mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 08:56:13 +07:00
92a578b064
This time we have some more new material than we used to have during the last couple of development cycles. The most important part of it to me is the introduction of a unified interface for accessing device properties provided by platform firmware. It works with Device Trees and ACPI in a uniform way and drivers using it need not worry about where the properties come from as long as the platform firmware (either DT or ACPI) makes them available. It covers both devices and "bare" device node objects without struct device representation as that turns out to be necessary in some cases. This has been in the works for quite a few months (and development cycles) and has been approved by all of the relevant maintainers. On top of that, some drivers are switched over to the new interface (at25, leds-gpio, gpio_keys_polled) and some additional changes are made to the core GPIO subsystem to allow device drivers to manipulate GPIOs in the "canonical" way on platforms that provide GPIO information in their ACPI tables, but don't assign names to GPIO lines (in which case the driver needs to do that on the basis of what it knows about the device in question). That also has been approved by the GPIO core maintainers and the rfkill driver is now going to use it. Second is support for hardware P-states in the intel_pstate driver. It uses CPUID to detect whether or not the feature is supported by the processor in which case it will be enabled by default. However, it can be disabled entirely from the kernel command line if necessary. Next is support for a platform firmware interface based on ACPI operation regions used by the PMIC (Power Management Integrated Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms. That interface is used for manipulating power resources and for thermal management: sensor temperature reporting, trip point setting and so on. Also the ACPI core is now going to support the _DEP configuration information in a limited way. Basically, _DEP it supposed to reflect off-the-hierarchy dependencies between devices which may be very indirect, like when AML for one device accesses locations in an operation region handled by another device's driver (usually, the device depended on this way is a serial bus or GPIO controller). The support added this time is sufficient to make the ACPI battery driver work on Asus T100A, but it is general enough to be able to cover some other use cases in the future. Finally, we have a new cpufreq driver for the Loongson1B processor. In addition to the above, there are fixes and cleanups all over the place as usual and a traditional ACPICA update to a recent upstream release. As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver for Intel platforms should be able to handle power management of the DMA engine correctly, the cpufreq-dt driver should interact with the thermal subsystem in a better way and the ACPI backlight driver should handle some more corner cases, among other things. On top of the ACPICA update there are fixes for race conditions in the ACPICA's interrupt handling code which might lead to some random and strange looking failures on some systems. In the cleanups department the most visible part is the series of commits targeted at getting rid of the CONFIG_PM_RUNTIME configuration option. That was triggered by a discussion regarding the generic power domains code during which we realized that trying to support certain combinations of PM config options was painful and not really worth it, because nobody would use them in production anyway. For this reason, we decided to make CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and that lead to the conclusion that the latter became redundant and CONFIG_PM could be used instead of it. The material here makes that replacement in a major part of the tree, but there will be at least one more batch of that in the second part of the merge window. Specifics: - Support for retrieving device properties information from ACPI _DSD device configuration objects and a unified device properties interface for device drivers (and subsystems) on top of that. As stated above, this works with Device Trees and ACPI and allows device drivers to be written in a platform firmware (DT or ACPI) agnostic way. The at25, leds-gpio and gpio_keys_polled drivers are now going to use this new interface and the GPIO subsystem is additionally modified to allow device drivers to assign names to GPIO resources returned by ACPI _CRS objects (in case _DSD is not present or does not provide the expected data). The changes in this set are mostly from Mika Westerberg, Rafael J Wysocki, Aaron Lu, and Darren Hart with some fixes from others (Fabio Estevam, Geert Uytterhoeven). - Support for Hardware Managed Performance States (HWP) as described in Volume 3, section 14.4, of the Intel SDM in the intel_pstate driver. CPUID is used to detect whether or not the feature is supported by the processor. If supported, it will be enabled automatically unless the intel_pstate=no_hwp switch is present in the kernel command line. From Dirk Brandewie. - New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie). - Support for firmware interface based on ACPI operation regions used by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR platforms for power resource control and thermal management (Aaron Lu). - Limited support for retrieving off-the-hierarchy dependencies between devices from ACPI _DEP device configuration objects and deferred probing support for the ACPI battery driver based on the _DEP information to make that driver work on Asus T100A (Lan Tianyu). - New cpufreq driver for the Loongson1B processor (Kelvin Cheung). - ACPICA update to upstream revision 20141107 which only affects tools (Bob Moore). - Fixes for race conditions in the ACPICA's interrupt handling code and in the ACPI code related to system suspend and resume (Lv Zheng and Rafael J Wysocki). - ACPI core fix for an RCU-related issue in the ioremap() regions management code that slowed down significantly after CPUs had been allowed to enter idle states even if they'd had RCU callbakcs queued and triggered some problems in certain proprietary graphics driver (and elsewhere). The fix replaces synchronize_rcu() in that code with synchronize_rcu_expedited() which makes the issue go away. From Konstantin Khlebnikov. - ACPI LPSS (Low-Power Subsystem) driver fix to handle power management of the DMA engine included into the LPSS correctly. The problem is that the DMA engine doesn't have ACPI PM support of its own and it simply is turned off when the last LPSS device having ACPI PM support goes into D3cold. To work around that, the PM domain used by the ACPI LPSS driver is redesigned so at least one device with ACPI PM support will be on as long as the DMA engine is in use. From Andy Shevchenko. - ACPI backlight driver fix to avoid using it on "Win8-compatible" systems where it doesn't work and where it was used by default by mistake (Aaron Lu). - Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki, Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and Ashwin Chaugule (mostly related to the upcoming ARM64 support). - Intel RAPL (Running Average Power Limit) power capping driver fixes and improvements including new processor IDs (Jacob Pan). - Generic power domains modification to power up domains after attaching devices to them to meet the expectations of device drivers and bus types assuming devices to be accessible at probe time (Ulf Hansson). - Preliminary support for controlling device clocks from the generic power domains core code and modifications of the ARM/shmobile platform to use that feature (Ulf Hansson). - Assorted minor fixes and cleanups of the generic power domains core code (Ulf Hansson, Geert Uytterhoeven). - Assorted minor fixes and cleanups of the device clocks control code in the PM core (Geert Uytterhoeven, Grygorii Strashko). - Consolidation of device power management Kconfig options by making CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter which is now redundant (Rafael J Wysocki and Kevin Hilman). That is the first batch of the changes needed for this purpose. - Core device runtime power management support code cleanup related to the execution of callbacks (Andrzej Hajda). - cpuidle ARM support improvements (Lorenzo Pieralisi). - cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and a new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and Bartlomiej Zolnierkiewicz). - New cpufreq driver callback (->ready) to be executed when the cpufreq core is ready to use a given policy object and cpufreq-dt driver modification to use that callback for cooling device registration (Viresh Kumar). - cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu, James Geboski, Tomeu Vizoso). - Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate, cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao, Stefan Wahren, Petr Cvek). - OPP (Operating Performance Points) framework modification to allow OPPs to be removed too and update of a few cpufreq drivers (cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added during initialization) on driver removal (Viresh Kumar). - Hibernation core fixes and cleanups (Tina Ruchandani and Markus Elfring). - PM Kconfig fix related to CPU power management (Pankaj Dubey). - cpupower tool fix (Prarit Bhargava). / -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABCAAGBQJUhj6JAAoJEILEb/54YlRxTM4P/j5g5SfqvY0QKsn7sR7MGZ6v nsgCBhJAqTw3ocNC7EAs8z9h2GWy1KbKpakKYWAh9Fs1yZoey7tFSlcv/Rgjlp70 uU5sDQHtpE9mHKiymdsowiQuWgpl962L4k+k8hUslhlvgk1PvVbpajR6OqG8G+pD asuIW9eh1APNkLyXmRJ3ZPomzs0VmRdZJ0NEs0lKX9mJskqEvxPIwdaxq3iaJq9B Fo0J345zUDcJnxWblDRdHlOigCimglElfN5qJwaC4KpwUKuBvLRKbp4f69+wfT0c kYFiR29X5KjJ2kLfP/wKsLyuDCYYXRq3tCia5M1tAqOjZ+UA89H/GDftx/5lntmv qUlBa35VfdS1SX4HyApZitOHiLgo+It/hl8Z9bJnhyVw66NxmMQ8JYN2imb8Lhqh XCLR7BxLTah82AapLJuQ0ZDHPzZqMPG2veC2vAzRMYzVijict/p4Y2+qBqONltER 4rs9uRVn+hamX33lCLg8BEN8zqlnT3rJFIgGaKjq/wXHAU/zpE9CjOrKMQcAg9+s t51XMNPwypHMAYyGVhEL89ImjXnXxBkLRuquhlmEpvQchIhR+mR3dLsarGn7da44 WPIQJXzcsojXczcwwfqsJCR4I1FTFyQIW+UNh02GkDRgRovQqo+Jk762U7vQwqH+ LBdhvVaS1VW4v+FWXEoZ =5dox -----END PGP SIGNATURE----- Merge tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI and power management updates from Rafael Wysocki: "This time we have some more new material than we used to have during the last couple of development cycles. The most important part