linux_dsm_epyc7002/fs/f2fs/data.c
Jaegeuk Kim a7ffdbe22c f2fs: expand counting dirty pages in the inode page cache
Previously f2fs only counts dirty dentry pages, but there is no reason not to
expand the scope.

This patch changes the names on the management of dirty pages and to count
dirty pages in each inode info as well.

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2014-09-16 04:10:39 -07:00

1166 lines
27 KiB
C

/*
* fs/f2fs/data.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/mpage.h>
#include <linux/aio.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/prefetch.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
static void f2fs_read_end_io(struct bio *bio, int err)
{
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (!err) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
static void f2fs_write_end_io(struct bio *bio, int err)
{
struct f2fs_sb_info *sbi = bio->bi_private;
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (unlikely(err)) {
set_page_dirty(page);
set_bit(AS_EIO, &page->mapping->flags);
f2fs_stop_checkpoint(sbi);
}
end_page_writeback(page);
dec_page_count(sbi, F2FS_WRITEBACK);
}
if (sbi->wait_io) {
complete(sbi->wait_io);
sbi->wait_io = NULL;
}
if (!get_pages(sbi, F2FS_WRITEBACK) &&
!list_empty(&sbi->cp_wait.task_list))
wake_up(&sbi->cp_wait);
bio_put(bio);
}
/*
* Low-level block read/write IO operations.
*/
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
int npages, bool is_read)
{
struct bio *bio;
/* No failure on bio allocation */
bio = bio_alloc(GFP_NOIO, npages);
bio->bi_bdev = sbi->sb->s_bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
bio->bi_private = sbi;
return bio;
}
static void __submit_merged_bio(struct f2fs_bio_info *io)
{
struct f2fs_io_info *fio = &io->fio;
int rw;
if (!io->bio)
return;
rw = fio->rw;
if (is_read_io(rw)) {
trace_f2fs_submit_read_bio(io->sbi->sb, rw,
fio->type, io->bio);
submit_bio(rw, io->bio);
} else {
trace_f2fs_submit_write_bio(io->sbi->sb, rw,
fio->type, io->bio);
/*
* META_FLUSH is only from the checkpoint procedure, and we
* should wait this metadata bio for FS consistency.
*/
if (fio->type == META_FLUSH) {
DECLARE_COMPLETION_ONSTACK(wait);
io->sbi->wait_io = &wait;
submit_bio(rw, io->bio);
wait_for_completion(&wait);
} else {
submit_bio(rw, io->bio);
}
}
io->bio = NULL;
}
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
enum page_type type, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io;
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
down_write(&io->io_rwsem);
/* change META to META_FLUSH in the checkpoint procedure */
if (type >= META_FLUSH) {
io->fio.type = META_FLUSH;
if (test_opt(sbi, NOBARRIER))
io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
else
io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
}
__submit_merged_bio(io);
up_write(&io->io_rwsem);
}
/*
* Fill the locked page with data located in the block address.
* Return unlocked page.
*/
int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
block_t blk_addr, int rw)
{
struct bio *bio;
trace_f2fs_submit_page_bio(page, blk_addr, rw);
/* Allocate a new bio */
bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
bio_put(bio);
f2fs_put_page(page, 1);
return -EFAULT;
}
submit_bio(rw, bio);
return 0;
}
void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
block_t blk_addr, struct f2fs_io_info *fio)
{
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
struct f2fs_bio_info *io;
bool is_read = is_read_io(fio->rw);
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
verify_block_addr(sbi, blk_addr);
down_write(&io->io_rwsem);
if (!is_read)
inc_page_count(sbi, F2FS_WRITEBACK);
if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
io->fio.rw != fio->rw))
__submit_merged_bio(io);
alloc_new:
if (io->bio == NULL) {
int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
io->fio = *fio;
}
if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
PAGE_CACHE_SIZE) {
__submit_merged_bio(io);
goto alloc_new;
}
io->last_block_in_bio = blk_addr;
up_write(&io->io_rwsem);
trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
}
/*
* Lock ordering for the change of data block address:
* ->data_page
* ->node_page
* update block addresses in the node page
*/
static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
{
struct f2fs_node *rn;
__le32 *addr_array;
struct page *node_page = dn->node_page;
unsigned int ofs_in_node = dn->ofs_in_node;
f2fs_wait_on_page_writeback(node_page, NODE);
rn = F2FS_NODE(node_page);
/* Get physical address of data block */
addr_array = blkaddr_in_node(rn);
