
|
* RETURNS:
|
|
* %false if group stop is already cancelled or ptrace trap is scheduled.
|
|
* %true if participated in group stop.
|
|
*/
|
|
static bool do_signal_stop(int signr)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
|
|
unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
|
|
struct task_struct *t;
|
|
|
|
/* signr will be recorded in task->jobctl for retries */
|
|
WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
|
|
|
|
if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
|
|
unlikely(signal_group_exit(sig)))
|
|
return false;
|
|
/*
|
|
* There is no group stop already in progress. We must
|
|
* initiate one now.
|
|
*
|
|
* While ptraced, a task may be resumed while group stop is
|
|
* still in effect and then receive a stop signal and
|
|
* initiate another group stop. This deviates from the
|
|
* usual behavior as two consecutive stop signals can't
|
|
* cause two group stops when !ptraced. That is why we
|
|
* also check !task_is_stopped(t) below.
|
|
*
|
|
* The condition can be distinguished by testing whether
|
|
* SIGNAL_STOP_STOPPED is already set. Don't generate
|
|
* group_exit_code in such case.
|
|
*
|
|
* This is not necessary for SIGNAL_STOP_CONTINUED because
|
|
* an intervening stop signal is required to cause two
|
|
* continued events regardless of ptrace.
|
|
*/
|
|
if (!(sig->flags & SIGNAL_STOP_STOPPED))
|
|
sig->group_exit_code = signr;
|
|
|
|
sig->group_stop_count = 0;
|
|
|
|
if (task_set_jobctl_pending(current, signr | gstop))
|
|
sig->group_stop_count++;
|
|
|
|
for (t = next_thread(current); t != current;
|
|
t = next_thread(t)) {
|
|
/*
|
|
* Setting state to TASK_STOPPED for a group
|
|
* stop is always done with the siglock held,
|
|
* so this check has no races.
|
|
*/
|
|
if (!task_is_stopped(t) &&
|
|
task_set_jobctl_pending(t, signr | gstop)) {
|
|
sig->group_stop_count++;
|
|
if (likely(!(t->ptrace & PT_SEIZED)))
|
|
signal_wake_up(t, 0);
|
|
else
|
|
ptrace_trap_notify(t);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (likely(!current->ptrace)) {
|
|
int notify = 0;
|
|
|
|
/*
|
|
* If there are no other threads in the group, or if there
|
|
* is a group stop in progress and we are the last to stop,
|
|
* report to the parent.
|
|
*/
|
|
if (task_participate_group_stop(current))
|
|
notify = CLD_STOPPED;
|
|
|
|
__set_current_state(TASK_STOPPED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/*
|
|
* Notify the parent of the group stop completion. Because
|
|
* we're not holding either the siglock or tasklist_lock
|
|
* here, ptracer may attach inbetween; however, this is for
|
|
* group stop and should always be delivered to the real
|
|
* parent of the group leader. The new ptracer will get
|
|
* its notification when this task transitions into
|
|
* TASK_TRACED.
|
|
*/
|
|
if (notify) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, false, notify);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
/* Now we don't run again until woken by SIGCONT or SIGKILL */
|
|
schedule();
|
|
return true;
|
|
} else {
|
|
/*
|
|
* While ptraced, group stop is handled by STOP trap.
|
|
* Schedule it and let the caller deal with it.
|
|
*/
|
|
task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* do_jobctl_trap - take care of ptrace jobctl traps
|
|
*
|
|
* When PT_SEIZED, it's used for both group stop and explicit
|
|
* SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
|
|
* accompanying siginfo. If stopped, lower eight bits of exit_code contain
|
|
* the stop signal; otherwise, %SIGTRAP.
|
|
*
|
|
* When !PT_SEIZED, it's used only for group stop trap with stop signal
|
|
* number as exit_code and no siginfo.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held, which may be
|
|
* released and re-acquired before returning with intervening sleep.