of it to me is the introduction of a unified interface for accessing device properties provided by platform firmware. It works with Device Trees and ACPI in a uniform way and drivers using it need not worry about where the properties come from as long as the platform firmware (either DT or ACPI) makes them available. It covers both devices and "bare" device node objects without struct device representation as that turns out to be necessary in some cases. This has been in the works for quite a few months (and development cycles) and has been approved by all of the relevant maintainers. On top of that, some drivers are switched over to the new interface (at25, leds-gpio, gpio_keys_polled) and some additional changes are made to the core GPIO subsystem to allow device drivers to manipulate GPIOs in the "canonical" way on platforms that provide GPIO information in their ACPI tables, but don't assign names to GPIO lines (in which case the driver needs to do that on the basis of what it knows about the device in question). That also has been approved by the GPIO core maintainers and the rfkill driver is now going to use it. Second is support for hardware P-states in the intel_pstate driver. It uses CPUID to detect whether or not the feature is supported by the processor in which case it will be enabled by default. However, it can be disabled entirely from the kernel command line if necessary. Next is support for a platform firmware interface based on ACPI operation regions used by the PMIC (Power Management Integrated Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms. That interface is used for manipulating power resources and for thermal management: sensor temperature reporting, trip point setting and so on. Also the ACPI core is now going to support the _DEP configuration information in a limited way. Basically, _DEP it supposed to reflect off-the-hierarchy dependencies between devices which may be very indirect, like when AML for one device accesses locations in an operation region handled by another device's driver (usually, the device depended on this way is a serial bus or GPIO controller). The support added this time is sufficient to make the ACPI battery driver work on Asus T100A, but it is general enough to be able to cover some other use cases in the future. Finally, we have a new cpufreq driver for the Loongson1B processor. In addition to the above, there are fixes and cleanups all over the place as usual and a traditional ACPICA update to a recent upstream release. As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver for Intel platforms should be able to handle power management of the DMA engine correctly, the cpufreq-dt driver should interact with the thermal subsystem in a better way and the ACPI backlight driver should handle some more corner cases, among other things. On top of the ACPICA update there are fixes for race conditions in the ACPICA's interrupt handling code which might lead to some random and strange looking failures on some systems. In the cleanups department the most visible part is the series of commits targeted at getting rid of the CONFIG_PM_RUNTIME configuration option. That was triggered by a discussion regarding the generic power domains code during which we realized that trying to support certain combinations of PM config options was painful and not really worth it, because nobody would use them in production anyway. For this reason, we decided to make CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and that lead to the conclusion that the latter became redundant and CONFIG_PM could be used instead of it. The material here makes that replacement in a major part of the tree, but there will be at least one more batch of that in the second part of the merge window. Specifics: - Support for retrieving device properties information from ACPI _DSD device configuration objects and a unified device properties interface for device drivers (and subsystems) on top of that. As stated above, this works with Device Trees and ACPI and allows device drivers to be written in a platform firmware (DT or ACPI) agnostic way. The at25, leds-gpio and gpio_keys_polled drivers are now going to use this new interface and the GPIO subsystem is additionally modified to allow device drivers to assign names to GPIO resources returned by ACPI _CRS objects (in case _DSD is not present or does not provide the expected data). The changes in this set are mostly from Mika Westerberg, Rafael J Wysocki, Aaron Lu, and Darren Hart with some fixes from others (Fabio Estevam, Geert Uytterhoeven). - Support for Hardware Managed Performance States (HWP) as described in Volume 3, section 14.4, of the Intel SDM in the intel_pstate driver. CPUID is used to detect whether or not the feature is supported by the processor. If supported, it will be enabled automatically unless the intel_pstate=no_hwp switch is present in the kernel command line. From Dirk Brandewie. - New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie). - Support for firmware interface based on ACPI operation regions used by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR platforms for power resource control and thermal management (Aaron Lu). - Limited support for retrieving off-the-hierarchy dependencies between devices from ACPI _DEP device configuration objects and deferred probing support for the ACPI battery driver based on the _DEP information to make that driver work on Asus T100A (Lan Tianyu). - New cpufreq driver for the Loongson1B processor (Kelvin Cheung). - ACPICA update to upstream revision 20141107 which only affects tools (Bob Moore). - Fixes for race conditions in the ACPICA's interrupt handling code and in the ACPI code related to system suspend and resume (Lv Zheng and Rafael J Wysocki). - ACPI core fix for an RCU-related issue in the ioremap() regions management code that slowed down significantly after CPUs had been allowed to enter idle states even if they'd had RCU callbakcs queued and triggered some problems in certain proprietary graphics driver (and elsewhere). The fix replaces synchronize_rcu() in that code with synchronize_rcu_expedited() which makes the issue go away. From Konstantin Khlebnikov. - ACPI LPSS (Low-Power Subsystem) driver fix to handle power management of the DMA engine included into the LPSS correctly. The problem is that the DMA engine doesn't have ACPI PM support of its own and it simply is turned off when the last LPSS device having ACPI PM support goes into D3cold. To work around that, the PM domain used by the ACPI LPSS driver is redesigned so at least one device with ACPI PM support will be on as long as the DMA engine is in use. From Andy Shevchenko. - ACPI backlight driver fix to avoid using it on "Win8-compatible" systems where it doesn't work and where it was used by default by mistake (Aaron Lu). - Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki, Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and Ashwin Chaugule (mostly related to the upcoming ARM64 support). - Intel RAPL (Running Average Power Limit) power capping driver fixes and improvements including new processor IDs (Jacob Pan). - Generic power domains modification to power up domains after attaching devices to them to meet the expectations of device drivers and bus types assuming devices to be accessible at probe time (Ulf Hansson). - Preliminary support for controlling device clocks from the generic power domains core code and modifications of the ARM/shmobile platform to use that feature (Ulf Hansson). - Assorted minor fixes and cleanups of the generic power domains core code (Ulf Hansson, Geert Uytterhoeven). - Assorted minor fixes and cleanups of the device clocks control code in the PM core (Geert Uytterhoeven, Grygorii Strashko). - Consolidation of device power management Kconfig options by making CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter which is now redundant (Rafael J Wysocki and Kevin Hilman). That is the first batch of the changes needed for this purpose. - Core device runtime power management support code cleanup related to the execution of callbacks (Andrzej Hajda). - cpuidle ARM support improvements (Lorenzo Pieralisi). - cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and a new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and Bartlomiej Zolnierkiewicz). - New cpufreq driver callback (->ready) to be executed when the cpufreq core is ready to use a given policy object and cpufreq-dt driver modification to use that callback for cooling device registration (Viresh Kumar). - cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu, James Geboski, Tomeu Vizoso). - Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate, cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao, Stefan Wahren, Petr Cvek). - OPP (Operating Performance Points) framework modification to allow OPPs to be removed too and update of a few cpufreq drivers (cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added during initialization) on driver removal (Viresh Kumar). - Hibernation core fixes and cleanups (Tina Ruchandani and Markus Elfring). - PM Kconfig fix related to CPU power management (Pankaj Dubey). - cpupower tool fix (Prarit Bhargava)" * tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (120 commits) i2c-omap / PM: Drop CONFIG_PM_RUNTIME from i2c-omap.c dmaengine / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM tools: cpupower: fix return checks for sysfs_get_idlestate_count() drivers: sh / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM e1000e / igb / PM: Eliminate CONFIG_PM_RUNTIME MMC / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM MFD / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM misc / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM media / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM input / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM leds: leds-gpio: Fix multiple instances registration without 'label' property iio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM hsi / OMAP / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM i2c-hid / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM drm / exynos / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM gpio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM hwrandom / exynos / PM: Use CONFIG_PM in #ifdef block / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM USB / PM: Drop CONFIG_PM_RUNTIME from the USB core PM: Merge the SET*_RUNTIME_PM_OPS() macros ...