addr_array[ofs_in_node] = cpu_to_le32(new_addr);
set_page_dirty(node_page);
}
int reserve_new_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
return -EPERM;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
return -ENOSPC;
trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
__set_data_blkaddr(dn, NEW_ADDR);
dn->data_blkaddr = NEW_ADDR;
mark_inode_dirty(dn->inode);
sync_inode_page(dn);
return 0;
}
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
{
bool need_put = dn->inode_page ? false : true;
int err;
/* if inode_page exists, index should be zero */
f2fs_bug_on(F2FS_I_SB(dn->inode), !need_put && index);
err = get_dnode_of_data(dn, index, ALLOC_NODE);
if (err)
return err;
if (dn->data_blkaddr == NULL_ADDR)
err = reserve_new_block(dn);
if (err || need_put)
f2fs_put_dnode(dn);
return err;
}
static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
struct buffer_head *bh_result)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
pgoff_t start_fofs, end_fofs;
block_t start_blkaddr;
if (is_inode_flag_set(fi, FI_NO_EXTENT))
return 0;
read_lock(&fi->ext.ext_lock);
if (fi->ext.len == 0) {
read_unlock(&fi->ext.ext_lock);
return 0;
}
stat_inc_total_hit(inode->i_sb);
start_fofs = fi->ext.fofs;
end_fofs = fi->ext.fofs + fi->ext.len - 1;
start_blkaddr = fi->ext.blk_addr;
if (pgofs >= start_fofs && pgofs <= end_fofs) {
unsigned int blkbits = inode->i_sb->s_blocksize_bits;
size_t count;
clear_buffer_new(bh_result);
map_bh(bh_result, inode->i_sb,
start_blkaddr + pgofs - start_fofs);
count = end_fofs - pgofs + 1;
if (count < (UINT_MAX >> blkbits))
bh_result->b_size = (count << blkbits);
else
bh_result->b_size = UINT_MAX;
stat_inc_read_hit(inode->i_sb);
read_unlock(&fi->ext.ext_lock);
return 1;
}
read_unlock(&fi->ext.ext_lock);
return 0;
}
void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
{
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
pgoff_t fofs, start_fofs, end_fofs;
block_t start_blkaddr, end_blkaddr;
int need_update = true;
f2fs_bug_on(F2FS_I_SB(dn->inode), blk_addr == NEW_ADDR);
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
/* Update the page address in the parent node */
__set_data_blkaddr(dn, blk_addr);
if (is_inode_flag_set(fi, FI_NO_EXTENT))
return;
write_lock(&fi->ext.ext_lock);
start_fofs = fi->ext.fofs;
end_fofs = fi->ext.fofs + fi->ext.len - 1;
start_blkaddr = fi->ext.blk_addr;
end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
/* Drop and initialize the matched extent */
if (fi->ext.len == 1 && fofs == start_fofs)
fi->ext.len = 0;
/* Initial extent */
if (fi->ext.len == 0) {
if (blk_addr != NULL_ADDR) {
fi->ext.fofs = fofs;
fi->ext.blk_addr = blk_addr;
fi->ext.len = 1;
}
goto end_update;
}
/* Front merge */
if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
fi->ext.fofs--;
fi->ext.blk_addr--;
fi->ext.len++;
goto end_update;
}
/* Back merge */
if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
fi->ext.len++;
goto end_update;
}
/* Split the existing extent */
if (fi->ext.len > 1 &&
fofs >= start_fofs && fofs <= end_fofs) {
if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
fi->ext.len = fofs - start_fofs;
} else {
fi->ext.fofs = fofs + 1;
fi->ext.blk_addr = start_blkaddr +
fofs - start_fofs + 1;
fi->ext.len -= fofs - start_fofs + 1;
}
} else {
need_update = false;
}
/* Finally, if the extent is very fragmented, let's drop the cache. */
if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
fi->ext.len = 0;
set_inode_flag(fi, FI_NO_EXTENT);
need_update = true;
}
end_update:
write_unlock(&fi->ext.ext_lock);
if (need_update)
sync_inode_page(dn);
return;
}
struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
{
struct address_space *mapping = inode->i_mapping;
struct dnode_of_data dn;
struct page *page;
int err;
page = find_get_page(mapping, index);
if (page && PageUptodate(page))
return page;
f2fs_put_page(page, 0);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err)
return ERR_PTR(err);
f2fs_put_dnode(&dn);
if (dn.data_blkaddr == NULL_ADDR)
return ERR_PTR(-ENOENT);
/* By fallocate(), there is no cached page, but with NEW_ADDR */
if (unlikely(dn.data_blkaddr == NEW_ADDR))
return ERR_PTR(-EINVAL);
page = grab_cache_page(mapping, index);
if (!page)
return ERR_PTR(-ENOMEM);
if (PageUptodate(page)) {
unlock_page(page);
return page;
}
err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, dn.data_blkaddr,
sync ? READ_SYNC : READA);
if (err)
return ERR_PTR(err);
if (sync) {
wait_on_page_locked(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 0);
return ERR_PTR(-EIO);
}
}
return page;
}
/*
* If it tries to access a hole, return an error.
