mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 13:30:55 +07:00
e6b6239f8e
This patch adds the Freescale MPC86xADS board support. The supported devices are SMC UART and 10Mbit ethernet on SCC1. The manual for the board says that it "is compatible with the MPC8xxFADS for software point of view". That's why this patch extends FADS instead of introducing a new platform. FEC is not supported as the "combined FCC/FEC ethernet driver" driver by Pantelis Antoniou should replace the current FEC driver. Signed-off-by: Gennadiy Kurtsman <gkurtsman@ru.mvista.com> Signed-off-by: Andrei Konovalov <akonovalov@ru.mvista.com> Acked-by: Tom Rini <trini@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1008 lines
29 KiB
C
1008 lines
29 KiB
C
/*
|
|
* Ethernet driver for Motorola MPC8xx.
|
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* I copied the basic skeleton from the lance driver, because I did not
|
|
* know how to write the Linux driver, but I did know how the LANCE worked.
|
|
*
|
|
* This version of the driver is somewhat selectable for the different
|
|
* processor/board combinations. It works for the boards I know about
|
|
* now, and should be easily modified to include others. Some of the
|
|
* configuration information is contained in <asm/commproc.h> and the
|
|
* remainder is here.
|
|
*
|
|
* Buffer descriptors are kept in the CPM dual port RAM, and the frame
|
|
* buffers are in the host memory.
|
|
*
|
|
* Right now, I am very watseful with the buffers. I allocate memory
|
|
* pages and then divide them into 2K frame buffers. This way I know I
|
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
|
* will be much more memory efficient and will easily handle lots of
|
|
* small packets.
|
|
*
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mpc8xx.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/commproc.h>
|
|
|
|
/*
|
|
* Theory of Operation
|
|
*
|
|
* The MPC8xx CPM performs the Ethernet processing on SCC1. It can use
|
|
* an aribtrary number of buffers on byte boundaries, but must have at
|
|
* least two receive buffers to prevent constant overrun conditions.
|
|
*
|
|
* The buffer descriptors are allocated from the CPM dual port memory
|
|
* with the data buffers allocated from host memory, just like all other
|
|
* serial communication protocols. The host memory buffers are allocated
|
|
* from the free page pool, and then divided into smaller receive and
|
|
* transmit buffers. The size of the buffers should be a power of two,
|
|
* since that nicely divides the page. This creates a ring buffer
|
|
* structure similar to the LANCE and other controllers.
|
|
*
|
|
* Like the LANCE driver:
|
|
* The driver runs as two independent, single-threaded flows of control. One
|
|
* is the send-packet routine, which enforces single-threaded use by the
|
|
* cep->tx_busy flag. The other thread is the interrupt handler, which is
|
|
* single threaded by the hardware and other software.
|
|
*
|
|
* The send packet thread has partial control over the Tx ring and the
|
|
* 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx
|
|
* packet. If the next queue slot is empty, it clears the tx_busy flag when
|
|
* finished otherwise it sets the 'lp->tx_full' flag.
|
|
*
|
|
* The MBX has a control register external to the MPC8xx that has some
|
|
* control of the Ethernet interface. Information is in the manual for
|
|
* your board.
|
|
*
|
|
* The RPX boards have an external control/status register. Consult the
|
|
* programming documents for details unique to your board.
|
|
*
|
|
* For the TQM8xx(L) modules, there is no control register interface.
|
|
* All functions are directly controlled using I/O pins. See <asm/commproc.h>.
|
|
*/
|
|
|
|
/* The transmitter timeout
|
|
*/
|
|
#define TX_TIMEOUT (2*HZ)
|
|
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
|
* pool. The code may assume these are power of two, so it is best
|
|
* to keep them that size.
|
|
* We don't need to allocate pages for the transmitter. We just use
|
|
* the skbuffer directly.
|
|
*/
|
|
#ifdef CONFIG_ENET_BIG_BUFFERS
|
|
#define CPM_ENET_RX_PAGES 32
|
|
#define CPM_ENET_RX_FRSIZE 2048
|
|
#define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
|
|
#define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
|
|
#define TX_RING_SIZE 64 /* Must be power of two */
|
|
#define TX_RING_MOD_MASK 63 /* for this to work */
|
|
#else
|
|
#define CPM_ENET_RX_PAGES 4
|
|
#define CPM_ENET_RX_FRSIZE 2048
|
|
#define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
|
|
#define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
|
|
#define TX_RING_SIZE 8 /* Must be power of two */
|
|
#define TX_RING_MOD_MASK 7 /* for this to work */
|
|
#endif
|
|
|
|
/* The CPM stores dest/src/type, data, and checksum for receive packets.