|
|
*/
|
|
static void do_jobctl_trap(void)
|
|
{
|
|
struct signal_struct *signal = current->signal;
|
|
int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
|
|
|
|
if (current->ptrace & PT_SEIZED) {
|
|
if (!signal->group_stop_count &&
|
|
!(signal->flags & SIGNAL_STOP_STOPPED))
|
|
signr = SIGTRAP;
|
|
WARN_ON_ONCE(!signr);
|
|
ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
|
|
CLD_STOPPED);
|
|
} else {
|
|
WARN_ON_ONCE(!signr);
|
|
ptrace_stop(signr, CLD_STOPPED, 0, NULL);
|
|
current->exit_code = 0;
|
|
}
|
|
}
|
|
|
|
static int ptrace_signal(int signr, siginfo_t *info,
|
|
struct pt_regs *regs, void *cookie)
|
|
{
|
|
ptrace_signal_deliver(regs, cookie);
|
|
/*
|
|
* We do not check sig_kernel_stop(signr) but set this marker
|
|
* unconditionally because we do not know whether debugger will
|
|
* change signr. This flag has no meaning unless we are going
|
|
* to stop after return from ptrace_stop(). In this case it will
|
|
* be checked in do_signal_stop(), we should only stop if it was
|
|
* not cleared by SIGCONT while we were sleeping. See also the
|
|
* comment in dequeue_signal().
|
|
*/
|
|
current->jobctl |= JOBCTL_STOP_DEQUEUED;
|
|
ptrace_stop(signr, CLD_TRAPPED, 0, info);
|
|
|
|
/* We're back. Did the debugger cancel the sig? */
|
|
signr = current->exit_code;
|
|
if (signr == 0)
|
|
return signr;
|
|
|
|
current->exit_code = 0;
|
|
|
|
/*
|
|
* Update the siginfo structure if the signal has
|
|
* changed. If the debugger wanted something
|
|
* specific in the siginfo structure then it should
|
|
* have updated *info via PTRACE_SETSIGINFO.
|
|
*/
|
|
if (signr != info->si_signo) {
|
|
info->si_signo = signr;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
rcu_read_lock();
|
|
info->si_pid = task_pid_vnr(current->parent);
|
|
info->si_uid = map_cred_ns(__task_cred(current->parent),
|
|
current_user_ns());
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* If the (new) signal is now blocked, requeue it. */
|
|
if (sigismember(¤t->blocked, signr)) {
|
|
specific_send_sig_info(signr, info, current);
|
|
signr = 0;
|
|
}
|
|
|
|
return signr;
|
|
}
|
|
|
|
int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
|
|
struct pt_regs *regs, void *cookie)
|
|
{
|
|
struct sighand_struct *sighand = current->sighand;
|
|
struct signal_struct *signal = current->signal;
|
|
int signr;
|
|
|
|
relock:
|
|
/*
|
|
* We'll jump back here after any time we were stopped in TASK_STOPPED.
|
|
* While in TASK_STOPPED, we were considered "frozen enough".
|
|
* Now that we woke up, it's crucial if we're supposed to be
|
|
* frozen that we freeze now before running anything substantial.
|
|
*/
|
|
try_to_freeze();
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
/*
|
|
* Every stopped thread goes here after wakeup. Check to see if
|
|
* we should notify the parent, prepare_signal(SIGCONT) encodes
|
|
* the CLD_ si_code into SIGNAL_CLD_MASK bits.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
|
|
int why;
|
|
|
|
if (signal->flags & SIGNAL_CLD_CONTINUED)
|
|
why = CLD_CONTINUED;
|
|
else
|
|
why = CLD_STOPPED;
|
|
|
|
signal->flags &= ~SIGNAL_CLD_MASK;
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Notify the parent that we're continuing. This event is
|
|
* always per-process and doesn't make whole lot of sense
|
|
* for ptracers, who shouldn't consume the state via
|
|
* wait(2) either, but, for backward compatibility, notify
|
|
* the ptracer of the group leader too unless it's gonna be
|
|
* a duplicate.
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
if (ptrace_reparented(current->group_leader))
|
|
do_notify_parent_cldstop(current->group_leader,
|
|
true, why);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
goto relock;
|
|
}
|
|
|
|
for (;;) {
|
|
struct k_sigaction *ka;
|
|
|
|
if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
|
|
do_signal_stop(0))
|
|
goto relock;
|
|
|
|
if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
|
|
do_jobctl_trap();
|
|
spin_unlock_irq(&sighand->siglock);
|
|
goto relock;
|
|
}
|
|
|
|
signr = dequeue_signal(current, ¤t->blocked, info);
|
|
|
|
if (!signr)
|
|
break; /* will return 0 */
|
|
|
|
if (unlikely(current->ptrace) && signr != SIGKILL) {
|
|
signr = ptrace_signal(signr, info,
|
|
regs, cookie);
|
|
if (!signr)
|
|
continue;
|
|
}
|
|
|
|
ka = &sighand->action[signr-1];
|
|
|
|
/* Trace actually delivered signals. */
|
|
trace_signal_deliver(signr, info, ka);
|
|
|
|
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
|
|
continue;
|
|
if (ka->sa.sa_handler != SIG_DFL) {
|
|
/* Run the handler. */
|
|
*return_ka = *ka;
|
|
|
|
if (ka->sa.sa_flags & SA_ONESHOT)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
|
|
break; /* will return non-zero "signr" value */
|
|
}
|
|
|
|
/*
|
|
* Now we are doing the default action for this signal.