* Because, the callers, functions in dir.c and GC, should be able to know
* whether this page exists or not.
*/
struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->i_mapping;
struct dnode_of_data dn;
struct page *page;
int err;
repeat:
page = grab_cache_page(mapping, index);
if (!page)
return ERR_PTR(-ENOMEM);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
f2fs_put_dnode(&dn);
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
f2fs_put_page(page, 1);
return ERR_PTR(-ENOENT);
}
if (PageUptodate(page))
return page;
/*
* A new dentry page is allocated but not able to be written, since its
* new inode page couldn't be allocated due to -ENOSPC.
* In such the case, its blkaddr can be remained as NEW_ADDR.
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
*/
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
return page;
}
err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
dn.data_blkaddr, READ_SYNC);
if (err)
return ERR_PTR(err);
lock_page(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
return page;
}
/*
* Caller ensures that this data page is never allocated.
* A new zero-filled data page is allocated in the page cache.
*
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
* Note that, ipage is set only by make_empty_dir.
*/
struct page *get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
struct dnode_of_data dn;
int err;
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, index);
if (err)
return ERR_PTR(err);
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
err = -ENOMEM;
goto put_err;
}
if (PageUptodate(page))
return page;
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
} else {
err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
dn.data_blkaddr, READ_SYNC);
if (err)
goto put_err;
lock_page(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
err = -EIO;
goto put_err;
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
}
if (new_i_size &&
i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
/* Only the directory inode sets new_i_size */
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
}
return page;
put_err:
f2fs_put_dnode(&dn);
return ERR_PTR(err);
}
static int __allocate_data_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_summary sum;
block_t new_blkaddr;
struct node_info ni;
int type;
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
return -EPERM;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
return -ENOSPC;
__set_data_blkaddr(dn, NEW_ADDR);
dn->data_blkaddr = NEW_ADDR;
get_node_info(sbi, dn->nid, &ni);
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
type = CURSEG_WARM_DATA;
allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
/* direct IO doesn't use extent cache to maximize the performance */
set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
update_extent_cache(new_blkaddr, dn);
clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
dn->data_blkaddr = new_blkaddr;
return 0;
}
/*
* get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
* If original data blocks are allocated, then give them to blockdev.
* Otherwise,
* a. preallocate requested block addresses
* b. do not use extent cache for better performance
* c. give the block addresses to blockdev
*/
static int __get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create, bool fiemap)
{
unsigned int blkbits = inode->i_sb->s_blocksize_bits;
unsigned maxblocks = bh_result->b_size >> blkbits;
struct dnode_of_data dn;
int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
pgoff_t pgofs, end_offset;
int err = 0, ofs = 1;
bool allocated = false;
/* Get the page offset from the block offset(iblock) */
pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
if (check_extent_cache(inode, pgofs, bh_result))
goto out;
if (create) {
f2fs_balance_fs(F2FS_I_SB(inode));
f2fs_lock_op(F2FS_I_SB(inode));
}
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (err == -ENOENT)
err = 0;
goto unlock_out;
}
if (dn.data_blkaddr == NEW_ADDR && !fiemap)
goto put_out;
if (dn.data_blkaddr != NULL_ADDR) {
map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
} else if (create) {
err = __allocate_data_block(&dn);
if (err)
goto put_out;
allocated = true;
map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
} else {
goto put_out;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bh_result->b_size = (((size_t)1) << blkbits);
dn.ofs_in_node++;
pgofs++;
get_next:
if (dn.ofs_in_node >= end_offset) {
if (allocated)
sync_inode_page(&dn);
allocated = false;
f2fs_put_dnode(&dn);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (err == -ENOENT)
err = 0;
goto unlock_out;
}
if (dn.data_blkaddr == NEW_ADDR && !fiemap)
goto put_out;