1672 lines
47 KiB
C
1672 lines
47 KiB
C
#ifndef _LINUX_BLKDEV_H
|
|
#define _LINUX_BLKDEV_H
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
|
|
#include <linux/major.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/list.h>
|
|
#include <linux/llist.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/bsg.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/percpu-refcount.h>
|
|
|
|
#include <asm/scatterlist.h>
|
|
|
|
struct module;
|
|
struct scsi_ioctl_command;
|
|
|
|
struct request_queue;
|
|
struct elevator_queue;
|
|
struct request_pm_state;
|
|
struct blk_trace;
|
|
struct request;
|
|
struct sg_io_hdr;
|
|
struct bsg_job;
|
|
struct blkcg_gq;
|
|
struct blk_flush_queue;
|
|
|
|
#define BLKDEV_MIN_RQ 4
|
|
#define BLKDEV_MAX_RQ 128 /* Default maximum */
|
|
|
|
/*
|
|
* Maximum number of blkcg policies allowed to be registered concurrently.
|
|
* Defined here to simplify include dependency.
|
|
*/
|
|
#define BLKCG_MAX_POLS 2
|
|
|
|
struct request;
|
|
typedef void (rq_end_io_fn)(struct request *, int);
|
|
|
|
#define BLK_RL_SYNCFULL (1U << 0)
|
|
#define BLK_RL_ASYNCFULL (1U << 1)
|
|
|
|
struct request_list {
|
|
struct request_queue *q; /* the queue this rl belongs to */
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
struct blkcg_gq *blkg; /* blkg this request pool belongs to */
|
|
#endif
|
|
/*
|
|
* count[], starved[], and wait[] are indexed by
|
|
* BLK_RW_SYNC/BLK_RW_ASYNC
|
|
*/
|
|
int count[2];
|
|
int starved[2];
|
|
mempool_t *rq_pool;
|
|
wait_queue_head_t wait[2];
|
|
unsigned int flags;
|
|
};
|
|
|
|
/*
|
|
* request command types
|
|
*/
|
|
enum rq_cmd_type_bits {
|
|
REQ_TYPE_FS = 1, /* fs request */
|
|
REQ_TYPE_BLOCK_PC, /* scsi command */
|
|
REQ_TYPE_SENSE, /* sense request */
|
|
REQ_TYPE_PM_SUSPEND, /* suspend request */
|
|
REQ_TYPE_PM_RESUME, /* resume request */
|
|
REQ_TYPE_PM_SHUTDOWN, /* shutdown request */
|
|
REQ_TYPE_SPECIAL, /* driver defined type */
|
|
/*
|
|
* for ATA/ATAPI devices. this really doesn't belong here, ide should
|
|
* use REQ_TYPE_SPECIAL and use rq->cmd[0] with the range of driver
|
|
* private REQ_LB opcodes to differentiate what type of request this is
|
|
*/
|
|
REQ_TYPE_ATA_TASKFILE,
|
|
REQ_TYPE_ATA_PC,
|
|
};
|
|
|
|
#define BLK_MAX_CDB 16
|
|
|
|
/*
|
|
* Try to put the fields that are referenced together in the same cacheline.
|
|
*
|
|
* If you modify this structure, make sure to update blk_rq_init() and
|
|
* especially blk_mq_rq_ctx_init() to take care of the added fields.
|
|
*/
|
|
struct request {
|
|
struct list_head queuelist;
|
|
union {
|
|
struct call_single_data csd;
|
|
unsigned long fifo_time;
|
|
};
|
|
|
|
struct request_queue *q;
|
|
struct blk_mq_ctx *mq_ctx;
|
|
|
|
u64 cmd_flags;
|
|
enum rq_cmd_type_bits cmd_type;
|
|
unsigned long atomic_flags;
|
|
|
|
int cpu;
|
|
|
|
/* the following two fields are internal, NEVER access directly */
|
|
unsigned int __data_len; /* total data len */
|
|
sector_t __sector; /* sector cursor */
|
|
|
|
struct bio *bio;
|
|
struct bio *biotail;
|
|
|
|
/*
|
|
* The hash is used inside the scheduler, and killed once the
|
|
* request reaches the dispatch list. The ipi_list is only used
|
|
* to queue the request for softirq completion, which is long
|
|
* after the request has been unhashed (and even removed from
|
|
* the dispatch list).
|
|
*/
|
|
union {
|
|
struct hlist_node hash; /* merge hash */
|
|
struct list_head ipi_list;
|
|
};
|
|
|
|
/*
|
|
* The rb_node is only used inside the io scheduler, requests
|
|
* are pruned when moved to the dispatch queue. So let the
|
|
* completion_data share space with the rb_node.
|
|
*/
|
|
union {
|
|
struct rb_node rb_node; /* sort/lookup */
|
|
void *completion_data;
|
|
};
|
|
|
|
/*
|
|
* Three pointers are available for the IO schedulers, if they need
|
|
* more they have to dynamically allocate it. Flush requests are
|
|
* never put on the IO scheduler. So let the flush fields share
|
|
* space with the elevator data.
|
|
*/
|
|
union {
|
|
struct {
|
|
struct io_cq *icq;
|
|
void *priv[2];
|
|
} elv;
|
|
|
|
struct {
|
|
unsigned int seq;
|
|
struct list_head list;
|
|
rq_end_io_fn *saved_end_io;
|
|
} flush;
|
|
};
|
|
|
|
struct gendisk *rq_disk;
|
|
struct hd_struct *part;
|
|
unsigned long start_time;
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
struct request_list *rl; /* rl this rq is alloced from */
|
|
unsigned long long start_time_ns;
|
|
unsigned long long io_start_time_ns; /* when passed to hardware */
|
|
#endif
|
|
/* Number of scatter-gather DMA addr+len pairs after
|
|
* physical address coalescing is performed.
|
|
*/
|
|
unsigned short nr_phys_segments;
|
|
#if defined(CONFIG_BLK_DEV_INTEGRITY)
|
|
unsigned short nr_integrity_segments;
|
|
#endif
|
|
|
|
unsigned short ioprio;
|
|
|
|
void *special; /* opaque pointer available for LLD use */
|
|
|
|
int tag;
|
|
int errors;
|
|
|
|
/*
|
|
* when request is used as a packet command carrier
|
|
*/
|
|
unsigned char __cmd[BLK_MAX_CDB];
|
|
unsigned char *cmd;
|
|
unsigned short cmd_len;
|
|
|
|
unsigned int extra_len; /* length of alignment and padding */
|
|
unsigned int sense_len;
|
|
unsigned int resid_len; /* residual count */
|
|
void *sense;
|
|
|
|
unsigned long deadline;
|
|
struct list_head timeout_list;
|
|
unsigned int timeout;
|
|
int retries;
|
|
|
|
/*
|
|
* completion callback.
|
|
*/
|
|
rq_end_io_fn *end_io;
|
|
void *end_io_data;
|
|
|
|
/* for bidi */
|
|
struct request *next_rq;
|
|
};
|
|
|
|
static inline unsigned short req_get_ioprio(struct request *req)
|
|
{
|
|
return req->ioprio;
|
|
}
|
|
|
|
/*
|
|
* State information carried for REQ_TYPE_PM_SUSPEND and REQ_TYPE_PM_RESUME
|
|
* requests. Some step values could eventually be made generic.
|
|
*/
|
|
struct request_pm_state
|
|
{
|
|
/* PM state machine step value, currently driver specific */
|
|
int pm_step;
|
|
/* requested PM state value (S1, S2, S3, S4, ...) */
|
|
u32 pm_state;
|
|
void* data; /* for driver use */
|
|
};
|
|
|
|
#include <linux/elevator.h>
|
|
|
|
struct blk_queue_ctx;
|
|
|
|
typedef void (request_fn_proc) (struct request_queue *q);
|
|
typedef void (make_request_fn) (struct request_queue *q, struct bio *bio);
|
|
typedef int (prep_rq_fn) (struct request_queue *, struct request *);
|
|
typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
|
|
|
|
struct bio_vec;
|
|
struct bvec_merge_data {
|
|
struct block_device *bi_bdev;
|
|
sector_t bi_sector;
|
|
unsigned bi_size;
|
|
unsigned long bi_rw;
|
|
};
|
|
typedef int (merge_bvec_fn) (struct request_queue *, struct bvec_merge_data *,
|
|
struct bio_vec *);
|
|
typedef void (softirq_done_fn)(struct request *);
|
|
typedef int (dma_drain_needed_fn)(struct request *);
|
|
typedef int (lld_busy_fn) (struct request_queue *q);
|
|
typedef int (bsg_job_fn) (struct bsg_job *);
|
|
|
|
enum blk_eh_timer_return {
|
|
BLK_EH_NOT_HANDLED,
|
|
BLK_EH_HANDLED,
|
|
BLK_EH_RESET_TIMER,
|
|
};
|
|
|
|
typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
|
|
|
|
enum blk_queue_state {
|
|
Queue_down,
|
|
Queue_up,
|
|
};
|
|
|
|
struct blk_queue_tag {
|
|
struct request **tag_index; /* map of busy tags */
|
|
unsigned long *tag_map; /* bit map of free/busy tags */
|
|
int busy; /* current depth */
|
|
int max_depth; /* what we will send to device */
|
|
int real_max_depth; /* what the array can hold */
|
|
atomic_t refcnt; /* map can be shared */
|
|
};
|
|
|
|
#define BLK_SCSI_MAX_CMDS (256)
|
|
#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
|
|
|
|
struct queue_limits {
|
|
unsigned long bounce_pfn;
|
|
unsigned long seg_boundary_mask;
|
|
|
|
unsigned int max_hw_sectors;
|
|
unsigned int chunk_sectors;
|
|
unsigned int max_sectors;
|
|
unsigned int max_segment_size;
|
|
unsigned int physical_block_size;
|
|
unsigned int alignment_offset;
|
|
unsigned int io_min;
|
|
unsigned int io_opt;
|
|
unsigned int max_discard_sectors;
|
|
unsigned int max_write_same_sectors;
|
|
unsigned int discard_granularity;
|
|
unsigned int discard_alignment;
|
|
|
|
unsigned short logical_block_size;
|
|
unsigned short max_segments;
|
|
unsigned short max_integrity_segments;
|
|
|
|
unsigned char misaligned;
|
|
unsigned char discard_misaligned;
|
|
unsigned char cluster;
|
|
unsigned char discard_zeroes_data;
|
|
unsigned char raid_partial_stripes_expensive;
|
|
};
|
|
|
|
struct request_queue {
|
|
/*
|
|
* Together with queue_head for cacheline sharing
|
|
*/
|
|
struct list_head queue_head;
|
|
struct request *last_merge;
|
|
struct elevator_queue *elevator;
|
|
int nr_rqs[2]; /* # allocated [a]sync rqs */
|
|
int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
|
|
|
|
/*
|
|
* If blkcg is not used, @q->root_rl serves all requests. If blkcg
|
|
* is used, root blkg allocates from @q->root_rl and all other
|
|
* blkgs from their own blkg->rl. Which one to use should be
|
|
* determined using bio_request_list().