|
|
*/
|
|
#define PKT_MAXBUF_SIZE 1518
|
|
#define PKT_MINBUF_SIZE 64
|
|
#define PKT_MAXBLR_SIZE 1520
|
|
|
|
/* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
|
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
|
* cur_rx and cur_tx point to the currently available buffer.
|
|
* The dirty_tx tracks the current buffer that is being sent by the
|
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
|
* empty and completely full conditions. The empty/ready indicator in
|
|
* the buffer descriptor determines the actual condition.
|
|
*/
|
|
struct scc_enet_private {
|
|
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
|
|
struct sk_buff* tx_skbuff[TX_RING_SIZE];
|
|
ushort skb_cur;
|
|
ushort skb_dirty;
|
|
|
|
/* CPM dual port RAM relative addresses.
|
|
*/
|
|
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
|
|
cbd_t *tx_bd_base;
|
|
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
|
|
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
|
|
scc_t *sccp;
|
|
|
|
/* Virtual addresses for the receive buffers because we can't
|
|
* do a __va() on them anymore.
|
|
*/
|
|
unsigned char *rx_vaddr[RX_RING_SIZE];
|
|
struct net_device_stats stats;
|
|
uint tx_full;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static int scc_enet_open(struct net_device *dev);
|
|
static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
|
static int scc_enet_rx(struct net_device *dev);
|
|
static void scc_enet_interrupt(void *dev_id, struct pt_regs *regs);
|
|
static int scc_enet_close(struct net_device *dev);
|
|
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
|
|
static void set_multicast_list(struct net_device *dev);
|
|
|
|
/* Get this from various configuration locations (depends on board).
|
|
*/
|
|
/*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/
|
|
|
|
/* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards
|
|
* use SCC2. Some even may use SCC3.
|
|
* This is easily extended if necessary.
|
|
*/
|
|
#if defined(CONFIG_SCC3_ENET)
|
|
#define CPM_CR_ENET CPM_CR_CH_SCC3
|
|
#define PROFF_ENET PROFF_SCC3
|
|
#define SCC_ENET 2 /* Index, not number! */
|
|
#define CPMVEC_ENET CPMVEC_SCC3
|
|
#elif defined(CONFIG_SCC2_ENET)
|
|
#define CPM_CR_ENET CPM_CR_CH_SCC2
|
|
#define PROFF_ENET PROFF_SCC2
|
|
#define SCC_ENET 1 /* Index, not number! */
|
|
#define CPMVEC_ENET CPMVEC_SCC2
|
|
#elif defined(CONFIG_SCC1_ENET)
|
|
#define CPM_CR_ENET CPM_CR_CH_SCC1
|
|
#define PROFF_ENET PROFF_SCC1
|
|
#define SCC_ENET 0 /* Index, not number! */
|
|
#define CPMVEC_ENET CPMVEC_SCC1
|
|
#else
|
|
#error CONFIG_SCCx_ENET not defined
|
|
#endif
|
|
|
|
static int
|
|
scc_enet_open(struct net_device *dev)
|
|
{
|
|
|
|
/* I should reset the ring buffers here, but I don't yet know
|
|
* a simple way to do that.
|
|
*/
|
|
|
|
netif_start_queue(dev);
|
|
return 0; /* Always succeed */
|
|
}
|
|
|
|
static int
|
|
scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
|
|
volatile cbd_t *bdp;
|
|
|
|
/* Fill in a Tx ring entry */
|
|
bdp = cep->cur_tx;
|
|
|
|
#ifndef final_version
|
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
|
/* Ooops. All transmit buffers are full. Bail out.
|
|
* This should not happen, since cep->tx_busy should be set.
|
|
*/
|
|
printk("%s: tx queue full!.\n", dev->name);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* Clear all of the status flags.
|
|
*/
|
|
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
|
|
|
|
/* If the frame is short, tell CPM to pad it.
|
|
*/
|
|
if (skb->len <= ETH_ZLEN)
|
|
bdp->cbd_sc |= BD_ENET_TX_PAD;
|
|
else
|
|
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
|
|
|
|
/* Set buffer length and buffer pointer.