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
}
if (maxblocks > (bh_result->b_size >> blkbits)) {
block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
if (blkaddr == NULL_ADDR && create) {
err = __allocate_data_block(&dn);
if (err)
goto sync_out;
allocated = true;
blkaddr = dn.data_blkaddr;
}
/* Give more consecutive addresses for the readahead */
if (blkaddr == (bh_result->b_blocknr + ofs)) {
ofs++;
dn.ofs_in_node++;
pgofs++;
bh_result->b_size += (((size_t)1) << blkbits);
goto get_next;
}
}
sync_out:
if (allocated)
sync_inode_page(&dn);
put_out:
f2fs_put_dnode(&dn);
unlock_out:
if (create)
f2fs_unlock_op(F2FS_I_SB(inode));
out:
trace_f2fs_get_data_block(inode, iblock, bh_result, err);
return err;
}
static int get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create, false);
}
static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create, true);
}
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len)
{
return generic_block_fiemap(inode, fieinfo,
start, len, get_data_block_fiemap);
}
static int f2fs_read_data_page(struct file *file, struct page *page)
{
struct inode *inode = page->mapping->host;
int ret;
trace_f2fs_readpage(page, DATA);
/* If the file has inline data, try to read it directly */
if (f2fs_has_inline_data(inode))
ret = f2fs_read_inline_data(inode, page);
else
ret = mpage_readpage(page, get_data_block);
return ret;
}
static int f2fs_read_data_pages(struct file *file,
struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = file->f_mapping->host;
/* If the file has inline data, skip readpages */
if (f2fs_has_inline_data(inode))
return 0;
return mpage_readpages(mapping, pages, nr_pages, get_data_block);
}
int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
{
struct inode *inode = page->mapping->host;
block_t old_blkaddr, new_blkaddr;
struct dnode_of_data dn;
int err = 0;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
if (err)
return err;
old_blkaddr = dn.data_blkaddr;
/* This page is already truncated */
if (old_blkaddr == NULL_ADDR)
goto out_writepage;
set_page_writeback(page);
/*
* If current allocation needs SSR,
* it had better in-place writes for updated data.
*/
if (unlikely(old_blkaddr != NEW_ADDR &&
!is_cold_data(page) &&
need_inplace_update(inode))) {
rewrite_data_page(page, old_blkaddr, fio);
set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
} else {
write_data_page(page, &dn, &new_blkaddr, fio);
update_extent_cache(new_blkaddr, &dn);
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
}
out_writepage:
f2fs_put_dnode(&dn);
return err;
}
static int f2fs_write_data_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = ((unsigned long long) i_size)
>> PAGE_CACHE_SHIFT;
unsigned offset = 0;
bool need_balance_fs = false;
int err = 0;
struct f2fs_io_info fio = {
.type = DATA,
.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
};
trace_f2fs_writepage(page, DATA);
if (page->index < end_index)
goto write;
/*
* If the offset is out-of-range of file size,
* this page does not have to be written to disk.
*/
offset = i_size & (PAGE_CACHE_SIZE - 1);
if ((page->index >= end_index + 1) || !offset)
goto out;
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
write:
if (unlikely(sbi->por_doing))
goto redirty_out;
/* Dentry blocks are controlled by checkpoint */
if (S_ISDIR(inode->i_mode)) {
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
err = do_write_data_page(page, &fio);
goto done;
}
/* we should bypass data pages to proceed the kworkder jobs */
if (unlikely(f2fs_cp_error(sbi))) {
SetPageError(page);
unlock_page(page);
goto out;
}
if (!wbc->for_reclaim)
need_balance_fs = true;
else if (has_not_enough_free_secs(sbi, 0))
goto redirty_out;
f2fs_lock_op(sbi);
if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
err = f2fs_write_inline_data(inode, page, offset);
else
err = do_write_data_page(page, &fio);
f2fs_unlock_op(sbi);
done:
if (err && err != -ENOENT)
goto redirty_out;
clear_cold_data(page);
out:
inode_dec_dirty_pages(inode);
unlock_page(page);
if (need_balance_fs)
f2fs_balance_fs(sbi);
if (wbc->for_reclaim)
f2fs_submit_merged_bio(sbi, DATA, WRITE);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
void *data)
{
struct address_space *mapping = data;
int ret = mapping->a_ops->writepage(page, wbc);
mapping_set_error(mapping, ret);
return ret;
}
static int f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
bool locked = false;
int ret;
long diff;
trace_f2fs_writepages(mapping->host, wbc, DATA);
/* deal with chardevs and other special file */
if (!mapping->a_ops->writepage)
return 0;
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
available_free_memory(sbi, DIRTY_DENTS))
goto skip_write;
