mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 08:20:53 +07:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
843 lines
26 KiB
C
843 lines
26 KiB
C
/* $Id: ide.c,v 1.4 2004/10/12 07:55:48 starvik Exp $
|
|
*
|
|
* Etrax specific IDE functions, like init and PIO-mode setting etc.
|
|
* Almost the entire ide.c is used for the rest of the Etrax ATA driver.
|
|
* Copyright (c) 2000-2004 Axis Communications AB
|
|
*
|
|
* Authors: Bjorn Wesen (initial version)
|
|
* Mikael Starvik (pio setup stuff, Linux 2.6 port)
|
|
*/
|
|
|
|
/* Regarding DMA:
|
|
*
|
|
* There are two forms of DMA - "DMA handshaking" between the interface and the drive,
|
|
* and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
|
|
* something built-in in the Etrax. However only some drives support the DMA-mode handshaking
|
|
* on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
|
|
* device can't do DMA handshaking for some stupid reason. We don't need to do that.
|
|
*/
|
|
|
|
#undef REALLY_SLOW_IO /* most systems can safely undef this */
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/init.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/arch/svinto.h>
|
|
#include <asm/dma.h>
|
|
|
|
/* number of Etrax DMA descriptors */
|
|
#define MAX_DMA_DESCRS 64
|
|
|
|
/* number of times to retry busy-flags when reading/writing IDE-registers
|
|
* this can't be too high because a hung harddisk might cause the watchdog
|
|
* to trigger (sometimes INB and OUTB are called with irq's disabled)
|
|
*/
|
|
|
|
#define IDE_REGISTER_TIMEOUT 300
|
|
|
|
static int e100_read_command = 0;
|
|
|
|
#define LOWDB(x)
|
|
#define D(x)
|
|
|
|
static int e100_ide_build_dmatable (ide_drive_t *drive);
|
|
static ide_startstop_t etrax_dma_intr (ide_drive_t *drive);
|
|
|
|
void
|
|
etrax100_ide_outw(unsigned short data, unsigned long reg) {
|
|
int timeleft;
|
|
LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));
|
|
|
|
/* note the lack of handling any timeouts. we stop waiting, but we don't
|
|
* really notify anybody.
|
|
*/
|
|
|
|
timeleft = IDE_REGISTER_TIMEOUT;
|
|
/* wait for busy flag */
|
|
while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)))
|
|
timeleft--;
|
|
|
|
/*
|
|
* Fall through at a timeout, so the ongoing command will be
|
|
* aborted by the write below, which is expected to be a dummy
|
|
* command to the command register. This happens when a faulty
|
|
* drive times out on a command. See comment on timeout in
|
|
* INB.
|
|
*/
|
|
if(!timeleft)
|
|
printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);
|
|
|
|
*R_ATA_CTRL_DATA = reg | data; /* write data to the drive's register */
|
|
|
|
timeleft = IDE_REGISTER_TIMEOUT;
|
|
/* wait for transmitter ready */
|
|
while(timeleft && !(*R_ATA_STATUS_DATA &
|
|
IO_MASK(R_ATA_STATUS_DATA, tr_rdy)))
|
|
timeleft--;
|
|
}
|
|
|
|
void
|
|
etrax100_ide_outb(unsigned char data, unsigned long reg)
|
|
{
|
|
etrax100_ide_outw(data, reg);
|
|
}
|
|
|
|
void
|
|
etrax100_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
|
|
{
|
|
etrax100_ide_outw(addr, port);
|
|
}
|
|
|
|
unsigned short
|
|
etrax100_ide_inw(unsigned long reg) {
|
|
int status;
|
|
int timeleft;
|
|
|
|
timeleft = IDE_REGISTER_TIMEOUT;
|
|
/* wait for busy flag */
|
|
while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)))
|
|
timeleft--;
|
|
|
|
if(!timeleft) {
|
|
/*
|
|
* If we're asked to read the status register, like for
|
|
* example when a command does not complete for an
|
|
* extended time, but the ATA interface is stuck in a
|
|
* busy state at the *ETRAX* ATA interface level (as has
|
|
* happened repeatedly with at least one bad disk), then
|
|
* the best thing to do is to pretend that we read
|
|
* "busy" in the status register, so the IDE driver will
|
|
* time-out, abort the ongoing command and perform a
|
|
* reset sequence. Note that the subsequent OUT_BYTE
|
|
* call will also timeout on busy, but as long as the
|
|
* write is still performed, everything will be fine.