|
|
*/
|
|
if (sig_kernel_ignore(signr)) /* Default is nothing. */
|
|
continue;
|
|
|
|
/*
|
|
* Global init gets no signals it doesn't want.
|
|
* Container-init gets no signals it doesn't want from same
|
|
* container.
|
|
*
|
|
* Note that if global/container-init sees a sig_kernel_only()
|
|
* signal here, the signal must have been generated internally
|
|
* or must have come from an ancestor namespace. In either
|
|
* case, the signal cannot be dropped.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
|
|
!sig_kernel_only(signr))
|
|
continue;
|
|
|
|
if (sig_kernel_stop(signr)) {
|
|
/*
|
|
* The default action is to stop all threads in
|
|
* the thread group. The job control signals
|
|
* do nothing in an orphaned pgrp, but SIGSTOP
|
|
* always works. Note that siglock needs to be
|
|
* dropped during the call to is_orphaned_pgrp()
|
|
* because of lock ordering with tasklist_lock.
|
|
* This allows an intervening SIGCONT to be posted.
|
|
* We need to check for that and bail out if necessary.
|
|
*/
|
|
if (signr != SIGSTOP) {
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/* signals can be posted during this window */
|
|
|
|
if (is_current_pgrp_orphaned())
|
|
goto relock;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
}
|
|
|
|
if (likely(do_signal_stop(info->si_signo))) {
|
|
/* It released the siglock. */
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* We didn't actually stop, due to a race
|
|
* with SIGCONT or something like that.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Anything else is fatal, maybe with a core dump.
|
|
*/
|
|
current->flags |= PF_SIGNALED;
|
|
|
|
if (sig_kernel_coredump(signr)) {
|
|
if (print_fatal_signals)
|
|
print_fatal_signal(regs, info->si_signo);
|
|
/*
|
|
* If it was able to dump core, this kills all
|
|
* other threads in the group and synchronizes with
|
|
* their demise. If we lost the race with another
|
|
* thread getting here, it set group_exit_code
|
|
* first and our do_group_exit call below will use
|
|
* that value and ignore the one we pass it.
|
|
*/
|
|
do_coredump(info->si_signo, info->si_signo, regs);
|
|
}
|
|
|
|
/*
|
|
* Death signals, no core dump.
|
|
*/
|
|
do_group_exit(info->si_signo);
|
|
/* NOTREACHED */
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
return signr;
|
|
}
|
|
|
|
/**
|
|
* block_sigmask - add @ka's signal mask to current->blocked
|
|
* @ka: action for @signr
|
|
* @signr: signal that has been successfully delivered
|
|
*
|
|
* This function should be called when a signal has succesfully been
|
|
* delivered. It adds the mask of signals for @ka to current->blocked
|
|
* so that they are blocked during the execution of the signal
|
|
* handler. In addition, @signr will be blocked unless %SA_NODEFER is
|
|
* set in @ka->sa.sa_flags.
|
|
*/
|
|
void block_sigmask(struct k_sigaction *ka, int signr)
|
|
{
|
|
sigset_t blocked;
|
|
|
|
sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask);
|
|
if (!(ka->sa.sa_flags & SA_NODEFER))
|
|
sigaddset(&blocked, signr);
|
|
set_current_blocked(&blocked);
|
|
}
|
|
|
|
/*
|
|
* It could be that complete_signal() picked us to notify about the
|
|
* group-wide signal. Other threads should be notified now to take
|
|
* the shared signals in @which since we will not.
|
|
*/
|
|
static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
|
|
{
|
|
sigset_t retarget;
|
|
struct task_struct *t;
|
|
|
|
sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
|
|
if (sigisemptyset(&retarget))
|
|
return;
|
|
|
|
t = tsk;
|
|
while_each_thread(tsk, t) {
|
|
if (t->flags & PF_EXITING)
|
|
continue;
|
|
|
|
if (!has_pending_signals(&retarget, &t->blocked))
|
|
continue;
|
|
/* Remove the signals this thread can handle. */
|
|
sigandsets(&retarget, &retarget, &t->blocked);
|
|
|
|
if (!signal_pending(t))
|
|
signal_wake_up(t, 0);
|
|
|
|
if (sigisemptyset(&retarget))
|
|
break;
|
|
}
|
|
}
|
|
|
|
void exit_signals(struct task_struct *tsk)
|
|
{
|
|
int group_stop = 0;
|
|
sigset_t unblocked;
|
|
|
|
/*
|
|
* @tsk is about to have PF_EXITING set - lock out users which
|
|
* expect stable threadgroup.