diff = nr_pages_to_write(sbi, DATA, wbc);
if (!S_ISDIR(inode->i_mode)) {
mutex_lock(&sbi->writepages);
locked = true;
}
ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
if (locked)
mutex_unlock(&sbi->writepages);
f2fs_submit_merged_bio(sbi, DATA, WRITE);
remove_dirty_dir_inode(inode);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
return ret;
skip_write:
wbc->pages_skipped += get_dirty_pages(inode);
return 0;
}
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > inode->i_size) {
truncate_pagecache(inode, inode->i_size);
truncate_blocks(inode, inode->i_size, true);
}
}
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page;
pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
struct dnode_of_data dn;
int err = 0;
trace_f2fs_write_begin(inode, pos, len, flags);
f2fs_balance_fs(sbi);
repeat:
err = f2fs_convert_inline_data(inode, pos + len, NULL);
if (err)
goto fail;
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page) {
err = -ENOMEM;
goto fail;
}
/* to avoid latency during memory pressure */
unlock_page(page);
*pagep = page;
if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
goto inline_data;
f2fs_lock_op(sbi);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_reserve_block(&dn, index);
f2fs_unlock_op(sbi);
if (err) {
f2fs_put_page(page, 0);
goto fail;
}
inline_data:
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
f2fs_wait_on_page_writeback(page, DATA);
if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
return 0;
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
unsigned end = start + len;
/* Reading beyond i_size is simple: memset to zero */
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
goto out;
}
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
} else {
if (f2fs_has_inline_data(inode)) {
err = f2fs_read_inline_data(inode, page);
if (err) {
page_cache_release(page);
goto fail;
}
} else {
err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
READ_SYNC);
if (err)
goto fail;
}
lock_page(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
err = -EIO;
goto fail;
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
}
out:
SetPageUptodate(page);
clear_cold_data(page);
return 0;
fail:
f2fs_write_failed(mapping, pos + len);
return err;
}
static int f2fs_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
trace_f2fs_write_end(inode, pos, len, copied);
set_page_dirty(page);
if (pos + copied > i_size_read(inode)) {
i_size_write(inode, pos + copied);
mark_inode_dirty(inode);
update_inode_page(inode);
}
f2fs_put_page(page, 1);
return copied;
}
static int check_direct_IO(struct inode *inode, int rw,
struct iov_iter *iter, loff_t offset)
{
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
if (rw == READ)
return 0;
if (offset & blocksize_mask)
return -EINVAL;
if (iov_iter_alignment(iter) & blocksize_mask)
return -EINVAL;
return 0;
}
static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
struct iov_iter *iter, loff_t offset)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
int err;
/* Let buffer I/O handle the inline data case. */
if (f2fs_has_inline_data(inode))
return 0;
if (check_direct_IO(inode, rw, iter, offset))
return 0;
/* clear fsync mark to recover these blocks */
fsync_mark_clear(F2FS_I_SB(inode), inode->i_ino);
trace_f2fs_direct_IO_enter(inode, offset, count, rw);
err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
if (err < 0 && (rw & WRITE))
f2fs_write_failed(mapping, offset + count);
trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
return err;
}
static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
if (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)
return;
if (PageDirty(page))
inode_dec_dirty_pages(inode);
ClearPagePrivate(page);
}
static int f2fs_release_data_page(struct page *page, gfp_t wait)
{
ClearPagePrivate(page);
return 1;
}
static int f2fs_set_data_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
trace_f2fs_set_page_dirty(page, DATA);
SetPageUptodate(page);
mark_inode_dirty(inode);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
update_dirty_page(inode, page);
return 1;
}
return 0;
}
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
if (f2fs_has_inline_data(inode))
return 0;
return generic_block_bmap(mapping, block, get_data_block);
}
const struct address_space_operations f2fs_dblock_aops = {
.readpage = f2fs_read_data_page,
.readpages = f2fs_read_data_pages,
.writepage = f2fs_write_data_page,
.writepages = f2fs_write_data_pages,
.write_begin = f2fs_write_begin,
.write_end = f2fs_write_end,
.set_page_dirty = f2fs_set_data_page_dirty,
.invalidatepage = f2fs_invalidate_data_page,
.releasepage = f2fs_release_data_page,
.direct_IO = f2fs_direct_IO,
.bmap = f2fs_bmap,
};