|
|
*/
|
|
if ((reg & IO_MASK (R_ATA_CTRL_DATA, addr))
|
|
== IO_FIELD (R_ATA_CTRL_DATA, addr, IDE_STATUS_OFFSET))
|
|
return BUSY_STAT;
|
|
else
|
|
/* For other rare cases we assume 0 is good enough. */
|
|
return 0;
|
|
}
|
|
|
|
*R_ATA_CTRL_DATA = reg | IO_STATE(R_ATA_CTRL_DATA, rw, read); /* read data */
|
|
|
|
timeleft = IDE_REGISTER_TIMEOUT;
|
|
/* wait for available */
|
|
while(timeleft && !((status = *R_ATA_STATUS_DATA) &
|
|
IO_MASK(R_ATA_STATUS_DATA, dav)))
|
|
timeleft--;
|
|
|
|
if(!timeleft)
|
|
return 0;
|
|
|
|
LOWDB(printk("inb: 0x%x from reg 0x%x\n", status & 0xff, reg));
|
|
|
|
return (unsigned short)status;
|
|
}
|
|
|
|
unsigned char
|
|
etrax100_ide_inb(unsigned long reg)
|
|
{
|
|
return (unsigned char)etrax100_ide_inw(reg);
|
|
}
|
|
|
|
/* PIO timing (in R_ATA_CONFIG)
|
|
*
|
|
* _____________________________
|
|
* ADDRESS : ________/
|
|
*
|
|
* _______________
|
|
* DIOR : ____________/ \__________
|
|
*
|
|
* _______________
|
|
* DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX
|
|
*
|
|
*
|
|
* DIOR is unbuffered while address and data is buffered.
|
|
* This creates two problems:
|
|
* 1. The DIOR pulse is to early (because it is unbuffered)
|
|
* 2. The rise time of DIOR is long
|
|
*
|
|
* There are at least three different plausible solutions
|
|
* 1. Use a pad capable of larger currents in Etrax
|
|
* 2. Use an external buffer
|
|
* 3. Make the strobe pulse longer
|
|
*
|
|
* Some of the strobe timings below are modified to compensate
|
|
* for this. This implies a slight performance decrease.
|
|
*
|
|
* THIS SHOULD NEVER BE CHANGED!
|
|
*
|
|
* TODO: Is this true for the latest LX boards still ?
|
|
*/
|
|
|
|
#define ATA_DMA2_STROBE 4
|
|
#define ATA_DMA2_HOLD 0
|
|
#define ATA_DMA1_STROBE 4
|
|
#define ATA_DMA1_HOLD 1
|
|
#define ATA_DMA0_STROBE 12
|
|
#define ATA_DMA0_HOLD 9
|
|
#define ATA_PIO4_SETUP 1
|
|
#define ATA_PIO4_STROBE 5
|
|
#define ATA_PIO4_HOLD 0
|
|
#define ATA_PIO3_SETUP 1
|
|
#define ATA_PIO3_STROBE 5
|
|
#define ATA_PIO3_HOLD 1
|
|
#define ATA_PIO2_SETUP 1
|
|
#define ATA_PIO2_STROBE 6
|
|
#define ATA_PIO2_HOLD 2
|
|
#define ATA_PIO1_SETUP 2
|
|
#define ATA_PIO1_STROBE 11
|
|
#define ATA_PIO1_HOLD 4
|
|
#define ATA_PIO0_SETUP 4
|
|
#define ATA_PIO0_STROBE 19
|
|
#define ATA_PIO0_HOLD 4
|
|
|
|
static int e100_dma_check (ide_drive_t *drive);
|
|
static void e100_dma_start(ide_drive_t *drive);
|
|
static int e100_dma_end (ide_drive_t *drive);
|
|
static void e100_ide_input_data (ide_drive_t *drive, void *, unsigned int);
|
|
static void e100_ide_output_data (ide_drive_t *drive, void *, unsigned int);
|
|
static void e100_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
|
|
static void e100_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
|
|
static int e100_dma_off (ide_drive_t *drive);
|
|
|
|
|
|
/*
|
|
* good_dma_drives() lists the model names (from "hdparm -i")
|
|
* of drives which do not support mword2 DMA but which are
|
|
* known to work fine with this interface under Linux.