|
|
*/
|
|
threadgroup_change_begin(tsk);
|
|
|
|
if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
|
|
tsk->flags |= PF_EXITING;
|
|
threadgroup_change_end(tsk);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
/*
|
|
* From now this task is not visible for group-wide signals,
|
|
* see wants_signal(), do_signal_stop().
|
|
*/
|
|
tsk->flags |= PF_EXITING;
|
|
|
|
threadgroup_change_end(tsk);
|
|
|
|
if (!signal_pending(tsk))
|
|
goto out;
|
|
|
|
unblocked = tsk->blocked;
|
|
signotset(&unblocked);
|
|
retarget_shared_pending(tsk, &unblocked);
|
|
|
|
if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
|
|
task_participate_group_stop(tsk))
|
|
group_stop = CLD_STOPPED;
|
|
out:
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
/*
|
|
* If group stop has completed, deliver the notification. This
|
|
* should always go to the real parent of the group leader.
|
|
*/
|
|
if (unlikely(group_stop)) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(tsk, false, group_stop);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(recalc_sigpending);
|
|
EXPORT_SYMBOL_GPL(dequeue_signal);
|
|
EXPORT_SYMBOL(flush_signals);
|
|
EXPORT_SYMBOL(force_sig);
|
|
EXPORT_SYMBOL(send_sig);
|
|
EXPORT_SYMBOL(send_sig_info);
|
|
EXPORT_SYMBOL(sigprocmask);
|
|
EXPORT_SYMBOL(block_all_signals);
|
|
EXPORT_SYMBOL(unblock_all_signals);
|
|
|
|
|
|
/*
|
|
* System call entry points.
|
|
*/
|
|
|
|
/**
|
|
* sys_restart_syscall - restart a system call
|
|
*/
|
|
SYSCALL_DEFINE0(restart_syscall)
|
|
{
|
|
struct restart_block *restart = ¤t_thread_info()->restart_block;
|
|
return restart->fn(restart);
|
|
}
|
|
|
|
long do_no_restart_syscall(struct restart_block *param)
|
|
{
|
|
return -EINTR;
|
|
}
|
|
|
|
static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
|
|
{
|
|
if (signal_pending(tsk) && !thread_group_empty(tsk)) {
|
|
sigset_t newblocked;
|
|
/* A set of now blocked but previously unblocked signals. */
|
|
sigandnsets(&newblocked, newset, ¤t->blocked);
|
|
retarget_shared_pending(tsk, &newblocked);
|
|
}
|
|
tsk->blocked = *newset;
|
|
recalc_sigpending();
|
|
}
|
|
|
|
/**
|
|
* set_current_blocked - change current->blocked mask
|
|
* @newset: new mask
|
|
*
|
|
* It is wrong to change ->blocked directly, this helper should be used
|
|
* to ensure the process can't miss a shared signal we are going to block.
|
|
*/
|
|
void set_current_blocked(const sigset_t *newset)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
__set_task_blocked(tsk, newset);
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* This is also useful for kernel threads that want to temporarily
|
|
* (or permanently) block certain signals.
|
|
*
|
|
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
|
|
* interface happily blocks "unblockable" signals like SIGKILL
|
|
* and friends.