|
|
*/
|
|
struct request_list root_rl;
|
|
|
|
request_fn_proc *request_fn;
|
|
make_request_fn *make_request_fn;
|
|
prep_rq_fn *prep_rq_fn;
|
|
unprep_rq_fn *unprep_rq_fn;
|
|
merge_bvec_fn *merge_bvec_fn;
|
|
softirq_done_fn *softirq_done_fn;
|
|
rq_timed_out_fn *rq_timed_out_fn;
|
|
dma_drain_needed_fn *dma_drain_needed;
|
|
lld_busy_fn *lld_busy_fn;
|
|
|
|
struct blk_mq_ops *mq_ops;
|
|
|
|
unsigned int *mq_map;
|
|
|
|
/* sw queues */
|
|
struct blk_mq_ctx __percpu *queue_ctx;
|
|
unsigned int nr_queues;
|
|
|
|
/* hw dispatch queues */
|
|
struct blk_mq_hw_ctx **queue_hw_ctx;
|
|
unsigned int nr_hw_queues;
|
|
|
|
/*
|
|
* Dispatch queue sorting
|
|
*/
|
|
sector_t end_sector;
|
|
struct request *boundary_rq;
|
|
|
|
/*
|
|
* Delayed queue handling
|
|
*/
|
|
struct delayed_work delay_work;
|
|
|
|
struct backing_dev_info backing_dev_info;
|
|
|
|
/*
|
|
* The queue owner gets to use this for whatever they like.
|
|
* ll_rw_blk doesn't touch it.
|
|
*/
|
|
void *queuedata;
|
|
|
|
/*
|
|
* various queue flags, see QUEUE_* below
|
|
*/
|
|
unsigned long queue_flags;
|
|
|
|
/*
|
|
* ida allocated id for this queue. Used to index queues from
|
|
* ioctx.
|
|
*/
|
|
int id;
|
|
|
|
/*
|
|
* queue needs bounce pages for pages above this limit
|
|
*/
|
|
gfp_t bounce_gfp;
|
|
|
|
/*
|
|
* protects queue structures from reentrancy. ->__queue_lock should
|
|
* _never_ be used directly, it is queue private. always use
|
|
* ->queue_lock.
|
|
*/
|
|
spinlock_t __queue_lock;
|
|
spinlock_t *queue_lock;
|
|
|
|
/*
|
|
* queue kobject
|
|
*/
|
|
struct kobject kobj;
|
|
|
|
/*
|
|
* mq queue kobject
|
|
*/
|
|
struct kobject mq_kobj;
|
|
|
|
#ifdef CONFIG_PM
|
|
struct device *dev;
|
|
int rpm_status;
|
|
unsigned int nr_pending;
|
|
#endif
|
|
|
|
/*
|
|
* queue settings
|
|
*/
|
|
unsigned long nr_requests; /* Max # of requests */
|
|
unsigned int nr_congestion_on;
|
|
unsigned int nr_congestion_off;
|
|
unsigned int nr_batching;
|
|
|
|
unsigned int dma_drain_size;
|
|
void *dma_drain_buffer;
|
|
unsigned int dma_pad_mask;
|
|
unsigned int dma_alignment;
|
|
|
|
struct blk_queue_tag *queue_tags;
|
|
struct list_head tag_busy_list;
|
|
|
|
unsigned int nr_sorted;
|
|
unsigned int in_flight[2];
|
|
/*
|
|
* Number of active block driver functions for which blk_drain_queue()
|
|
* must wait. Must be incremented around functions that unlock the
|
|
* queue_lock internally, e.g. scsi_request_fn().
|
|
*/
|
|
unsigned int request_fn_active;
|
|
|
|
unsigned int rq_timeout;
|
|
struct timer_list timeout;
|
|
struct list_head timeout_list;
|
|
|
|
struct list_head icq_list;
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
|
|
struct blkcg_gq *root_blkg;
|
|
struct list_head blkg_list;
|
|
#endif
|
|
|
|
struct queue_limits limits;
|
|
|
|
/*
|
|
* sg stuff
|
|
*/
|
|
unsigned int sg_timeout;
|
|
unsigned int sg_reserved_size;
|
|
int node;
|
|
#ifdef CONFIG_BLK_DEV_IO_TRACE
|
|
struct blk_trace *blk_trace;
|
|
#endif
|
|
/*
|
|
* for flush operations
|
|
*/
|
|
unsigned int flush_flags;
|
|
unsigned int flush_not_queueable:1;
|
|
struct blk_flush_queue *fq;
|
|
|
|
struct list_head requeue_list;
|
|
spinlock_t requeue_lock;
|
|
struct work_struct requeue_work;
|
|
|
|
struct mutex sysfs_lock;
|
|
|
|
int bypass_depth;
|
|
int mq_freeze_depth;
|
|
|
|
#if defined(CONFIG_BLK_DEV_BSG)
|
|
bsg_job_fn *bsg_job_fn;
|
|
int bsg_job_size;
|
|
struct bsg_class_device bsg_dev;
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING
|
|
/* Throttle data */
|
|
struct throtl_data *td;
|
|
#endif
|
|
struct rcu_head rcu_head;
|
|
wait_queue_head_t mq_freeze_wq;
|
|
struct percpu_ref mq_usage_counter;
|
|
struct list_head all_q_node;
|
|
|
|
struct blk_mq_tag_set *tag_set;
|
|
struct list_head tag_set_list;
|
|
};
|
|
|
|
#define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */
|
|
#define QUEUE_FLAG_STOPPED 2 /* queue is stopped */
|
|
#define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */
|
|
#define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */
|
|
#define QUEUE_FLAG_DYING 5 /* queue being torn down */
|
|
#define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */
|
|
#define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */
|
|
#define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */
|
|
#define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */
|
|
#define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */
|
|
#define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */
|
|
#define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */
|
|
#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
|
|
#define QUEUE_FLAG_IO_STAT 13 /* do IO stats */
|
|
#define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */
|
|
#define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */
|
|
#define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */
|
|
#define QUEUE_FLAG_SECDISCARD 17 /* supports SECDISCARD */
|
|
#define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */
|
|
#define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */
|
|
#define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */
|
|
#define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/
|
|
#define QUEUE_FLAG_SG_GAPS 22 /* queue doesn't support SG gaps */
|
|
|
|
#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
|
|
(1 << QUEUE_FLAG_STACKABLE) | \
|
|
(1 << QUEUE_FLAG_SAME_COMP) | \
|
|
(1 << QUEUE_FLAG_ADD_RANDOM))
|
|
|
|
#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
|
|
(1 << QUEUE_FLAG_SAME_COMP))
|
|
|
|
static inline void queue_lockdep_assert_held(struct request_queue *q)
|
|
{
|
|
if (q->queue_lock)
|
|
lockdep_assert_held(q->queue_lock);
|
|
}
|
|
|
|
static inline void queue_flag_set_unlocked(unsigned int flag,
|
|
struct request_queue *q)
|
|
{
|
|
__set_bit(flag, &q->queue_flags);
|
|
}
|
|
|
|
static inline int queue_flag_test_and_clear(unsigned int flag,
|
|
struct request_queue *q)
|
|
{
|
|
queue_lockdep_assert_held(q);
|
|
|
|
if (test_bit(flag, &q->queue_flags)) {
|
|
__clear_bit(flag, &q->queue_flags);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int queue_flag_test_and_set(unsigned int flag,
|
|
struct request_queue *q)
|
|
{
|
|
queue_lockdep_assert_held(q);
|
|
|
|
if (!test_bit(flag, &q->queue_flags)) {
|
|
__set_bit(flag, &q->queue_flags);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
|
|
{
|
|
queue_lockdep_assert_held(q);
|
|
__set_bit(flag, &q->queue_flags);
|
|
}
|
|
|
|
static inline void queue_flag_clear_unlocked(unsigned int flag,
|
|
struct request_queue *q)
|
|
{
|
|
__clear_bit(flag, &q->queue_flags);
|
|
}
|
|
|
|
static inline int queue_in_flight(struct request_queue *q)
|
|
{
|
|
return q->in_flight[0] + q->in_flight[1];
|
|
}
|
|
|
|
static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
|
|
{
|
|
queue_lockdep_assert_held(q);
|
|
__clear_bit(flag, &q->queue_flags);
|
|
}
|
|
|
|
#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
|
|
#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
|
|
#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
|
|
#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
|
|
#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
|
|
#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
|
|
#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
|
|
#define blk_queue_noxmerges(q) \
|
|
test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
|
|
#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
|
|
#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
|
|
#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
|
|
#define blk_queue_stackable(q) \
|
|
test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
|
|
#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
|
|
#define blk_queue_secdiscard(q) (blk_queue_discard(q) && \
|
|
test_bit(QUEUE_FLAG_SECDISCARD, &(q)->queue_flags))
|
|
|
|
#define blk_noretry_request(rq) \
|
|
((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
|
|
REQ_FAILFAST_DRIVER))
|
|
|
|
#define blk_account_rq(rq) \
|
|
(((rq)->cmd_flags & REQ_STARTED) && \
|
|
((rq)->cmd_type == REQ_TYPE_FS))
|
|
|
|
#define blk_pm_request(rq) \
|
|
((rq)->cmd_type == REQ_TYPE_PM_SUSPEND || \
|
|
(rq)->cmd_type == REQ_TYPE_PM_RESUME)
|
|
|
|
#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
|
|
#define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
|
|
/* rq->queuelist of dequeued request must be list_empty() */
|
|
#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
|
|
|
|
#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
|
|
|
|
#define rq_data_dir(rq) (((rq)->cmd_flags & 1) != 0)
|
|
|
|
/*
|
|
* Driver can handle struct request, if it either has an old style
|
|
* request_fn defined, or is blk-mq based.