|
|
*/
|
|
|
|
const char *good_dma_drives[] = {"Micropolis 2112A",
|
|
"CONNER CTMA 4000",
|
|
"CONNER CTT8000-A",
|
|
NULL};
|
|
|
|
static void tune_e100_ide(ide_drive_t *drive, byte pio)
|
|
{
|
|
pio = 4;
|
|
/* pio = ide_get_best_pio_mode(drive, pio, 4, NULL); */
|
|
|
|
/* set pio mode! */
|
|
|
|
switch(pio) {
|
|
case 0:
|
|
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO0_SETUP ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO0_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO0_HOLD ) );
|
|
break;
|
|
case 1:
|
|
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO1_SETUP ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO1_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO1_HOLD ) );
|
|
break;
|
|
case 2:
|
|
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO2_SETUP ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO2_HOLD ) );
|
|
break;
|
|
case 3:
|
|
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO3_SETUP ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO3_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO3_HOLD ) );
|
|
break;
|
|
case 4:
|
|
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) );
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int e100_dma_setup(ide_drive_t *drive)
|
|
{
|
|
struct request *rq = drive->hwif->hwgroup->rq;
|
|
|
|
if (rq_data_dir(rq)) {
|
|
e100_read_command = 0;
|
|
|
|
RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
|
|
WAIT_DMA(ATA_TX_DMA_NBR);
|
|
} else {
|
|
e100_read_command = 1;
|
|
|
|
RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
|
|
WAIT_DMA(ATA_RX_DMA_NBR);
|
|
}
|
|
|
|
/* set up the Etrax DMA descriptors */
|
|
if (e100_ide_build_dmatable(drive)) {
|
|
ide_map_sg(drive, rq);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void e100_dma_exec_cmd(ide_drive_t *drive, u8 command)
|
|
{
|
|
/* set the irq handler which will finish the request when DMA is done */
|
|
ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL);
|
|
|
|
/* issue cmd to drive */
|
|
etrax100_ide_outb(command, IDE_COMMAND_REG);
|
|
}
|
|
|
|
void __init
|
|
init_e100_ide (void)
|
|
{
|
|
volatile unsigned int dummy;
|
|
int h;
|
|
|
|
printk("ide: ETRAX 100LX built-in ATA DMA controller\n");
|
|
|
|
/* first fill in some stuff in the ide_hwifs fields */
|
|
|
|
for(h = 0; h < MAX_HWIFS; h++) {
|
|
ide_hwif_t *hwif = &ide_hwifs[h];
|
|
hwif->mmio = 2;
|
|
hwif->chipset = ide_etrax100;
|
|
hwif->tuneproc = &tune_e100_ide;
|
|
hwif->ata_input_data = &e100_ide_input_data;
|
|
hwif->ata_output_data = &e100_ide_output_data;
|
|
hwif->atapi_input_bytes = &e100_atapi_input_bytes;
|
|
hwif->atapi_output_bytes = &e100_atapi_output_bytes;
|
|
hwif->ide_dma_check = &e100_dma_check;
|
|
hwif->ide_dma_end = &e100_dma_end;
|
|
hwif->dma_setup = &e100_dma_setup;
|
|
hwif->dma_exec_cmd = &e100_dma_exec_cmd;
|
|
hwif->dma_start = &e100_dma_start;
|
|
hwif->OUTB = &etrax100_ide_outb;
|
|
hwif->OUTW = &etrax100_ide_outw;
|
|
hwif->OUTBSYNC = &etrax100_ide_outbsync;
|
|
hwif->INB = &etrax100_ide_inb;
|
|
hwif->INW = &etrax100_ide_inw;
|
|
hwif->ide_dma_off_quietly = &e100_dma_off;