|
|
*/
|
|
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
sigset_t newset;
|
|
|
|
/* Lockless, only current can change ->blocked, never from irq */
|
|
if (oldset)
|
|
*oldset = tsk->blocked;
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigorsets(&newset, &tsk->blocked, set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigandnsets(&newset, &tsk->blocked, set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
newset = *set;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_current_blocked(&newset);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigprocmask - change the list of currently blocked signals
|
|
* @how: whether to add, remove, or set signals
|
|
* @nset: stores pending signals
|
|
* @oset: previous value of signal mask if non-null
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
|
|
sigset_t __user *, oset, size_t, sigsetsize)
|
|
{
|
|
sigset_t old_set, new_set;
|
|
int error;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
old_set = current->blocked;
|
|
|
|
if (nset) {
|
|
if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, NULL);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (oset) {
|
|
if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long do_sigpending(void __user *set, unsigned long sigsetsize)
|
|
{
|
|
long error = -EINVAL;
|
|
sigset_t pending;
|
|
|
|
if (sigsetsize > sizeof(sigset_t))
|
|
goto out;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sigorsets(&pending, ¤t->pending.signal,
|
|
¤t->signal->shared_pending.signal);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/* Outside the lock because only this thread touches it. */
|
|
sigandsets(&pending, ¤t->blocked, &pending);
|
|
|
|
error = -EFAULT;
|
|
if (!copy_to_user(set, &pending, sigsetsize))
|
|
error = 0;
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigpending - examine a pending signal that has been raised
|
|
* while blocked
|
|
* @set: stores pending signals
|
|
* @sigsetsize: size of sigset_t type or larger
|
|
*/
|
|
SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
|
|
{
|
|
return do_sigpending(set, sigsetsize);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
|
|
|
|
int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
|
|
{
|
|
int err;
|
|
|
|
if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
if (from->si_code < 0)
|
|
return __copy_to_user(to, from, sizeof(siginfo_t))
|
|
? -EFAULT : 0;
|
|
/*
|
|
* If you change siginfo_t structure, please be sure
|
|
* this code is fixed accordingly.
|
|
* Please remember to update the signalfd_copyinfo() function
|
|
* inside fs/signalfd.c too, in case siginfo_t changes.
|
|
* It should never copy any pad contained in the structure
|
|
* to avoid security leaks, but must copy the generic
|
|
* 3 ints plus the relevant union member.
|
|
*/
|
|
err = __put_user(from->si_signo, &to->si_signo);
|
|
err |= __put_user(from->si_errno, &to->si_errno);
|
|
err |= __put_user((short)from->si_code, &to->si_code);
|
|
switch (from->si_code & __SI_MASK) {
|
|
case __SI_KILL:
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
break;
|
|
case __SI_TIMER:
|
|
err |= __put_user(from->si_tid, &to->si_tid);
|
|
err |= __put_user(from->si_overrun, &to->si_overrun);
|
|
err |= __put_user(from->si_ptr, &to->si_ptr);
|
|
break;
|
|
case __SI_POLL:
|
|
err |= __put_user(from->si_band, &to->si_band);
|
|
err |= __put_user(from->si_fd, &to->si_fd);
|
|
break;
|
|
case __SI_FAULT:
|
|
err |= __put_user(from->si_addr, &to->si_addr);
|
|
#ifdef __ARCH_SI_TRAPNO
|
|
err |= __put_user(from->si_trapno, &to->si_trapno);
|
|
#endif
|
|
#ifdef BUS_MCEERR_AO
|
|
/*
|
|
* Other callers might not initialize the si_lsb field,
|
|
* so check explicitly for the right codes here.
|
|
*/
|
|
if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
|
|
err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
|
|
#endif
|
|
break;
|
|
case __SI_CHLD:
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
err |= __put_user(from->si_status, &to->si_status);
|
|
err |= __put_user(from->si_utime, &to->si_utime);
|
|
err |= __put_user(from->si_stime, &to->si_stime);
|
|
break;
|
|
case __SI_RT: /* This is not generated by the kernel as of now. */
|
|
case __SI_MESGQ: /* But this is */
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
err |= __put_user(from->si_ptr, &to->si_ptr);
|
|
break;
|
|
default: /* this is just in case for now ... */
|
|
err |= __put_user(from->si_pid, &to->si_pid);
|
|
err |= __put_user(from->si_uid, &to->si_uid);
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* do_sigtimedwait - wait for queued signals specified in @which
|
|
* @which: queued signals to wait for
|
|
* @info: if non-null, the signal's siginfo is returned here
|
|
* @ts: upper bound on process time suspension
|
|
*/
|
|
int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
|
|
const struct timespec *ts)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
long timeout = MAX_SCHEDULE_TIMEOUT;
|
|
sigset_t mask = *which;
|
|
int sig;
|
|
|
|
if (ts) {
|
|
if (!timespec_valid(ts))
|
|
return -EINVAL;
|
|
timeout = timespec_to_jiffies(ts);
|
|
/*
|
|
* We can be close to the next tick, add another one
|
|
* to ensure we will wait at least the time asked for.
|
|
*/
|
|
if (ts->tv_sec || ts->tv_nsec)
|
|
timeout++;
|
|
}
|
|
|
|
/*
|
|
* Invert the set of allowed signals to get those we want to block.