|
|
*/
|
|
bdp->cbd_datlen = skb->len;
|
|
bdp->cbd_bufaddr = __pa(skb->data);
|
|
|
|
/* Save skb pointer.
|
|
*/
|
|
cep->tx_skbuff[cep->skb_cur] = skb;
|
|
|
|
cep->stats.tx_bytes += skb->len;
|
|
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
|
|
/* Push the data cache so the CPM does not get stale memory
|
|
* data.
|
|
*/
|
|
flush_dcache_range((unsigned long)(skb->data),
|
|
(unsigned long)(skb->data + skb->len));
|
|
|
|
spin_lock_irq(&cep->lock);
|
|
|
|
/* Send it on its way. Tell CPM its ready, interrupt when done,
|
|
* its the last BD of the frame, and to put the CRC on the end.
|
|
*/
|
|
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
/* If this was the last BD in the ring, start at the beginning again.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
|
bdp = cep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
if (bdp->cbd_sc & BD_ENET_TX_READY) {
|
|
netif_stop_queue(dev);
|
|
cep->tx_full = 1;
|
|
}
|
|
|
|
cep->cur_tx = (cbd_t *)bdp;
|
|
|
|
spin_unlock_irq(&cep->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
scc_enet_timeout(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
printk("%s: transmit timed out.\n", dev->name);
|
|
cep->stats.tx_errors++;
|
|
#ifndef final_version
|
|
{
|
|
int i;
|
|
cbd_t *bdp;
|
|
printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
|
|
cep->cur_tx, cep->tx_full ? " (full)" : "",
|
|
cep->cur_rx);
|
|
bdp = cep->tx_bd_base;
|
|
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
|
|
printk("%04x %04x %08x\n",
|
|
bdp->cbd_sc,
|
|
bdp->cbd_datlen,
|
|
bdp->cbd_bufaddr);
|
|
bdp = cep->rx_bd_base;
|
|
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
|
|
printk("%04x %04x %08x\n",
|
|
bdp->cbd_sc,
|
|
bdp->cbd_datlen,
|
|
bdp->cbd_bufaddr);
|
|
}
|
|
#endif
|
|
if (!cep->tx_full)
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/* The interrupt handler.
|
|
* This is called from the CPM handler, not the MPC core interrupt.
|
|
*/
|
|
static void
|
|
scc_enet_interrupt(void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
volatile struct scc_enet_private *cep;
|
|
volatile cbd_t *bdp;
|
|
ushort int_events;
|
|
int must_restart;
|
|
|
|
cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
/* Get the interrupt events that caused us to be here.
|
|
*/
|
|
int_events = cep->sccp->scc_scce;
|
|
cep->sccp->scc_scce = int_events;
|
|
must_restart = 0;
|
|
|
|
/* Handle receive event in its own function.
|
|
*/
|
|
if (int_events & SCCE_ENET_RXF)
|
|
scc_enet_rx(dev_id);
|
|
|
|
/* Check for a transmit error. The manual is a little unclear
|
|
* about this, so the debug code until I get it figured out. It
|
|
* appears that if TXE is set, then TXB is not set. However,
|
|
* if carrier sense is lost during frame transmission, the TXE
|
|
* bit is set, "and continues the buffer transmission normally."
|
|
* I don't know if "normally" implies TXB is set when the buffer
|
|
* descriptor is closed.....trial and error :-).
|
|
*/
|
|
|
|
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
|
|
*/
|
|
if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
|
|
spin_lock(&cep->lock);
|
|
bdp = cep->dirty_tx;
|
|
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
|
|
if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
|
|
break;
|
|
|
|
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
|
|
cep->stats.tx_heartbeat_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
|
|
cep->stats.tx_window_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
|
|
cep->stats.tx_aborted_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
|
|
cep->stats.tx_fifo_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
|
|
cep->stats.tx_carrier_errors++;
|
|
|
|
|
|
/* No heartbeat or Lost carrier are not really bad errors.
|
|
* The others require a restart transmit command.
|
|
*/
|
|
if (bdp->cbd_sc &
|
|
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
|
|
must_restart = 1;
|
|
cep->stats.tx_errors++;
|
|
}
|
|
|
|
cep->stats.tx_packets++;
|
|
|
|
/* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_TX_DEF)
|
|
cep->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this last transmit.