|
|
}
|
|
|
|
/* actually reset and configure the etrax100 ide/ata interface */
|
|
|
|
*R_ATA_CTRL_DATA = 0;
|
|
*R_ATA_TRANSFER_CNT = 0;
|
|
*R_ATA_CONFIG = 0;
|
|
|
|
genconfig_shadow = (genconfig_shadow &
|
|
~IO_MASK(R_GEN_CONFIG, dma2) &
|
|
~IO_MASK(R_GEN_CONFIG, dma3) &
|
|
~IO_MASK(R_GEN_CONFIG, ata)) |
|
|
( IO_STATE( R_GEN_CONFIG, dma3, ata ) |
|
|
IO_STATE( R_GEN_CONFIG, dma2, ata ) |
|
|
IO_STATE( R_GEN_CONFIG, ata, select ) );
|
|
|
|
*R_GEN_CONFIG = genconfig_shadow;
|
|
|
|
/* pull the chosen /reset-line low */
|
|
|
|
#ifdef CONFIG_ETRAX_IDE_G27_RESET
|
|
REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 0);
|
|
#endif
|
|
#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
|
|
REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 0);
|
|
#endif
|
|
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
|
|
REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 0);
|
|
#endif
|
|
#ifdef CONFIG_ETRAX_IDE_PB7_RESET
|
|
port_pb_dir_shadow = port_pb_dir_shadow |
|
|
IO_STATE(R_PORT_PB_DIR, dir7, output);
|
|
*R_PORT_PB_DIR = port_pb_dir_shadow;
|
|
REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, 1);
|
|
#endif
|
|
|
|
/* wait some */
|
|
|
|
udelay(25);
|
|
|
|
/* de-assert bus-reset */
|
|
|
|
#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
|
|
REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 1);
|
|
#endif
|
|
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
|
|
REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 1);
|
|
#endif
|
|
#ifdef CONFIG_ETRAX_IDE_G27_RESET
|
|
REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 1);
|
|
#endif
|
|
|
|
/* make a dummy read to set the ata controller in a proper state */
|
|
dummy = *R_ATA_STATUS_DATA;
|
|
|
|
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) |
|
|
IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) );
|
|
|
|
*R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) |
|
|
IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) );
|
|
|
|
while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/
|
|
|
|
*R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
|
|
IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
|
|
IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
|
|
IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );
|
|
|
|
printk("ide: waiting %d seconds for drives to regain consciousness\n",
|
|
CONFIG_ETRAX_IDE_DELAY);
|
|
|
|
h = jiffies + (CONFIG_ETRAX_IDE_DELAY * HZ);
|
|
while(time_before(jiffies, h)) /* nothing */ ;
|
|
|
|
/* reset the dma channels we will use */
|
|
|
|
RESET_DMA(ATA_TX_DMA_NBR);
|
|
RESET_DMA(ATA_RX_DMA_NBR);
|
|
WAIT_DMA(ATA_TX_DMA_NBR);
|
|
WAIT_DMA(ATA_RX_DMA_NBR);
|
|
|
|
}
|
|
|
|
static int e100_dma_off (ide_drive_t *drive)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static etrax_dma_descr mydescr;
|
|
|
|
/*
|
|
* The following routines are mainly used by the ATAPI drivers.
|
|
*
|
|
* These routines will round up any request for an odd number of bytes,
|
|
* so if an odd bytecount is specified, be sure that there's at least one
|
|
* extra byte allocated for the buffer.