|
|
*/
|
|
static inline bool queue_is_rq_based(struct request_queue *q)
|
|
{
|
|
return q->request_fn || q->mq_ops;
|
|
}
|
|
|
|
static inline unsigned int blk_queue_cluster(struct request_queue *q)
|
|
{
|
|
return q->limits.cluster;
|
|
}
|
|
|
|
/*
|
|
* We regard a request as sync, if either a read or a sync write
|
|
*/
|
|
static inline bool rw_is_sync(unsigned int rw_flags)
|
|
{
|
|
return !(rw_flags & REQ_WRITE) || (rw_flags & REQ_SYNC);
|
|
}
|
|
|
|
static inline bool rq_is_sync(struct request *rq)
|
|
{
|
|
return rw_is_sync(rq->cmd_flags);
|
|
}
|
|
|
|
static inline bool blk_rl_full(struct request_list *rl, bool sync)
|
|
{
|
|
unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
|
|
|
|
return rl->flags & flag;
|
|
}
|
|
|
|
static inline void blk_set_rl_full(struct request_list *rl, bool sync)
|
|
{
|
|
unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
|
|
|
|
rl->flags |= flag;
|
|
}
|
|
|
|
static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
|
|
{
|
|
unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
|
|
|
|
rl->flags &= ~flag;
|
|
}
|
|
|
|
static inline bool rq_mergeable(struct request *rq)
|
|
{
|
|
if (rq->cmd_type != REQ_TYPE_FS)
|
|
return false;
|
|
|
|
if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool blk_check_merge_flags(unsigned int flags1,
|
|
unsigned int flags2)
|
|
{
|
|
if ((flags1 & REQ_DISCARD) != (flags2 & REQ_DISCARD))
|
|
return false;
|
|
|
|
if ((flags1 & REQ_SECURE) != (flags2 & REQ_SECURE))
|
|
return false;
|
|
|
|
if ((flags1 & REQ_WRITE_SAME) != (flags2 & REQ_WRITE_SAME))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
|
|
{
|
|
if (bio_data(a) == bio_data(b))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* q->prep_rq_fn return values
|
|
*/
|
|
#define BLKPREP_OK 0 /* serve it */
|
|
#define BLKPREP_KILL 1 /* fatal error, kill */
|
|
#define BLKPREP_DEFER 2 /* leave on queue */
|
|
|
|
extern unsigned long blk_max_low_pfn, blk_max_pfn;
|
|
|
|
/*
|
|
* standard bounce addresses:
|
|
*
|
|
* BLK_BOUNCE_HIGH : bounce all highmem pages
|
|
* BLK_BOUNCE_ANY : don't bounce anything
|
|
* BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
|
|
*/
|
|
|
|
#if BITS_PER_LONG == 32
|
|
#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
|
|
#else
|
|
#define BLK_BOUNCE_HIGH -1ULL
|
|
#endif
|
|
#define BLK_BOUNCE_ANY (-1ULL)
|
|
#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
|
|
|
|
/*
|
|
* default timeout for SG_IO if none specified
|
|
*/
|
|
#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
|
|
#define BLK_MIN_SG_TIMEOUT (7 * HZ)
|
|
|
|
#ifdef CONFIG_BOUNCE
|
|
extern int init_emergency_isa_pool(void);
|
|
extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
|
|
#else
|
|
static inline int init_emergency_isa_pool(void)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
struct rq_map_data {
|
|
struct page **pages;
|
|
int page_order;
|
|
int nr_entries;
|
|
unsigned long offset;
|
|
int null_mapped;
|
|
int from_user;
|
|
};
|
|
|
|
struct req_iterator {
|
|
struct bvec_iter iter;
|
|
struct bio *bio;
|
|
};
|
|
|
|
/* This should not be used directly - use rq_for_each_segment */
|
|
#define for_each_bio(_bio) \
|
|
for (; _bio; _bio = _bio->bi_next)
|
|
#define __rq_for_each_bio(_bio, rq) \
|
|
if ((rq->bio)) \
|
|
for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
|
|
|
|
#define rq_for_each_segment(bvl, _rq, _iter) \
|
|
__rq_for_each_bio(_iter.bio, _rq) \
|
|
bio_for_each_segment(bvl, _iter.bio, _iter.iter)
|
|
|
|
#define rq_iter_last(bvec, _iter) \
|
|
(_iter.bio->bi_next == NULL && \
|
|
bio_iter_last(bvec, _iter.iter))
|
|
|
|
#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
|
|
# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
|
|
#endif
|
|
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
|
|
extern void rq_flush_dcache_pages(struct request *rq);
|
|
#else
|
|
static inline void rq_flush_dcache_pages(struct request *rq)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
extern int blk_register_queue(struct gendisk *disk);
|
|
extern void blk_unregister_queue(struct gendisk *disk);
|
|
extern void generic_make_request(struct bio *bio);
|
|
extern void blk_rq_init(struct request_queue *q, struct request *rq);
|
|
extern void blk_put_request(struct request *);
|
|
extern void __blk_put_request(struct request_queue *, struct request *);
|
|
extern struct request *blk_get_request(struct request_queue *, int, gfp_t);
|
|
extern struct request *blk_make_request(struct request_queue *, struct bio *,
|
|
gfp_t);
|
|
extern void blk_rq_set_block_pc(struct request *);
|
|
extern void blk_requeue_request(struct request_queue *, struct request *);
|
|
extern void blk_add_request_payload(struct request *rq, struct page *page,
|
|
unsigned int len);
|
|
extern int blk_rq_check_limits(struct request_queue *q, struct request *rq);
|
|
extern int blk_lld_busy(struct request_queue *q);
|
|
extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
|
|
struct bio_set *bs, gfp_t gfp_mask,
|
|
int (*bio_ctr)(struct bio *, struct bio *, void *),
|
|
void *data);
|
|
extern void blk_rq_unprep_clone(struct request *rq);
|
|
extern int blk_insert_cloned_request(struct request_queue *q,
|
|
struct request *rq);
|
|
extern void blk_delay_queue(struct request_queue *, unsigned long);
|
|
extern void blk_recount_segments(struct request_queue *, struct bio *);
|
|
extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
|
|
extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
|
|
unsigned int, void __user *);
|
|
extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
|
|
unsigned int, void __user *);
|
|
extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
|
|
struct scsi_ioctl_command __user *);
|
|
|
|
extern void blk_queue_bio(struct request_queue *q, struct bio *bio);
|
|
|
|
/*
|
|
* A queue has just exitted congestion. Note this in the global counter of
|
|
* congested queues, and wake up anyone who was waiting for requests to be
|
|
* put back.
|
|
*/
|
|
static inline void blk_clear_queue_congested(struct request_queue *q, int sync)
|
|
{
|
|
clear_bdi_congested(&q->backing_dev_info, sync);
|
|
}
|
|
|
|
/*
|
|
* A queue has just entered congestion. Flag that in the queue's VM-visible
|
|
* state flags and increment the global gounter of congested queues.