|
|
*/
|
|
dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
|
|
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
|
|
/* Update pointer to next buffer descriptor to be transmitted.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
|
|
bdp = cep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* I don't know if we can be held off from processing these
|
|
* interrupts for more than one frame time. I really hope
|
|
* not. In such a case, we would now want to check the
|
|
* currently available BD (cur_tx) and determine if any
|
|
* buffers between the dirty_tx and cur_tx have also been
|
|
* sent. We would want to process anything in between that
|
|
* does not have BD_ENET_TX_READY set.
|
|
*/
|
|
|
|
/* Since we have freed up a buffer, the ring is no longer
|
|
* full.
|
|
*/
|
|
if (cep->tx_full) {
|
|
cep->tx_full = 0;
|
|
if (netif_queue_stopped(dev))
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
cep->dirty_tx = (cbd_t *)bdp;
|
|
}
|
|
|
|
if (must_restart) {
|
|
volatile cpm8xx_t *cp;
|
|
|
|
/* Some transmit errors cause the transmitter to shut
|
|
* down. We now issue a restart transmit. Since the
|
|
* errors close the BD and update the pointers, the restart
|
|
* _should_ pick up without having to reset any of our
|
|
* pointers either.
|
|
*/
|
|
cp = cpmp;
|
|
cp->cp_cpcr =
|
|
mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG;
|
|
while (cp->cp_cpcr & CPM_CR_FLG);
|
|
}
|
|
spin_unlock(&cep->lock);
|
|
}
|
|
|
|
/* Check for receive busy, i.e. packets coming but no place to
|
|
* put them. This "can't happen" because the receive interrupt
|
|
* is tossing previous frames.
|
|
*/
|
|
if (int_events & SCCE_ENET_BSY) {
|
|
cep->stats.rx_dropped++;
|
|
printk("CPM ENET: BSY can't happen.\n");
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
|
* When we update through the ring, if the next incoming buffer has
|
|
* not been given to the system, we just set the empty indicator,
|
|
* effectively tossing the packet.
|
|
*/
|
|
static int
|
|
scc_enet_rx(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep;
|
|
volatile cbd_t *bdp;
|
|
struct sk_buff *skb;
|
|
ushort pkt_len;
|
|
|
|
cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
/* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = cep->cur_rx;
|
|
|
|
for (;;) {
|
|
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
|
|
break;
|
|
|
|
#ifndef final_version
|
|
/* Since we have allocated space to hold a complete frame, both
|
|
* the first and last indicators should be set.
|
|
*/
|
|
if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
|
|
(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
|
|
printk("CPM ENET: rcv is not first+last\n");
|
|
#endif
|
|
|
|
/* Frame too long or too short.
|
|
*/
|
|
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
|
|
cep->stats.rx_length_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
|
|
cep->stats.rx_frame_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
|
|
cep->stats.rx_crc_errors++;
|
|
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
|
|
cep->stats.rx_crc_errors++;
|
|
|
|
/* Report late collisions as a frame error.
|
|
* On this error, the BD is closed, but we don't know what we
|
|
* have in the buffer. So, just drop this frame on the floor.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_RX_CL) {
|
|
cep->stats.rx_frame_errors++;
|
|
}
|
|
else {
|
|
|
|
/* Process the incoming frame.
|
|
*/
|
|
cep->stats.rx_packets++;
|
|
pkt_len = bdp->cbd_datlen;
|
|
cep->stats.rx_bytes += pkt_len;
|
|
|
|
/* This does 16 byte alignment, much more than we need.
|
|
* The packet length includes FCS, but we don't want to
|
|
* include that when passing upstream as it messes up
|
|
* bridging applications.
|
|
*/
|
|
skb = dev_alloc_skb(pkt_len-4);
|
|
|
|
if (skb == NULL) {
|
|
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
|
|
cep->stats.rx_dropped++;
|
|
}
|
|
else {
|
|
skb->dev = dev;
|
|
skb_put(skb,pkt_len-4); /* Make room */
|
|
eth_copy_and_sum(skb,
|
|
cep->rx_vaddr[bdp - cep->rx_bd_base],
|
|
pkt_len-4, 0);
|
|
skb->protocol=eth_type_trans(skb,dev);
|
|
netif_rx(skb);
|
|
}
|
|
}
|
|
|
|
/* Clear the status flags for this buffer.