|
|
*/
|
|
static void
|
|
e100_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
|
|
{
|
|
unsigned long data_reg = IDE_DATA_REG;
|
|
|
|
D(printk("atapi_input_bytes, dreg 0x%x, buffer 0x%x, count %d\n",
|
|
data_reg, buffer, bytecount));
|
|
|
|
if(bytecount & 1) {
|
|
printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
|
|
bytecount++; /* to round off */
|
|
}
|
|
|
|
/* make sure the DMA channel is available */
|
|
RESET_DMA(ATA_RX_DMA_NBR);
|
|
WAIT_DMA(ATA_RX_DMA_NBR);
|
|
|
|
/* setup DMA descriptor */
|
|
|
|
mydescr.sw_len = bytecount;
|
|
mydescr.ctrl = d_eol;
|
|
mydescr.buf = virt_to_phys(buffer);
|
|
|
|
/* start the dma channel */
|
|
|
|
*R_DMA_CH3_FIRST = virt_to_phys(&mydescr);
|
|
*R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start);
|
|
|
|
/* initiate a multi word dma read using PIO handshaking */
|
|
|
|
*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);
|
|
|
|
*R_ATA_CTRL_DATA = data_reg |
|
|
IO_STATE(R_ATA_CTRL_DATA, rw, read) |
|
|
IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
|
|
IO_STATE(R_ATA_CTRL_DATA, handsh, pio) |
|
|
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
|
|
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
|
|
|
|
/* wait for completion */
|
|
|
|
LED_DISK_READ(1);
|
|
WAIT_DMA(ATA_RX_DMA_NBR);
|
|
LED_DISK_READ(0);
|
|
|
|
#if 0
|
|
/* old polled transfer code
|
|
* this should be moved into a new function that can do polled
|
|
* transfers if DMA is not available
|
|
*/
|
|
|
|
/* initiate a multi word read */
|
|
|
|
*R_ATA_TRANSFER_CNT = wcount << 1;
|
|
|
|
*R_ATA_CTRL_DATA = data_reg |
|
|
IO_STATE(R_ATA_CTRL_DATA, rw, read) |
|
|
IO_STATE(R_ATA_CTRL_DATA, src_dst, register) |
|
|
IO_STATE(R_ATA_CTRL_DATA, handsh, pio) |
|
|
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
|
|
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
|
|
|
|
/* svinto has a latency until the busy bit actually is set */
|
|
|
|
nop(); nop();
|
|
nop(); nop();
|
|
nop(); nop();
|
|
nop(); nop();
|
|
nop(); nop();
|
|
|
|
/* unit should be busy during multi transfer */
|
|
while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) {
|
|
while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav)))
|
|
status = *R_ATA_STATUS_DATA;
|
|
*ptr++ = (unsigned short)(status & 0xffff);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
|
|
{
|
|
unsigned long data_reg = IDE_DATA_REG;
|
|
|
|
D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n",
|
|
data_reg, buffer, bytecount));
|
|
|
|
if(bytecount & 1) {
|
|
printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
|
|
bytecount++;
|
|
}
|
|
|
|
/* make sure the DMA channel is available */
|
|
RESET_DMA(ATA_TX_DMA_NBR);
|
|
WAIT_DMA(ATA_TX_DMA_NBR);
|
|
|
|
/* setup DMA descriptor */
|
|
|
|
mydescr.sw_len = bytecount;
|
|
mydescr.ctrl = d_eol;
|
|
mydescr.buf = virt_to_phys(buffer);
|
|
|
|
/* start the dma channel */
|
|
|
|
*R_DMA_CH2_FIRST = virt_to_phys(&mydescr);
|
|
*R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start);
|
|
|
|
/* initiate a multi word dma write using PIO handshaking */
|
|
|
|
*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);
|
|
|
|
*R_ATA_CTRL_DATA = data_reg |
|
|
IO_STATE(R_ATA_CTRL_DATA, rw, write) |
|
|
IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
|
|
IO_STATE(R_ATA_CTRL_DATA, handsh, pio) |
|
|
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
|
|
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
|
|
|
|
/* wait for completion */
|
|
|
|
LED_DISK_WRITE(1);
|
|
WAIT_DMA(ATA_TX_DMA_NBR);
|
|
LED_DISK_WRITE(0);
|
|
|
|
#if 0
|
|
/* old polled write code - see comment in input_bytes */
|
|
|
|
/* wait for busy flag */
|
|
while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));
|
|
|
|
/* initiate a multi word write */
|
|
|
|
*R_ATA_TRANSFER_CNT = bytecount >> 1;
|
|
|
|
ctrl = data_reg |
|
|
IO_STATE(R_ATA_CTRL_DATA, rw, write) |
|
|
IO_STATE(R_ATA_CTRL_DATA, src_dst, register) |
|
|
IO_STATE(R_ATA_CTRL_DATA, handsh, pio) |
|
|
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
|
|
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
|
|
|
|
LED_DISK_WRITE(1);
|
|
|
|
/* Etrax will set busy = 1 until the multi pio transfer has finished
|
|
* and tr_rdy = 1 after each successful word transfer.
|
|
* When the last byte has been transferred Etrax will first set tr_tdy = 1
|
|
* and then busy = 0 (not in the same cycle). If we read busy before it
|
|
* has been set to 0 we will think that we should transfer more bytes
|
|
* and then tr_rdy would be 0 forever. This is solved by checking busy
|
|
* in the inner loop.