|
|
*/
|
|
sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
signotset(&mask);
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
sig = dequeue_signal(tsk, &mask, info);
|
|
if (!sig && timeout) {
|
|
/*
|
|
* None ready, temporarily unblock those we're interested
|
|
* while we are sleeping in so that we'll be awakened when
|
|
* they arrive. Unblocking is always fine, we can avoid
|
|
* set_current_blocked().
|
|
*/
|
|
tsk->real_blocked = tsk->blocked;
|
|
sigandsets(&tsk->blocked, &tsk->blocked, &mask);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
timeout = schedule_timeout_interruptible(timeout);
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
__set_task_blocked(tsk, &tsk->real_blocked);
|
|
siginitset(&tsk->real_blocked, 0);
|
|
sig = dequeue_signal(tsk, &mask, info);
|
|
}
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
if (sig)
|
|
return sig;
|
|
return timeout ? -EINTR : -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigtimedwait - synchronously wait for queued signals specified
|
|
* in @uthese
|
|
* @uthese: queued signals to wait for
|
|
* @uinfo: if non-null, the signal's siginfo is returned here
|
|
* @uts: upper bound on process time suspension
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
|
|
siginfo_t __user *, uinfo, const struct timespec __user *, uts,
|
|
size_t, sigsetsize)
|
|
{
|
|
sigset_t these;
|
|
struct timespec ts;
|
|
siginfo_t info;
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (copy_from_user(&ts, uts, sizeof(ts)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_kill - send a signal to a process
|
|
* @pid: the PID of the process
|
|
* @sig: signal to be sent
|
|
*/
|
|
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
|
|
{
|
|
struct siginfo info;
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_USER;
|
|
info.si_pid = task_tgid_vnr(current);
|
|
info.si_uid = current_uid();
|
|
|
|
return kill_something_info(sig, &info, pid);
|
|
}
|
|
|
|
static int
|
|
do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
|
|
{
|
|
struct task_struct *p;
|
|
int error = -ESRCH;
|
|
|
|
rcu_read_lock();
|
|
p = find_task_by_vpid(pid);
|
|
if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
|
|
error = check_kill_permission(sig, info, p);
|
|
/*
|
|
* The null signal is a permissions and process existence
|
|
* probe. No signal is actually delivered.
|
|
*/
|
|
if (!error && sig) {
|
|
error = do_send_sig_info(sig, info, p, false);
|
|
/*
|
|
* If lock_task_sighand() failed we pretend the task
|
|
* dies after receiving the signal. The window is tiny,
|
|
* and the signal is private anyway.
|
|
*/
|
|
if (unlikely(error == -ESRCH))
|
|
error = 0;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
static int do_tkill(pid_t tgid, pid_t pid, int sig)
|
|
{
|
|
struct siginfo info;
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_TKILL;
|
|
info.si_pid = task_tgid_vnr(current);
|
|
info.si_uid = current_uid();
|
|
|
|
return do_send_specific(tgid, pid, sig, &info);
|
|
}
|
|
|
|
/**
|
|
* sys_tgkill - send signal to one specific thread
|
|
* @tgid: the thread group ID of the thread
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
*
|
|
* This syscall also checks the @tgid and returns -ESRCH even if the PID
|
|
* exists but it's not belonging to the target process anymore. This
|
|
* method solves the problem of threads exiting and PIDs getting reused.
|
|
*/
|
|
SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(tgid, pid, sig);
|
|
}
|
|
|
|
/**
|
|
* sys_tkill - send signal to one specific task
|
|
* @pid: the PID of the task
|
|
* @sig: signal to be sent
|
|
*
|
|
* Send a signal to only one task, even if it's a CLONE_THREAD task.
|
|
*/
|
|
SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(0, pid, sig);
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigqueueinfo - send signal information to a signal
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
* @uinfo: signal info to be sent
|
|
*/
|
|
SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
* Nor can they impersonate a kill()/tgkill(), which adds source info.
|
|
*/
|
|
if (info.si_code >= 0 || info.si_code == SI_TKILL) {
|
|
/* We used to allow any < 0 si_code */
|
|
WARN_ON_ONCE(info.si_code < 0);
|
|
return -EPERM;
|
|
}
|
|
info.si_signo = sig;
|
|
|
|
/* POSIX.1b doesn't mention process groups. */
|
|
return kill_proc_info(sig, &info, pid);
|
|
}
|
|
|
|
long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
* Nor can they impersonate a kill()/tgkill(), which adds source info.
