linux_dsm_epyc7002/drivers/net/ethernet/cavium/liquidio/cn66xx_device.c
Will Deacon fb24ea52f7 drivers: Remove explicit invocations of mmiowb()
mmiowb() is now implied by spin_unlock() on architectures that require
it, so there is no reason to call it from driver code. This patch was
generated using coccinelle:

	@mmiowb@
	@@
	- mmiowb();

and invoked as:

$ for d in drivers include/linux/qed sound; do \
spatch --include-headers --sp-file mmiowb.cocci --dir $d --in-place; done

NOTE: mmiowb() has only ever guaranteed ordering in conjunction with
spin_unlock(). However, pairing each mmiowb() removal in this patch with
the corresponding call to spin_unlock() is not at all trivial, so there
is a small chance that this change may regress any drivers incorrectly
relying on mmiowb() to order MMIO writes between CPUs using lock-free
synchronisation. If you've ended up bisecting to this commit, you can
reintroduce the mmiowb() calls using wmb() instead, which should restore
the old behaviour on all architectures other than some esoteric ia64
systems.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-08 12:01:02 +01:00

738 lines
22 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2016 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more details.
***********************************************************************/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_main.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"
int lio_cn6xxx_soft_reset(struct octeon_device *oct)
{
octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
/* Wait for 10ms as Octeon resets. */
mdelay(100);
if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1)) {
dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
return 1;
}
dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
return 0;
}
void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
{
u32 val;
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
if (val & 0x000c0000) {
dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
val & 0x000c0000);
}
val |= 0xf; /* Enable Link error reporting */
dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}
void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
enum octeon_pcie_mps mps)
{
u32 val;
u64 r64;
/* Read config register for MPS */
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
if (mps == PCIE_MPS_DEFAULT) {
mps = ((val & (0x7 << 5)) >> 5);
} else {
val &= ~(0x7 << 5); /* Turn off any MPS bits */
val |= (mps << 5); /* Set MPS */
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}
/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
r64 |= (mps << 4);
lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}
void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
enum octeon_pcie_mrrs mrrs)
{
u32 val;
u64 r64;
/* Read config register for MRRS */
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
if (mrrs == PCIE_MRRS_DEFAULT) {
mrrs = ((val & (0x7 << 12)) >> 12);
} else {
val &= ~(0x7 << 12); /* Turn off any MRRS bits */
val |= (mrrs << 12); /* Set MRRS */
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
}
/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
r64 |= mrrs;
octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
r64 |= mrrs;
lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
}
u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
{
/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
* for SLI.
*/
return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
}
u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
u32 time_intr_in_us)
{
/* This gives the SLI clock per microsec */
u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
/* core clock per us / oq ticks will be fractional. TO avoid that
* we use the method below.
*/
/* This gives the clock cycles per millisecond */
oqticks_per_us *= 1000;
/* This gives the oq ticks (1024 core clock cycles) per millisecond */
oqticks_per_us /= 1024;
/* time_intr is in microseconds. The next 2 steps gives the oq ticks
* corressponding to time_intr.
*/
oqticks_per_us *= time_intr_in_us;
oqticks_per_us /= 1000;
return oqticks_per_us;
}
void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
{
/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
CN6XXX_INPUT_CTL_MASK);
/* Instruction Read Size - Max 4 instructions per PCIE Read */
octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
0xFFFFFFFFFFFFFFFFULL);
/* Select PCIE Port for all Input rings. */
octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
(oct->pcie_port * 0x5555555555555555ULL));
}
static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
{
u64 pktctl;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
/* 66XX SPECIFIC */
if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
/* Disable RING_EN if only upto 4 rings are used. */
pktctl &= ~(1 << 4);
else
pktctl |= (1 << 4);
if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
pktctl |= 0xF;
else
/* Disable per-port backpressure. */
pktctl &= ~0xF;
octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
}
void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
{
u32 time_threshold;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
/* / Select PCI-E Port for all Output queues */
octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
(oct->pcie_port * 0x5555555555555555ULL));
if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
} else {
/* / Set Output queue watermark to 0 to disable backpressure */
octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
}
/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
/* Select ES, RO, NS setting from register for Output Queue Packet
* Address
*/
octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
* Queue ScatterList
*/
octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
#ifdef __BIG_ENDIAN_BITFIELD
octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
0x5555555555555555ULL);
#else
octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
#endif
/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
0x5555555555555555ULL);
/* / Set up interrupt packet and time threshold */
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
(u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
time_threshold =
lio_cn6xxx_get_oq_ticks(oct, (u32)
CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
}
static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
{
lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
lio_cn6xxx_enable_error_reporting(oct);
lio_cn6xxx_setup_global_input_regs(oct);
lio_cn66xx_setup_pkt_ctl_regs(oct);
lio_cn6xxx_setup_global_output_regs(oct);
/* Default error timeout value should be 0x200000 to avoid host hang
* when reads invalid register
*/
octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
return 0;
}
void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
/* Write the start of the input queue's ring and its size */
octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
iq->base_addr_dma);
octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
/* Remember the doorbell & instruction count register addr for this
* queue
*/
iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
iq->inst_cnt_reg = oct->mmio[0].hw_addr
+ CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
/* Store the current instruction counter
* (used in flush_iq calculation)
*/
iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
}
static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
{
lio_cn6xxx_setup_iq_regs(oct, iq_no);
/* Backpressure for this queue - WMARK set to all F's. This effectively
* disables the backpressure mechanism.
*/
octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
(0xFFFFFFFFULL << 32));
}
void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
{
u32 intr;
struct octeon_droq *droq = oct->droq[oq_no];
octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
droq->desc_ring_dma);
octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
droq->buffer_size);
/* Get the mapped address of the pkt_sent and pkts_credit regs */
droq->pkts_sent_reg =
oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
droq->pkts_credit_reg =
oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
/* Enable this output queue to generate Packet Timer Interrupt */
intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
intr |= (1 << oq_no);
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
/* Enable this output queue to generate Packet Timer Interrupt */
intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
intr |= (1 << oq_no);
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
}
int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
{
u32 mask;
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
mask |= oct->io_qmask.iq64B;
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
mask |= oct->io_qmask.iq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
mask |= oct->io_qmask.oq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
return 0;
}
void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
{
int i;
u32 mask, loop = HZ;
u32 d32;
/* Reset the Enable bits for Input Queues. */
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
mask ^= oct->io_qmask.iq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
/* Wait until hardware indicates that the queues are out of reset. */
mask = (u32)oct->io_qmask.iq;
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
while (((d32 & mask) != mask) && loop--) {
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
schedule_timeout_uninterruptible(1);
}
/* Reset the doorbell register for each Input queue. */
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
if (!(oct->io_qmask.iq & BIT_ULL(i)))
continue;
octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
}
/* Reset the Enable bits for Output Queues. */
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
mask ^= oct->io_qmask.oq;
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
/* Wait until hardware indicates that the queues are out of reset. */
loop = HZ;
mask = (u32)oct->io_qmask.oq;
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
while (((d32 & mask) != mask) && loop--) {
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
schedule_timeout_uninterruptible(1);
}
;
/* Reset the doorbell register for each Output queue. */
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
if (!(oct->io_qmask.oq & BIT_ULL(i)))
continue;
octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
}
d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
if (d32)
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
if (d32)
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
}
void
lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
u64 core_addr,
u32 idx,
int valid)
{
u64 bar1;
if (valid == 0) {
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
CN6XXX_BAR1_REG(idx, oct->pcie_port));
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
return;
}
/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
* the Core Addr
*/
lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
CN6XXX_BAR1_REG(idx, oct->pcie_port));
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}
void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
u32 idx,
u32 mask)
{
lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}
u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
{
return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
}
u32
lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
{
u32 new_idx = readl(iq->inst_cnt_reg);
/* The new instr cnt reg is a 32-bit counter that can roll over. We have
* noted the counter's initial value at init time into
* reset_instr_cnt
*/
if (iq->reset_instr_cnt < new_idx)
new_idx -= iq->reset_instr_cnt;
else
new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