|
|
*/
|
|
|
|
do {
|
|
*R_ATA_CTRL_DATA = ctrl | *ptr++;
|
|
while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) &&
|
|
(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)));
|
|
} while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));
|
|
|
|
LED_DISK_WRITE(0);
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* This is used for most PIO data transfers *from* the IDE interface
|
|
*/
|
|
static void
|
|
e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
|
|
{
|
|
e100_atapi_input_bytes(drive, buffer, wcount << 2);
|
|
}
|
|
|
|
/*
|
|
* This is used for most PIO data transfers *to* the IDE interface
|
|
*/
|
|
static void
|
|
e100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
|
|
{
|
|
e100_atapi_output_bytes(drive, buffer, wcount << 2);
|
|
}
|
|
|
|
/* we only have one DMA channel on the chip for ATA, so we can keep these statically */
|
|
static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS];
|
|
static unsigned int ata_tot_size;
|
|
|
|
/*
|
|
* e100_ide_build_dmatable() prepares a dma request.
|
|
* Returns 0 if all went okay, returns 1 otherwise.
|
|
*/
|
|
static int e100_ide_build_dmatable (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
struct scatterlist* sg;
|
|
struct request *rq = HWGROUP(drive)->rq;
|
|
unsigned long size, addr;
|
|
unsigned int count = 0;
|
|
int i = 0;
|
|
|
|
sg = hwif->sg_table;
|
|
|
|
ata_tot_size = 0;
|
|
|
|
ide_map_sg(drive, rq);
|
|
|
|
i = hwif->sg_nents;
|
|
|
|
while(i) {
|
|
/*
|
|
* Determine addr and size of next buffer area. We assume that
|
|
* individual virtual buffers are always composed linearly in
|
|
* physical memory. For example, we assume that any 8kB buffer
|
|
* is always composed of two adjacent physical 4kB pages rather
|
|
* than two possibly non-adjacent physical 4kB pages.
|
|
*/
|
|
/* group sequential buffers into one large buffer */
|
|
addr = page_to_phys(sg->page) + sg->offset;
|
|
size = sg_dma_len(sg);
|
|
while (sg++, --i) {
|
|
if ((addr + size) != page_to_phys(sg->page) + sg->offset)
|
|
break;
|
|
size += sg_dma_len(sg);
|
|
}
|
|
|
|
/* did we run out of descriptors? */
|
|
|
|
if(count >= MAX_DMA_DESCRS) {
|
|
printk("%s: too few DMA descriptors\n", drive->name);
|
|
return 1;
|
|
}
|
|
|
|
/* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more
|
|
than 65536 words per transfer, so in that case we need to either
|
|
1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with
|
|
the descriptors, or
|
|
2) simply do the request here, and get dma_intr to only ide_end_request on
|
|
those blocks that were actually set-up for transfer.
|
|
*/
|
|
|
|
if(ata_tot_size + size > 131072) {
|
|
printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
|
|
return 1;
|
|
}
|
|
|
|
/* If size > 65536 it has to be splitted into new descriptors. Since we don't handle
|
|
size > 131072 only one split is necessary */
|
|
|
|
if(size > 65536) {
|
|
/* ok we want to do IO at addr, size bytes. set up a new descriptor entry */
|
|
ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */
|
|
ata_descrs[count].ctrl = 0;
|
|
ata_descrs[count].buf = addr;
|
|
ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);
|
|
count++;
|
|
ata_tot_size += 65536;
|
|
/* size and addr should refere to not handled data */
|
|
size -= 65536;
|
|
addr += 65536;
|
|
}
|
|
/* ok we want to do IO at addr, size bytes. set up a new descriptor entry */
|
|
if(size == 65536) {
|
|
ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */
|
|
} else {
|
|
ata_descrs[count].sw_len = size;
|
|
}
|
|
ata_descrs[count].ctrl = 0;
|
|
ata_descrs[count].buf = addr;
|
|
ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);
|
|
count++;
|
|
ata_tot_size += size;
|
|
}
|
|
|
|
if (count) {
|
|
/* set the end-of-list flag on the last descriptor */
|
|