|
|
*/
|
|
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
|
|
|
|
/* Mark the buffer empty.
|
|
*/
|
|
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
|
|
|
|
/* Update BD pointer to next entry.
|
|
*/
|
|
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
|
|
bdp = cep->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
}
|
|
cep->cur_rx = (cbd_t *)bdp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scc_enet_close(struct net_device *dev)
|
|
{
|
|
/* Don't know what to do yet.
|
|
*/
|
|
netif_stop_queue(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
return &cep->stats;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
|
|
static void set_multicast_list(struct net_device *dev)
|
|
{
|
|
struct scc_enet_private *cep;
|
|
struct dev_mc_list *dmi;
|
|
u_char *mcptr, *tdptr;
|
|
volatile scc_enet_t *ep;
|
|
int i, j;
|
|
cep = (struct scc_enet_private *)dev->priv;
|
|
|
|
/* Get pointer to SCC area in parameter RAM.
|
|
*/
|
|
ep = (scc_enet_t *)dev->base_addr;
|
|
|
|
if (dev->flags&IFF_PROMISC) {
|
|
|
|
/* Log any net taps. */
|
|
printk("%s: Promiscuous mode enabled.\n", dev->name);
|
|
cep->sccp->scc_psmr |= SCC_PSMR_PRO;
|
|
} else {
|
|
|
|
cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
|
|
|
|
if (dev->flags & IFF_ALLMULTI) {
|
|
/* Catch all multicast addresses, so set the
|
|
* filter to all 1's.
|
|
*/
|
|
ep->sen_gaddr1 = 0xffff;
|
|
ep->sen_gaddr2 = 0xffff;
|
|
ep->sen_gaddr3 = 0xffff;
|
|
ep->sen_gaddr4 = 0xffff;
|
|
}
|
|
else {
|
|
/* Clear filter and add the addresses in the list.
|
|
*/
|
|
ep->sen_gaddr1 = 0;
|
|
ep->sen_gaddr2 = 0;
|
|
ep->sen_gaddr3 = 0;
|
|
ep->sen_gaddr4 = 0;
|
|
|
|
dmi = dev->mc_list;
|
|
|
|
for (i=0; i<dev->mc_count; i++) {
|
|
|
|
/* Only support group multicast for now.
|
|
*/
|
|
if (!(dmi->dmi_addr[0] & 1))
|
|
continue;
|
|
|
|
/* The address in dmi_addr is LSB first,
|
|
* and taddr is MSB first. We have to
|
|
* copy bytes MSB first from dmi_addr.
|
|
*/
|
|
mcptr = (u_char *)dmi->dmi_addr + 5;
|
|
tdptr = (u_char *)&ep->sen_taddrh;
|
|
for (j=0; j<6; j++)
|
|
*tdptr++ = *mcptr--;
|
|
|
|
/* Ask CPM to run CRC and set bit in
|
|
* filter mask.
|
|
*/
|
|
cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG;
|
|
/* this delay is necessary here -- Cort */
|
|
udelay(10);
|
|
while (cpmp->cp_cpcr & CPM_CR_FLG);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed
|
|
* some other network I/O, a whole bunch of this has already been set up.
|
|
* It is no big deal if we do it again, we just have to disable the
|
|
* transmit and receive to make sure we don't catch the CPM with some
|
|
* inconsistent control information.
|
|
*/
|
|
static int __init scc_enet_init(void)
|
|
{
|
|
struct net_device *dev;
|
|
struct scc_enet_private *cep;
|
|
int i, j, k, err;
|
|
uint dp_offset;
|
|
unsigned char *eap, *ba;
|
|
dma_addr_t mem_addr;
|
|
bd_t *bd;
|
|
volatile cbd_t *bdp;
|
|
volatile cpm8xx_t *cp;
|
|
volatile scc_t *sccp;
|
|
volatile scc_enet_t *ep;
|
|
volatile immap_t *immap;
|
|
|
|
cp = cpmp; /* Get pointer to Communication Processor */
|
|
|
|
immap = (immap_t *)(mfspr(SPRN_IMMR) & 0xFFFF0000); /* and to internal registers */
|
|
|
|
bd = (bd_t *)__res;
|
|
|
|
dev = alloc_etherdev(sizeof(*cep));
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
cep = dev->priv;
|
|
spin_lock_init(&cep->lock);
|
|
|
|
/* Get pointer to SCC area in parameter RAM.