|
|
*/
|
|
static inline void blk_set_queue_congested(struct request_queue *q, int sync)
|
|
{
|
|
set_bdi_congested(&q->backing_dev_info, sync);
|
|
}
|
|
|
|
extern void blk_start_queue(struct request_queue *q);
|
|
extern void blk_stop_queue(struct request_queue *q);
|
|
extern void blk_sync_queue(struct request_queue *q);
|
|
extern void __blk_stop_queue(struct request_queue *q);
|
|
extern void __blk_run_queue(struct request_queue *q);
|
|
extern void blk_run_queue(struct request_queue *);
|
|
extern void blk_run_queue_async(struct request_queue *q);
|
|
extern int blk_rq_map_user(struct request_queue *, struct request *,
|
|
struct rq_map_data *, void __user *, unsigned long,
|
|
gfp_t);
|
|
extern int blk_rq_unmap_user(struct bio *);
|
|
extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
|
|
extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
|
|
struct rq_map_data *, const struct sg_iovec *,
|
|
int, unsigned int, gfp_t);
|
|
extern int blk_execute_rq(struct request_queue *, struct gendisk *,
|
|
struct request *, int);
|
|
extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
|
|
struct request *, int, rq_end_io_fn *);
|
|
|
|
static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
|
|
{
|
|
return bdev->bd_disk->queue; /* this is never NULL */
|
|
}
|
|
|
|
/*
|
|
* blk_rq_pos() : the current sector
|
|
* blk_rq_bytes() : bytes left in the entire request
|
|
* blk_rq_cur_bytes() : bytes left in the current segment
|
|
* blk_rq_err_bytes() : bytes left till the next error boundary
|
|
* blk_rq_sectors() : sectors left in the entire request
|
|
* blk_rq_cur_sectors() : sectors left in the current segment
|
|
*/
|
|
static inline sector_t blk_rq_pos(const struct request *rq)
|
|
{
|
|
return rq->__sector;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_bytes(const struct request *rq)
|
|
{
|
|
return rq->__data_len;
|
|
}
|
|
|
|
static inline int blk_rq_cur_bytes(const struct request *rq)
|
|
{
|
|
return rq->bio ? bio_cur_bytes(rq->bio) : 0;
|
|
}
|
|
|
|
extern unsigned int blk_rq_err_bytes(const struct request *rq);
|
|
|
|
static inline unsigned int blk_rq_sectors(const struct request *rq)
|
|
{
|
|
return blk_rq_bytes(rq) >> 9;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
|
|
{
|
|
return blk_rq_cur_bytes(rq) >> 9;
|
|
}
|
|
|
|
static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
|
|
unsigned int cmd_flags)
|
|
{
|
|
if (unlikely(cmd_flags & REQ_DISCARD))
|
|
return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
|
|
|
|
if (unlikely(cmd_flags & REQ_WRITE_SAME))
|
|
return q->limits.max_write_same_sectors;
|
|
|
|
return q->limits.max_sectors;
|
|
}
|
|
|
|
/*
|
|
* Return maximum size of a request at given offset. Only valid for
|
|
* file system requests.
|
|
*/
|
|
static inline unsigned int blk_max_size_offset(struct request_queue *q,
|
|
sector_t offset)
|
|
{
|
|
if (!q->limits.chunk_sectors)
|
|
return q->limits.max_sectors;
|
|
|
|
return q->limits.chunk_sectors -
|
|
(offset & (q->limits.chunk_sectors - 1));
|
|
}
|
|
|
|
static inline unsigned int blk_rq_get_max_sectors(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
|
|
if (unlikely(rq->cmd_type == REQ_TYPE_BLOCK_PC))
|
|
return q->limits.max_hw_sectors;
|
|
|
|
if (!q->limits.chunk_sectors)
|
|
return blk_queue_get_max_sectors(q, rq->cmd_flags);
|
|
|
|
return min(blk_max_size_offset(q, blk_rq_pos(rq)),
|
|
blk_queue_get_max_sectors(q, rq->cmd_flags));
|
|
}
|
|
|
|
static inline unsigned int blk_rq_count_bios(struct request *rq)
|
|
{
|
|
unsigned int nr_bios = 0;
|
|
struct bio *bio;
|
|
|
|
__rq_for_each_bio(bio, rq)
|
|
nr_bios++;
|
|
|
|
return nr_bios;
|
|
}
|
|
|
|
/*
|
|
* Request issue related functions.
|
|
*/
|
|
extern struct request *blk_peek_request(struct request_queue *q);
|
|
extern void blk_start_request(struct request *rq);
|
|
extern struct request *blk_fetch_request(struct request_queue *q);
|
|
|
|
/*
|
|
* Request completion related functions.
|
|
*
|
|
* blk_update_request() completes given number of bytes and updates
|
|
* the request without completing it.
|
|
*
|
|
* blk_end_request() and friends. __blk_end_request() must be called
|
|
* with the request queue spinlock acquired.
|
|
*
|
|
* Several drivers define their own end_request and call
|
|
* blk_end_request() for parts of the original function.
|
|
* This prevents code duplication in drivers.
|
|
*/
|
|
extern bool blk_update_request(struct request *rq, int error,
|
|
unsigned int nr_bytes);
|
|
extern void blk_finish_request(struct request *rq, int error);
|
|
extern bool blk_end_request(struct request *rq, int error,
|
|
unsigned int nr_bytes);
|
|
extern void blk_end_request_all(struct request *rq, int error);
|
|
extern bool blk_end_request_cur(struct request *rq, int error);
|
|
extern bool blk_end_request_err(struct request *rq, int error);
|
|
extern bool __blk_end_request(struct request *rq, int error,
|
|
unsigned int nr_bytes);
|
|
extern void __blk_end_request_all(struct request *rq, int error);
|
|
extern bool __blk_end_request_cur(struct request *rq, int error);
|
|
extern bool __blk_end_request_err(struct request *rq, int error);
|
|
|
|
extern void blk_complete_request(struct request *);
|
|
extern void __blk_complete_request(struct request *);
|
|
extern void blk_abort_request(struct request *);
|
|
extern void blk_unprep_request(struct request *);
|
|
|
|
/*
|
|
* Access functions for manipulating queue properties
|
|
*/
|
|
extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
|
|
spinlock_t *lock, int node_id);
|
|
extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
|
|
extern struct request_queue *blk_init_allocated_queue(struct request_queue *,
|
|
request_fn_proc *, spinlock_t *);
|
|
extern void blk_cleanup_queue(struct request_queue *);
|
|
extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
|
|
extern void blk_queue_bounce_limit(struct request_queue *, u64);
|
|
extern void blk_limits_max_hw_sectors(struct queue_limits *, unsigned int);
|
|
extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
|
|
extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
|
|
extern void blk_queue_max_segments(struct request_queue *, unsigned short);
|
|
extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
|
|
extern void blk_queue_max_discard_sectors(struct request_queue *q,
|
|
unsigned int max_discard_sectors);
|
|
extern void blk_queue_max_write_same_sectors(struct request_queue *q,
|
|
unsigned int max_write_same_sectors);
|
|
extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
|
|
extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
|
|
extern void blk_queue_alignment_offset(struct request_queue *q,
|
|
unsigned int alignment);
|
|
extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
|
|
extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
|
|
extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
|
|
extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
|
|
extern void blk_set_default_limits(struct queue_limits *lim);
|
|
extern void blk_set_stacking_limits(struct queue_limits *lim);
|
|
extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
|
|
sector_t offset);
|
|
extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
|
|
sector_t offset);
|
|
extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
|
|
sector_t offset);
|
|
extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
|
|
extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
|
|
extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
|
|
extern int blk_queue_dma_drain(struct request_queue *q,
|
|
dma_drain_needed_fn *dma_drain_needed,
|
|
void *buf, unsigned int size);
|
|
extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
|
|
extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
|
|
extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
|
|
extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
|
|
extern void blk_queue_merge_bvec(struct request_queue *, merge_bvec_fn *);
|
|
extern void blk_queue_dma_alignment(struct request_queue *, int);
|
|
extern void blk_queue_update_dma_alignment(struct request_queue *, int);
|
|
extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
|
|
extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
|
|
extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
|
|
extern void blk_queue_flush(struct request_queue *q, unsigned int flush);
|
|
extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
|
|
extern struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev);
|
|
|
|
extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
|
|
extern int blk_bio_map_sg(struct request_queue *q, struct bio *bio,
|
|
struct scatterlist *sglist);
|
|
extern void blk_dump_rq_flags(struct request *, char *);
|
|
extern long nr_blockdev_pages(void);
|
|
|
|
bool __must_check blk_get_queue(struct request_queue *);
|
|
struct request_queue *blk_alloc_queue(gfp_t);
|
|
struct request_queue *blk_alloc_queue_node(gfp_t, int);
|
|
extern void blk_put_queue(struct request_queue *);
|
|
|
|
/*
|
|
* block layer runtime pm functions
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
|
|
extern int blk_pre_runtime_suspend(struct request_queue *q);
|
|
extern void blk_post_runtime_suspend(struct request_queue *q, int err);
|
|
extern void blk_pre_runtime_resume(struct request_queue *q);
|
|
extern void blk_post_runtime_resume(struct request_queue *q, int err);
|
|
#else
|
|
static inline void blk_pm_runtime_init(struct request_queue *q,
|
|
struct device *dev) {}
|
|
static inline int blk_pre_runtime_suspend(struct request_queue *q)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
|
|
static inline void blk_pre_runtime_resume(struct request_queue *q) {}
|
|
static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
|
|
#endif
|
|
|
|
/*
|
|
* blk_plug permits building a queue of related requests by holding the I/O
|
|
* fragments for a short period. This allows merging of sequential requests
|
|
* into single larger request. As the requests are moved from a per-task list to
|
|
* the device's request_queue in a batch, this results in improved scalability
|
|
* as the lock contention for request_queue lock is reduced.