|
|
*/
|
|
if (info->si_code >= 0 || info->si_code == SI_TKILL) {
|
|
/* We used to allow any < 0 si_code */
|
|
WARN_ON_ONCE(info->si_code < 0);
|
|
return -EPERM;
|
|
}
|
|
info->si_signo = sig;
|
|
|
|
return do_send_specific(tgid, pid, sig, info);
|
|
}
|
|
|
|
SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
siginfo_t info;
|
|
|
|
if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
|
|
return -EFAULT;
|
|
|
|
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
|
|
}
|
|
|
|
int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
|
|
{
|
|
struct task_struct *t = current;
|
|
struct k_sigaction *k;
|
|
sigset_t mask;
|
|
|
|
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
|
|
return -EINVAL;
|
|
|
|
k = &t->sighand->action[sig-1];
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (oact)
|
|
*oact = *k;
|
|
|
|
if (act) {
|
|
sigdelsetmask(&act->sa.sa_mask,
|
|
sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
*k = *act;
|
|
/*
|
|
* POSIX 3.3.1.3:
|
|
* "Setting a signal action to SIG_IGN for a signal that is
|
|
* pending shall cause the pending signal to be discarded,
|
|
* whether or not it is blocked."
|
|
*
|
|
* "Setting a signal action to SIG_DFL for a signal that is
|
|
* pending and whose default action is to ignore the signal
|
|
* (for example, SIGCHLD), shall cause the pending signal to
|
|
* be discarded, whether or not it is blocked"
|
|
*/
|
|
if (sig_handler_ignored(sig_handler(t, sig), sig)) {
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, sig);
|
|
rm_from_queue_full(&mask, &t->signal->shared_pending);
|
|
do {
|
|
rm_from_queue_full(&mask, &t->pending);
|
|
t = next_thread(t);
|
|
} while (t != current);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
|
|
{
|
|
stack_t oss;
|
|
int error;
|
|
|
|
oss.ss_sp = (void __user *) current->sas_ss_sp;
|
|
oss.ss_size = current->sas_ss_size;
|
|
oss.ss_flags = sas_ss_flags(sp);
|
|
|
|
if (uss) {
|
|
void __user *ss_sp;
|
|
size_t ss_size;
|
|
int ss_flags;
|
|
|
|
error = -EFAULT;
|
|
if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
|
|
goto out;
|
|
error = __get_user(ss_sp, &uss->ss_sp) |
|
|
__get_user(ss_flags, &uss->ss_flags) |
|
|
__get_user(ss_size, &uss->ss_size);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = -EPERM;
|
|
if (on_sig_stack(sp))
|
|
goto out;
|
|
|
|
error = -EINVAL;
|
|
/*
|
|
* Note - this code used to test ss_flags incorrectly:
|
|
* old code may have been written using ss_flags==0
|
|
* to mean ss_flags==SS_ONSTACK (as this was the only
|
|
* way that worked) - this fix preserves that older
|
|
* mechanism.
|
|
*/
|
|
if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
|
|
goto out;
|
|
|
|
if (ss_flags == SS_DISABLE) {
|
|
ss_size = 0;
|
|
ss_sp = NULL;
|
|
} else {
|
|
error = -ENOMEM;
|
|
if (ss_size < MINSIGSTKSZ)
|
|
goto out;
|
|
}
|
|
|
|
current->sas_ss_sp = (unsigned long) ss_sp;
|
|
current->sas_ss_size = ss_size;
|
|
}
|
|
|
|
error = 0;
|
|
if (uoss) {
|
|
error = -EFAULT;
|
|
if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
|
|
goto out;
|
|
error = __put_user(oss.ss_sp, &uoss->ss_sp) |
|
|
__put_user(oss.ss_size, &uoss->ss_size) |
|
|
__put_user(oss.ss_flags, &uoss->ss_flags);
|
|
}
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPENDING
|
|
|
|
/**
|
|
* sys_sigpending - examine pending signals
|
|
* @set: where mask of pending signal is returned
|
|
*/
|
|
SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
|
|
{
|
|
return do_sigpending(set, sizeof(*set));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
|
|
/**
|
|
* sys_sigprocmask - examine and change blocked signals
|
|
* @how: whether to add, remove, or set signals
|
|
* @nset: signals to add or remove (if non-null)
|
|
* @oset: previous value of signal mask if non-null
|
|
*
|
|
* Some platforms have their own version with special arguments;
|
|
* others support only sys_rt_sigprocmask.