|
|
*/
|
|
ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]);
|
|
|
|
/* And another to the SCC register area.
|
|
*/
|
|
sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]);
|
|
cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
|
|
|
|
/* Disable receive and transmit in case EPPC-Bug started it.
|
|
*/
|
|
sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
|
|
/* Cookbook style from the MPC860 manual.....
|
|
* Not all of this is necessary if EPPC-Bug has initialized
|
|
* the network.
|
|
* So far we are lucky, all board configurations use the same
|
|
* pins, or at least the same I/O Port for these functions.....
|
|
* It can't last though......
|
|
*/
|
|
|
|
#if (defined(PA_ENET_RXD) && defined(PA_ENET_TXD))
|
|
/* Configure port A pins for Txd and Rxd.
|
|
*/
|
|
immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD);
|
|
immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD);
|
|
immap->im_ioport.iop_paodr &= ~PA_ENET_TXD;
|
|
#elif (defined(PB_ENET_RXD) && defined(PB_ENET_TXD))
|
|
/* Configure port B pins for Txd and Rxd.
|
|
*/
|
|
immap->im_cpm.cp_pbpar |= (PB_ENET_RXD | PB_ENET_TXD);
|
|
immap->im_cpm.cp_pbdir &= ~(PB_ENET_RXD | PB_ENET_TXD);
|
|
immap->im_cpm.cp_pbodr &= ~PB_ENET_TXD;
|
|
#else
|
|
#error Exactly ONE pair of PA_ENET_[RT]XD, PB_ENET_[RT]XD must be defined
|
|
#endif
|
|
|
|
#if defined(PC_ENET_LBK)
|
|
/* Configure port C pins to disable External Loopback
|
|
*/
|
|
immap->im_ioport.iop_pcpar &= ~PC_ENET_LBK;
|
|
immap->im_ioport.iop_pcdir |= PC_ENET_LBK;
|
|
immap->im_ioport.iop_pcso &= ~PC_ENET_LBK;
|
|
immap->im_ioport.iop_pcdat &= ~PC_ENET_LBK; /* Disable Loopback */
|
|
#endif /* PC_ENET_LBK */
|
|
|
|
#ifdef PE_ENET_TCLK
|
|
/* Configure port E for TCLK and RCLK.
|
|
*/
|
|
cp->cp_pepar |= (PE_ENET_TCLK | PE_ENET_RCLK);
|
|
cp->cp_pedir &= ~(PE_ENET_TCLK | PE_ENET_RCLK);
|
|
cp->cp_peso &= ~(PE_ENET_TCLK | PE_ENET_RCLK);
|
|
#else
|
|
/* Configure port A for TCLK and RCLK.
|
|
*/
|
|
immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK);
|
|
immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK);
|
|
#endif
|
|
|
|
/* Configure port C pins to enable CLSN and RENA.
|
|
*/
|
|
immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA);
|
|
immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA);
|
|
immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA);
|
|
|
|
/* Configure Serial Interface clock routing.
|
|
* First, clear all SCC bits to zero, then set the ones we want.
|
|
*/
|
|
cp->cp_sicr &= ~SICR_ENET_MASK;
|
|
cp->cp_sicr |= SICR_ENET_CLKRT;
|
|
|
|
/* Manual says set SDDR, but I can't find anything with that
|
|
* name. I think it is a misprint, and should be SDCR. This
|
|
* has already been set by the communication processor initialization.
|
|
*/
|
|
|
|
/* Allocate space for the buffer descriptors in the DP ram.
|
|
* These are relative offsets in the DP ram address space.
|
|
* Initialize base addresses for the buffer descriptors.
|
|
*/
|
|
dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
|
|
ep->sen_genscc.scc_rbase = dp_offset;
|
|
cep->rx_bd_base = cpm_dpram_addr(dp_offset);
|
|
|
|
dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
|
|
ep->sen_genscc.scc_tbase = dp_offset;
|
|
cep->tx_bd_base = cpm_dpram_addr(dp_offset);
|
|
|
|
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
|
|
cep->cur_rx = cep->rx_bd_base;
|
|
|
|
/* Issue init Rx BD command for SCC.