|
|
*
|
|
* It is ok not to disable preemption when adding the request to the plug list
|
|
* or when attempting a merge, because blk_schedule_flush_list() will only flush
|
|
* the plug list when the task sleeps by itself. For details, please see
|
|
* schedule() where blk_schedule_flush_plug() is called.
|
|
*/
|
|
struct blk_plug {
|
|
struct list_head list; /* requests */
|
|
struct list_head mq_list; /* blk-mq requests */
|
|
struct list_head cb_list; /* md requires an unplug callback */
|
|
};
|
|
#define BLK_MAX_REQUEST_COUNT 16
|
|
|
|
struct blk_plug_cb;
|
|
typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
|
|
struct blk_plug_cb {
|
|
struct list_head list;
|
|
blk_plug_cb_fn callback;
|
|
void *data;
|
|
};
|
|
extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
|
|
void *data, int size);
|
|
extern void blk_start_plug(struct blk_plug *);
|
|
extern void blk_finish_plug(struct blk_plug *);
|
|
extern void blk_flush_plug_list(struct blk_plug *, bool);
|
|
|
|
static inline void blk_flush_plug(struct task_struct *tsk)
|
|
{
|
|
struct blk_plug *plug = tsk->plug;
|
|
|
|
if (plug)
|
|
blk_flush_plug_list(plug, false);
|
|
}
|
|
|
|
static inline void blk_schedule_flush_plug(struct task_struct *tsk)
|
|
{
|
|
struct blk_plug *plug = tsk->plug;
|
|
|
|
if (plug)
|
|
blk_flush_plug_list(plug, true);
|
|
}
|
|
|
|
static inline bool blk_needs_flush_plug(struct task_struct *tsk)
|
|
{
|
|
struct blk_plug *plug = tsk->plug;
|
|
|
|
return plug &&
|
|
(!list_empty(&plug->list) ||
|
|
!list_empty(&plug->mq_list) ||
|
|
!list_empty(&plug->cb_list));
|
|
}
|
|
|
|
/*
|
|
* tag stuff
|
|
*/
|
|
extern int blk_queue_start_tag(struct request_queue *, struct request *);
|
|
extern struct request *blk_queue_find_tag(struct request_queue *, int);
|
|
extern void blk_queue_end_tag(struct request_queue *, struct request *);
|
|
extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *);
|
|
extern void blk_queue_free_tags(struct request_queue *);
|
|
extern int blk_queue_resize_tags(struct request_queue *, int);
|
|
extern void blk_queue_invalidate_tags(struct request_queue *);
|
|
extern struct blk_queue_tag *blk_init_tags(int);
|
|
extern void blk_free_tags(struct blk_queue_tag *);
|
|
|
|
static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
|
|
int tag)
|
|
{
|
|
if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
|
|
return NULL;
|
|
return bqt->tag_index[tag];
|
|
}
|
|
|
|
#define BLKDEV_DISCARD_SECURE 0x01 /* secure discard */
|
|
|
|
extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
|
|
extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
|
|
sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
|
|
extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
|
|
sector_t nr_sects, gfp_t gfp_mask, struct page *page);
|
|
extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
|
|
sector_t nr_sects, gfp_t gfp_mask);
|
|
static inline int sb_issue_discard(struct super_block *sb, sector_t block,
|
|
sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
|
|
{
|
|
return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
|
|
nr_blocks << (sb->s_blocksize_bits - 9),
|
|
gfp_mask, flags);
|
|
}
|
|
static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
|
|
sector_t nr_blocks, gfp_t gfp_mask)
|
|
{
|
|
return blkdev_issue_zeroout(sb->s_bdev,
|
|
block << (sb->s_blocksize_bits - 9),
|
|
nr_blocks << (sb->s_blocksize_bits - 9),
|
|
gfp_mask);
|
|
}
|
|
|
|
extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
|
|
|
|
enum blk_default_limits {
|
|
BLK_MAX_SEGMENTS = 128,
|
|
BLK_SAFE_MAX_SECTORS = 255,
|
|
BLK_DEF_MAX_SECTORS = 1024,
|
|
BLK_MAX_SEGMENT_SIZE = 65536,
|
|
BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
|
|
};
|
|
|
|
#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
|
|
|
|
static inline unsigned long queue_bounce_pfn(struct request_queue *q)
|
|
{
|
|
return q->limits.bounce_pfn;
|
|
}
|
|
|
|
static inline unsigned long queue_segment_boundary(struct request_queue *q)
|
|
{
|
|
return q->limits.seg_boundary_mask;
|
|
}
|
|
|
|
static inline unsigned int queue_max_sectors(struct request_queue *q)
|
|
{
|
|
return q->limits.max_sectors;
|
|
}
|
|
|
|
static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
|
|
{
|
|
return q->limits.max_hw_sectors;
|
|
}
|
|
|
|
static inline unsigned short queue_max_segments(struct request_queue *q)
|
|
{
|
|
return q->limits.max_segments;
|
|
}
|
|
|
|
static inline unsigned int queue_max_segment_size(struct request_queue *q)
|
|
{
|
|
return q->limits.max_segment_size;
|
|
}
|
|
|
|
static inline unsigned short queue_logical_block_size(struct request_queue *q)
|
|
{
|
|
int retval = 512;
|
|
|
|
if (q && q->limits.logical_block_size)
|
|
retval = q->limits.logical_block_size;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
|
|
{
|
|
return queue_logical_block_size(bdev_get_queue(bdev));
|
|
}
|
|
|
|
static inline unsigned int queue_physical_block_size(struct request_queue *q)
|
|
{
|
|
return q->limits.physical_block_size;
|
|
}
|
|
|
|
static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
|
|
{
|
|
return queue_physical_block_size(bdev_get_queue(bdev));
|
|
}
|
|
|
|
static inline unsigned int queue_io_min(struct request_queue *q)
|
|
{
|
|
return q->limits.io_min;
|
|
}
|
|
|
|
static inline int bdev_io_min(struct block_device *bdev)
|
|
{
|
|
return queue_io_min(bdev_get_queue(bdev));
|
|
}
|
|
|
|
static inline unsigned int queue_io_opt(struct request_queue *q)
|
|
{
|
|
return q->limits.io_opt;
|
|
}
|
|
|
|
static inline int bdev_io_opt(struct block_device *bdev)
|
|
{
|
|
return queue_io_opt(bdev_get_queue(bdev));
|
|
}
|
|
|
|
static inline int queue_alignment_offset(struct request_queue *q)
|
|
{
|
|
if (q->limits.misaligned)
|
|
return -1;
|
|
|
|
return q->limits.alignment_offset;
|
|
}
|
|
|
|
static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
|
|
{
|
|
unsigned int granularity = max(lim->physical_block_size, lim->io_min);
|
|
unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
|
|
|
|
return (granularity + lim->alignment_offset - alignment) % granularity;
|
|
}
|
|
|
|
static inline int bdev_alignment_offset(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (q->limits.misaligned)
|
|
return -1;
|
|
|
|
if (bdev != bdev->bd_contains)
|
|
return bdev->bd_part->alignment_offset;
|
|
|
|
return q->limits.alignment_offset;
|
|
}
|
|
|
|
static inline int queue_discard_alignment(struct request_queue *q)
|
|
{
|
|
if (q->limits.discard_misaligned)
|
|
return -1;
|
|
|
|
return q->limits.discard_alignment;
|
|
}
|
|
|
|
static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
|
|
{
|
|
unsigned int alignment, granularity, offset;
|
|
|
|
if (!lim->max_discard_sectors)
|
|
return 0;
|
|
|
|
/* Why are these in bytes, not sectors? */
|
|
alignment = lim->discard_alignment >> 9;
|
|
granularity = lim->discard_granularity >> 9;
|
|
if (!granularity)
|
|
return 0;
|
|
|
|
/* Offset of the partition start in 'granularity' sectors */
|
|
offset = sector_div(sector, granularity);
|
|
|
|
/* And why do we do this modulus *again* in blkdev_issue_discard()? */
|
|
offset = (granularity + alignment - offset) % granularity;
|
|
|
|
/* Turn it back into bytes, gaah */
|
|
return offset << 9;
|
|
}
|
|
|
|
static inline int bdev_discard_alignment(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (bdev != bdev->bd_contains)
|
|
return bdev->bd_part->discard_alignment;
|
|
|
|
return q->limits.discard_alignment;
|
|
}
|
|
|
|
static inline unsigned int queue_discard_zeroes_data(struct request_queue *q)
|
|
{
|
|
if (q->limits.max_discard_sectors && q->limits.discard_zeroes_data == 1)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned int bdev_discard_zeroes_data(struct block_device *bdev)
|
|
{
|
|
return queue_discard_zeroes_data(bdev_get_queue(bdev));
|
|
}
|
|
|
|
static inline unsigned int bdev_write_same(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (q)
|
|
return q->limits.max_write_same_sectors;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int queue_dma_alignment(struct request_queue *q)
|
|
{
|
|
return q ? q->dma_alignment : 511;
|
|
}
|
|
|
|
static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
|
|
unsigned int len)
|
|
{
|
|
unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
|
|
return !(addr & alignment) && !(len & alignment);
|
|
}
|
|
|
|
/* assumes size > 256 */
|
|
static inline unsigned int blksize_bits(unsigned int size)
|
|
{
|
|
unsigned int bits = 8;
|
|
do {
|
|
bits++;
|
|
size >>= 1;
|
|
} while (size > 256);
|
|
return bits;
|
|
}
|
|
|
|
static inline unsigned int block_size(struct block_device *bdev)
|
|
{
|
|
return bdev->bd_block_size;
|
|
}
|
|
|
|
static inline bool queue_flush_queueable(struct request_queue *q)
|
|
{
|
|
return !q->flush_not_queueable;
|
|
}
|
|
|
|
typedef struct {struct page *v;} Sector;
|
|
|
|
unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
|
|
|
|
static inline void put_dev_sector(Sector p)
|
|
{
|
|
page_cache_release(p.v);
|
|
}
|
|
|
|
struct work_struct;
|
|
int kblockd_schedule_work(struct work_struct *work);
|
|
int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
|
|
int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
|
|
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
/*
|
|
* This should not be using sched_clock(). A real patch is in progress
|
|
* to fix this up, until that is in place we need to disable preemption
|
|
* around sched_clock() in this function and set_io_start_time_ns().