ata_descrs[count - 1].ctrl |= d_eol;
|
|
/* return and say all is ok */
|
|
return 0;
|
|
}
|
|
|
|
printk("%s: empty DMA table?\n", drive->name);
|
|
return 1; /* let the PIO routines handle this weirdness */
|
|
}
|
|
|
|
static int config_drive_for_dma (ide_drive_t *drive)
|
|
{
|
|
const char **list;
|
|
struct hd_driveid *id = drive->id;
|
|
|
|
if (id && (id->capability & 1)) {
|
|
/* Enable DMA on any drive that supports mword2 DMA */
|
|
if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) {
|
|
drive->using_dma = 1;
|
|
return 0; /* DMA enabled */
|
|
}
|
|
|
|
/* Consult the list of known "good" drives */
|
|
list = good_dma_drives;
|
|
while (*list) {
|
|
if (!strcmp(*list++,id->model)) {
|
|
drive->using_dma = 1;
|
|
return 0; /* DMA enabled */
|
|
}
|
|
}
|
|
}
|
|
return 1; /* DMA not enabled */
|
|
}
|
|
|
|
/*
|
|
* etrax_dma_intr() is the handler for disk read/write DMA interrupts
|
|
*/
|
|
static ide_startstop_t etrax_dma_intr (ide_drive_t *drive)
|
|
{
|
|
LED_DISK_READ(0);
|
|
LED_DISK_WRITE(0);
|
|
|
|
return ide_dma_intr(drive);
|
|
}
|
|
|
|
/*
|
|
* Functions below initiates/aborts DMA read/write operations on a drive.
|
|
*
|
|
* The caller is assumed to have selected the drive and programmed the drive's
|
|
* sector address using CHS or LBA. All that remains is to prepare for DMA
|
|
* and then issue the actual read/write DMA/PIO command to the drive.
|
|
*
|
|
* Returns 0 if all went well.
|
|
* Returns 1 if DMA read/write could not be started, in which case
|
|
* the caller should revert to PIO for the current request.
|
|
*/
|
|
|
|
static int e100_dma_check(ide_drive_t *drive)
|
|
{
|
|
return config_drive_for_dma (drive);
|
|
}
|
|
|
|
static int e100_dma_end(ide_drive_t *drive)
|
|
{
|
|
/* TODO: check if something went wrong with the DMA */
|
|
return 0;
|
|
}
|
|
|
|
static void e100_dma_start(ide_drive_t *drive)
|
|
{
|
|
if (e100_read_command) {
|
|
/* begin DMA */
|
|
|
|
/* need to do this before RX DMA due to a chip bug
|
|
* it is enough to just flush the part of the cache that
|
|
* corresponds to the buffers we start, but since HD transfers
|
|
* usually are more than 8 kB, it is easier to optimize for the
|
|
* normal case and just flush the entire cache. its the only
|
|
* way to be sure! (OB movie quote)
|
|
*/
|
|
flush_etrax_cache();
|
|
*R_DMA_CH3_FIRST = virt_to_phys(ata_descrs);
|
|
*R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start);
|
|
|
|
/* initiate a multi word dma read using DMA handshaking */
|
|
|
|
*R_ATA_TRANSFER_CNT =
|
|
IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);
|
|
|
|
*R_ATA_CTRL_DATA =
|
|
IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
|
|
IO_STATE(R_ATA_CTRL_DATA, rw, read) |
|
|
IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
|
|
IO_STATE(R_ATA_CTRL_DATA, handsh, dma) |
|
|
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
|
|
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
|
|
|
|
LED_DISK_READ(1);
|
|
|
|
D(printk("dma read of %d bytes.\n", ata_tot_size));
|
|
|
|
} else {
|
|
/* writing */
|
|
/* begin DMA */
|
|
|
|
*R_DMA_CH2_FIRST = virt_to_phys(ata_descrs);
|
|
*R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start);
|
|
|
|
/* initiate a multi word dma write using DMA handshaking */
|
|
|
|
*R_ATA_TRANSFER_CNT =
|
|
IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);
|
|
|
|
*R_ATA_CTRL_DATA =
|
|
IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
|
|
IO_STATE(R_ATA_CTRL_DATA, rw, write) |
|
|
IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
|
|
IO_STATE(R_ATA_CTRL_DATA, handsh, dma) |
|
|
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
|
|
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
|
|
|
|
LED_DISK_WRITE(1);
|
|
|
|
D(printk("dma write of %d bytes.\n", ata_tot_size));
|
|
}
|
|
}
|