|
|
* Manual says to perform an Init Rx parameters here. We have
|
|
* to perform both Rx and Tx because the SCC may have been
|
|
* already running.
|
|
* In addition, we have to do it later because we don't yet have
|
|
* all of the BD control/status set properly.
|
|
cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG;
|
|
while (cp->cp_cpcr & CPM_CR_FLG);
|
|
*/
|
|
|
|
/* Initialize function code registers for big-endian.
|
|
*/
|
|
ep->sen_genscc.scc_rfcr = SCC_EB;
|
|
ep->sen_genscc.scc_tfcr = SCC_EB;
|
|
|
|
/* Set maximum bytes per receive buffer.
|
|
* This appears to be an Ethernet frame size, not the buffer
|
|
* fragment size. It must be a multiple of four.
|
|
*/
|
|
ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
|
|
|
|
/* Set CRC preset and mask.
|
|
*/
|
|
ep->sen_cpres = 0xffffffff;
|
|
ep->sen_cmask = 0xdebb20e3;
|
|
|
|
ep->sen_crcec = 0; /* CRC Error counter */
|
|
ep->sen_alec = 0; /* alignment error counter */
|
|
ep->sen_disfc = 0; /* discard frame counter */
|
|
|
|
ep->sen_pads = 0x8888; /* Tx short frame pad character */
|
|
ep->sen_retlim = 15; /* Retry limit threshold */
|
|
|
|
ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
|
|
ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
|
|
|
|
ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
|
|
ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
|
|
|
|
/* Clear hash tables.
|
|
*/
|
|
ep->sen_gaddr1 = 0;
|
|
ep->sen_gaddr2 = 0;
|
|
ep->sen_gaddr3 = 0;
|
|
ep->sen_gaddr4 = 0;
|
|
ep->sen_iaddr1 = 0;
|
|
ep->sen_iaddr2 = 0;
|
|
ep->sen_iaddr3 = 0;
|
|
ep->sen_iaddr4 = 0;
|
|
|
|
/* Set Ethernet station address.
|
|
*/
|
|
eap = (unsigned char *)&(ep->sen_paddrh);
|
|
for (i=5; i>=0; i--)
|
|
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
|
|
|
|
ep->sen_pper = 0; /* 'cause the book says so */
|
|
ep->sen_taddrl = 0; /* temp address (LSB) */
|
|
ep->sen_taddrm = 0;
|
|
ep->sen_taddrh = 0; /* temp address (MSB) */
|
|
|
|
/* Now allocate the host memory pages and initialize the
|
|
* buffer descriptors.
|
|
*/
|
|
bdp = cep->tx_bd_base;
|
|
for (i=0; i<TX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
bdp = cep->rx_bd_base;
|
|
k = 0;
|
|
for (i=0; i<CPM_ENET_RX_PAGES; i++) {
|
|
|
|
/* Allocate a page.
|
|
*/
|
|
ba = (unsigned char *)dma_alloc_coherent(NULL, PAGE_SIZE,
|
|
&mem_addr, GFP_KERNEL);
|
|
/* BUG: no check for failure */
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
|
|
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
|
|
bdp->cbd_bufaddr = mem_addr;
|
|
cep->rx_vaddr[k++] = ba;
|
|
mem_addr += CPM_ENET_RX_FRSIZE;
|
|
ba += CPM_ENET_RX_FRSIZE;
|
|
bdp++;
|
|
}
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* Let's re-initialize the channel now. We have to do it later
|
|
* than the manual describes because we have just now finished
|
|
* the BD initialization.
|
|
*/
|
|
cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG;
|
|
while (cp->cp_cpcr & CPM_CR_FLG);
|
|
|
|
cep->skb_cur = cep->skb_dirty = 0;
|
|
|
|
sccp->scc_scce = 0xffff; /* Clear any pending events */
|
|
|
|
/* Enable interrupts for transmit error, complete frame
|
|
* received, and any transmit buffer we have also set the
|
|
* interrupt flag.
|
|
*/
|
|
sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
|
|
|
|
/* Install our interrupt handler.
|
|
*/
|
|
cpm_install_handler(CPMVEC_ENET, scc_enet_interrupt, dev);
|
|
|
|
/* Set GSMR_H to enable all normal operating modes.
|
|
* Set GSMR_L to enable Ethernet to MC68160.