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
|
|
old_sigset_t __user *, oset)
|
|
{
|
|
old_sigset_t old_set, new_set;
|
|
sigset_t new_blocked;
|
|
|
|
old_set = current->blocked.sig[0];
|
|
|
|
if (nset) {
|
|
if (copy_from_user(&new_set, nset, sizeof(*nset)))
|
|
return -EFAULT;
|
|
new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
|
|
new_blocked = current->blocked;
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigaddsetmask(&new_blocked, new_set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigdelsetmask(&new_blocked, new_set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
new_blocked.sig[0] = new_set;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_current_blocked(&new_blocked);
|
|
}
|
|
|
|
if (oset) {
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
|
|
|
|
#ifdef __ARCH_WANT_SYS_RT_SIGACTION
|
|
/**
|
|
* sys_rt_sigaction - alter an action taken by a process
|
|
* @sig: signal to be sent
|
|
* @act: new sigaction
|
|
* @oact: used to save the previous sigaction
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigaction, int, sig,
|
|
const struct sigaction __user *, act,
|
|
struct sigaction __user *, oact,
|
|
size_t, sigsetsize)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret = -EINVAL;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
goto out;
|
|
|
|
if (act) {
|
|
if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
|
|
return -EFAULT;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SGETMASK
|
|
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigprocmask.
|
|
*/
|
|
SYSCALL_DEFINE0(sgetmask)
|
|
{
|
|
/* SMP safe */
|
|
return current->blocked.sig[0];
|
|
}
|
|
|
|
SYSCALL_DEFINE1(ssetmask, int, newmask)
|
|
{
|
|
int old = current->blocked.sig[0];
|
|
sigset_t newset;
|
|
|
|
siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
|
|
set_current_blocked(&newset);
|
|
|
|
return old;
|
|
}
|
|
#endif /* __ARCH_WANT_SGETMASK */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGNAL
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigaction.
|
|
*/
|
|
SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
new_sa.sa.sa_handler = handler;
|
|
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
|
|
sigemptyset(&new_sa.sa.sa_mask);
|
|
|
|
ret = do_sigaction(sig, &new_sa, &old_sa);
|
|
|
|
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGNAL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_PAUSE
|
|
|
|
SYSCALL_DEFINE0(pause)
|
|
{
|
|
while (!signal_pending(current)) {
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
schedule();
|
|
}
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
|
|
/**
|
|
* sys_rt_sigsuspend - replace the signal mask for a value with the
|
|
* @unewset value until a signal is received
|
|
* @unewset: new signal mask value
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
|
|
{
|
|
sigset_t newset;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&newset, unewset, sizeof(newset)))
|
|
return -EFAULT;
|
|
sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(&newset);
|
|
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
schedule();
|
|
set_restore_sigmask();
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
|
|
|
|
__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
void __init signals_init(void)
|
|
{
|
|
sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB_KDB
|
|
#include <linux/kdb.h>
|
|
/*
|
|
* kdb_send_sig_info - Allows kdb to send signals without exposing
|
|
* signal internals. This function checks if the required locks are
|
|
* available before calling the main signal code, to avoid kdb
|
|
* deadlocks.
|
|
*/
|
|
void
|
|
kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
|
|
{
|
|
static struct task_struct *kdb_prev_t;
|
|
int sig, new_t;
|
|
if (!spin_trylock(&t->sighand->siglock)) {
|
|
kdb_printf("Can't do kill command now.\n"
|
|
"The sigmask lock is held somewhere else in "
|
|
"kernel, try again later\n");
|
|
return;
|
|
}
|
|
spin_unlock(&t->sighand->siglock);
|
|
new_t = kdb_prev_t != t;
|
|
kdb_prev_t = t;
|
|
if (t->state != TASK_RUNNING && new_t) {
|
|
kdb_printf("Process is not RUNNING, sending a signal from "
|
|
"kdb risks deadlock\n"
|
|
"on the run queue locks. "
|
|
"The signal has _not_ been sent.\n"
|
|
"Reissue the kill command if you want to risk "
|
|
"the deadlock.\n");
|
|
return;
|
|
}
|
|
sig = info->si_signo;
|
|
if (send_sig_info(sig, info, t))
|
|
kdb_printf("Fail to deliver Signal %d to process %d.\n",
|
|
sig, t->pid);
|
|
else
|
|
kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
|
|
}
|
|
#endif /* CONFIG_KGDB_KDB */
|