|
|
*/
|
|
static inline void set_start_time_ns(struct request *req)
|
|
{
|
|
preempt_disable();
|
|
req->start_time_ns = sched_clock();
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void set_io_start_time_ns(struct request *req)
|
|
{
|
|
preempt_disable();
|
|
req->io_start_time_ns = sched_clock();
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline uint64_t rq_start_time_ns(struct request *req)
|
|
{
|
|
return req->start_time_ns;
|
|
}
|
|
|
|
static inline uint64_t rq_io_start_time_ns(struct request *req)
|
|
{
|
|
return req->io_start_time_ns;
|
|
}
|
|
#else
|
|
static inline void set_start_time_ns(struct request *req) {}
|
|
static inline void set_io_start_time_ns(struct request *req) {}
|
|
static inline uint64_t rq_start_time_ns(struct request *req)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline uint64_t rq_io_start_time_ns(struct request *req)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define MODULE_ALIAS_BLOCKDEV(major,minor) \
|
|
MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
|
|
#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
|
|
MODULE_ALIAS("block-major-" __stringify(major) "-*")
|
|
|
|
#if defined(CONFIG_BLK_DEV_INTEGRITY)
|
|
|
|
enum blk_integrity_flags {
|
|
BLK_INTEGRITY_VERIFY = 1 << 0,
|
|
BLK_INTEGRITY_GENERATE = 1 << 1,
|
|
BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
|
|
BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
|
|
};
|
|
|
|
struct blk_integrity_iter {
|
|
void *prot_buf;
|
|
void *data_buf;
|
|
sector_t seed;
|
|
unsigned int data_size;
|
|
unsigned short interval;
|
|
const char *disk_name;
|
|
};
|
|
|
|
typedef int (integrity_processing_fn) (struct blk_integrity_iter *);
|
|
|
|
struct blk_integrity {
|
|
integrity_processing_fn *generate_fn;
|
|
integrity_processing_fn *verify_fn;
|
|
|
|
unsigned short flags;
|
|
unsigned short tuple_size;
|
|
unsigned short interval;
|
|
unsigned short tag_size;
|
|
|
|
const char *name;
|
|
|
|
struct kobject kobj;
|
|
};
|
|
|
|
extern bool blk_integrity_is_initialized(struct gendisk *);
|
|
extern int blk_integrity_register(struct gendisk *, struct blk_integrity *);
|
|
extern void blk_integrity_unregister(struct gendisk *);
|
|
extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
|
|
extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
|
|
struct scatterlist *);
|
|
extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
|
|
extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
|
|
struct request *);
|
|
extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
|
|
struct bio *);
|
|
|
|
static inline
|
|
struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
|
|
{
|
|
return bdev->bd_disk->integrity;
|
|
}
|
|
|
|
static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
|
|
{
|
|
return disk->integrity;
|
|
}
|
|
|
|
static inline bool blk_integrity_rq(struct request *rq)
|
|
{
|
|
return rq->cmd_flags & REQ_INTEGRITY;
|
|
}
|
|
|
|
static inline void blk_queue_max_integrity_segments(struct request_queue *q,
|
|
unsigned int segs)
|
|
{
|
|
q->limits.max_integrity_segments = segs;
|
|
}
|
|
|
|
static inline unsigned short
|
|
queue_max_integrity_segments(struct request_queue *q)
|
|
{
|
|
return q->limits.max_integrity_segments;
|
|
}
|
|
|
|
#else /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
struct bio;
|
|
struct block_device;
|
|
struct gendisk;
|
|
struct blk_integrity;
|
|
|
|
static inline int blk_integrity_rq(struct request *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int blk_rq_count_integrity_sg(struct request_queue *q,
|
|
struct bio *b)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int blk_rq_map_integrity_sg(struct request_queue *q,
|
|
struct bio *b,
|
|
struct scatterlist *s)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int blk_integrity_register(struct gendisk *d,
|
|
struct blk_integrity *b)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void blk_integrity_unregister(struct gendisk *d)
|
|
{
|
|
}
|
|
static inline void blk_queue_max_integrity_segments(struct request_queue *q,
|
|
unsigned int segs)
|
|
{
|
|
}
|
|
static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
|
|
struct request *r1,
|
|
struct request *r2)
|
|
{
|
|
return true;
|
|
}
|
|
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
|
|
struct request *r,
|
|
struct bio *b)
|
|
{
|
|
return true;
|
|
}
|
|
static inline bool blk_integrity_is_initialized(struct gendisk *g)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
struct block_device_operations {
|
|
int (*open) (struct block_device *, fmode_t);
|
|
void (*release) (struct gendisk *, fmode_t);
|
|
int (*rw_page)(struct block_device *, sector_t, struct page *, int rw);
|
|
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
|
|
int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
|
|
int (*direct_access) (struct block_device *, sector_t,
|
|
void **, unsigned long *);
|
|
unsigned int (*check_events) (struct gendisk *disk,
|
|
unsigned int clearing);
|
|
/* ->media_changed() is DEPRECATED, use ->check_events() instead */
|
|
int (*media_changed) (struct gendisk *);
|
|
void (*unlock_native_capacity) (struct gendisk *);
|
|
int (*revalidate_disk) (struct gendisk *);
|
|
int (*getgeo)(struct block_device *, struct hd_geometry *);
|
|
/* this callback is with swap_lock and sometimes page table lock held */
|
|
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
|
|
struct module *owner;
|
|
};
|
|
|
|
extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
|
|
unsigned long);
|
|
extern int bdev_read_page(struct block_device *, sector_t, struct page *);
|
|
extern int bdev_write_page(struct block_device *, sector_t, struct page *,
|
|
struct writeback_control *);
|
|
#else /* CONFIG_BLOCK */
|
|
|
|
struct block_device;
|
|
|
|
/*
|
|
* stubs for when the block layer is configured out
|
|
*/
|
|
#define buffer_heads_over_limit 0
|
|
|
|
static inline long nr_blockdev_pages(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct blk_plug {
|
|
};
|
|
|
|
static inline void blk_start_plug(struct blk_plug *plug)
|
|
{
|
|
}
|
|
|
|
static inline void blk_finish_plug(struct blk_plug *plug)
|
|
{
|
|
}
|
|
|
|
static inline void blk_flush_plug(struct task_struct *task)
|
|
{
|
|
}
|
|
|
|
static inline void blk_schedule_flush_plug(struct task_struct *task)
|
|
{
|
|
}
|
|
|
|
|
|
static inline bool blk_needs_flush_plug(struct task_struct *tsk)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
|
|
sector_t *error_sector)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_BLOCK */
|
|
|
|
#endif
|