|
|
*/
|
|
sccp->scc_gsmrh = 0;
|
|
sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
|
|
|
|
/* Set sync/delimiters.
|
|
*/
|
|
sccp->scc_dsr = 0xd555;
|
|
|
|
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
|
|
* start frame search 22 bit times after RENA.
|
|
*/
|
|
sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
|
|
|
|
/* It is now OK to enable the Ethernet transmitter.
|
|
* Unfortunately, there are board implementation differences here.
|
|
*/
|
|
#if (!defined (PB_ENET_TENA) && defined (PC_ENET_TENA) && !defined (PE_ENET_TENA))
|
|
immap->im_ioport.iop_pcpar |= PC_ENET_TENA;
|
|
immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA;
|
|
#elif ( defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && !defined (PE_ENET_TENA))
|
|
cp->cp_pbpar |= PB_ENET_TENA;
|
|
cp->cp_pbdir |= PB_ENET_TENA;
|
|
#elif ( !defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && defined (PE_ENET_TENA))
|
|
cp->cp_pepar |= PE_ENET_TENA;
|
|
cp->cp_pedir &= ~PE_ENET_TENA;
|
|
cp->cp_peso |= PE_ENET_TENA;
|
|
#else
|
|
#error Configuration Error: define exactly ONE of PB_ENET_TENA, PC_ENET_TENA, PE_ENET_TENA
|
|
#endif
|
|
|
|
#if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC)
|
|
/* And while we are here, set the configuration to enable ethernet.
|
|
*/
|
|
*((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK;
|
|
*((volatile uint *)RPX_CSR_ADDR) |=
|
|
(BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS);
|
|
#endif
|
|
|
|
#ifdef CONFIG_BSEIP
|
|
/* BSE uses port B and C for PHY control.
|
|
*/
|
|
cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS);
|
|
cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
|
|
cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
|
|
|
|
immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK;
|
|
immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK;
|
|
immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK;
|
|
immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FADS
|
|
cp->cp_pbpar |= PB_ENET_TENA;
|
|
cp->cp_pbdir |= PB_ENET_TENA;
|
|
|
|
/* Enable the EEST PHY.
|
|
*/
|
|
*((volatile uint *)BCSR1) &= ~BCSR1_ETHEN;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MPC885ADS
|
|
|
|
/* Deassert PHY reset and enable the PHY.
|
|
*/
|
|
{
|
|
volatile uint __iomem *bcsr = ioremap(BCSR_ADDR, BCSR_SIZE);
|
|
uint tmp;
|
|
|
|
tmp = in_be32(bcsr + 1 /* BCSR1 */);
|
|
tmp |= BCSR1_ETHEN;
|
|
out_be32(bcsr + 1, tmp);
|
|
tmp = in_be32(bcsr + 4 /* BCSR4 */);
|
|
tmp |= BCSR4_ETH10_RST;
|
|
out_be32(bcsr + 4, tmp);
|
|
iounmap(bcsr);
|
|
}
|
|
|
|
/* On MPC885ADS SCC ethernet PHY defaults to the full duplex mode
|
|
* upon reset. SCC is set to half duplex by default. So this
|
|
* inconsistency should be better fixed by the software.
|
|
*/
|
|
#endif
|
|
|
|
dev->base_addr = (unsigned long)ep;
|
|
#if 0
|
|
dev->name = "CPM_ENET";
|
|
#endif
|
|
|
|
/* The CPM Ethernet specific entries in the device structure. */
|
|
dev->open = scc_enet_open;
|
|
dev->hard_start_xmit = scc_enet_start_xmit;
|
|
dev->tx_timeout = scc_enet_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->stop = scc_enet_close;
|
|
dev->get_stats = scc_enet_get_stats;
|
|
dev->set_multicast_list = set_multicast_list;
|
|
|
|
err = register_netdev(dev);
|
|
if (err) {
|
|
free_netdev(dev);
|
|
return err;
|
|
}
|
|
|
|
/* And last, enable the transmit and receive processing.
|
|
*/
|
|
sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
|
|
|
|
printk("%s: CPM ENET Version 0.2 on SCC%d, ", dev->name, SCC_ENET+1);
|
|
for (i=0; i<5; i++)
|
|
printk("%02x:", dev->dev_addr[i]);
|
|
printk("%02x\n", dev->dev_addr[5]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(scc_enet_init);
|
|
|