/* Modulo of the new index with the IQ size will give us
* the new index.
*/
new_idx %= iq->max_count;
return new_idx;
}
void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
u8 unused __attribute__((unused)))
{
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
/* Enable Interrupt */
writeq(mask, cn6xxx->intr_enb_reg64);
}
void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
u8 unused __attribute__((unused)))
{
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
/* Disable Interrupts */
writeq(0, cn6xxx->intr_enb_reg64);
}
static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
{
/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
* to determine the PCIE port #
*/
oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
}
static void
lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
{
dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
CVM_CAST64(intr64));
}
static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
{
struct octeon_droq *droq;
int oq_no;
u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
u32 droq_cnt_enb, droq_cnt_mask;
droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
droq_mask = droq_cnt_mask & droq_cnt_enb;
droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
droq_mask |= (droq_time_mask & droq_int_enb);
droq_mask &= oct->io_qmask.oq;
oct->droq_intr = 0;
for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
if (!(droq_mask & BIT_ULL(oq_no)))
continue;
droq = oct->droq[oq_no];
pkt_count = octeon_droq_check_hw_for_pkts(droq);
if (pkt_count) {
oct->droq_intr |= BIT_ULL(oq_no);
if (droq->ops.poll_mode) {
u32 value;
u32 reg;
struct octeon_cn6xxx *cn6xxx =
(struct octeon_cn6xxx *)oct->chip;
/* disable interrupts for this droq */
spin_lock
(&cn6xxx->lock_for_droq_int_enb_reg);
reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
value = octeon_read_csr(oct, reg);
value &= ~(1 << oq_no);
octeon_write_csr(oct, reg, value);
reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
value = octeon_read_csr(oct, reg);
value &= ~(1 << oq_no);
octeon_write_csr(oct, reg, value);
spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
}
}
}
droq_time_mask &= oct->io_qmask.oq;
droq_cnt_mask &= oct->io_qmask.oq;
/* Reset the PKT_CNT/TIME_INT registers. */
if (droq_time_mask)
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
if (droq_cnt_mask) /* reset PKT_CNT register:66xx */
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
return 0;
}
irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
{
struct octeon_device *oct = (struct octeon_device *)dev;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
u64 intr64;
intr64 = readq(cn6xxx->intr_sum_reg64);
/* If our device has interrupted, then proceed.
* Also check for all f's if interrupt was triggered on an error
* and the PCI read fails.
*/
if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
return IRQ_NONE;
oct->int_status = 0;
if (intr64 & CN6XXX_INTR_ERR)
lio_cn6xxx_process_pcie_error_intr(oct, intr64);
if (intr64 & CN6XXX_INTR_PKT_DATA) {
lio_cn6xxx_process_droq_intr_regs(oct);
oct->int_status |= OCT_DEV_INTR_PKT_DATA;
}
if (intr64 & CN6XXX_INTR_DMA0_FORCE)
oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
if (intr64 & CN6XXX_INTR_DMA1_FORCE)
oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
/* Clear the current interrupts */
writeq(intr64, cn6xxx->intr_sum_reg64);
return IRQ_HANDLED;
}
void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
void *chip,
struct octeon_reg_list *reg_list)
{
u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
reg_list->pci_win_wr_addr_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
reg_list->pci_win_wr_addr_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
reg_list->pci_win_wr_addr =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
reg_list->pci_win_rd_addr_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
reg_list->pci_win_rd_addr_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
reg_list->pci_win_rd_addr =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
reg_list->pci_win_wr_data_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
reg_list->pci_win_wr_data_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
reg_list->pci_win_wr_data =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
reg_list->pci_win_rd_data_hi =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
reg_list->pci_win_rd_data_lo =
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
reg_list->pci_win_rd_data =
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
lio_cn6xxx_get_pcie_qlmport(oct);
cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
cn6xxx->intr_enb_reg64 =
bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
}
int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
{
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
if (octeon_map_pci_barx(oct, 0, 0))
return 1;
if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
__func__);
octeon_unmap_pci_barx(oct, 0);
return 1;
}
spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
cn6xxx->conf = (struct octeon_config *)
oct_get_config_info(oct, LIO_210SV);
if (!cn6xxx->conf) {
dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
__func__);
octeon_unmap_pci_barx(oct, 0);
octeon_unmap_pci_barx(oct, 1);
return 1;
}
oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
return 0;
}
int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
struct octeon_config *conf6xxx)
{
if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
CN6XXX_MAX_INPUT_QUEUES);
return 1;
}
if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
CN6XXX_MAX_OUTPUT_QUEUES);
return 1;
}
if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
__func__);
return 1;
}
if (!CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx)) {
dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
__func__);
return 1;
}
if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
__func__);
return 1;
}
return 0;
}