mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 10:36:45 +07:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
167 lines
4.3 KiB
C
167 lines
4.3 KiB
C
/*
|
|
* arch/v850/kernel/semaphore.c -- Semaphore support
|
|
*
|
|
* Copyright (C) 1998-2000 IBM Corporation
|
|
* Copyright (C) 1999 Linus Torvalds
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General
|
|
* Public License. See the file COPYING in the main directory of this
|
|
* archive for more details.
|
|
*
|
|
* This file is a copy of the s390 version, arch/s390/kernel/semaphore.c
|
|
* Author(s): Martin Schwidefsky
|
|
* which was derived from the i386 version, linux/arch/i386/kernel/semaphore.c
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/semaphore.h>
|
|
|
|
/*
|
|
* Semaphores are implemented using a two-way counter:
|
|
* The "count" variable is decremented for each process
|
|
* that tries to acquire the semaphore, while the "sleeping"
|
|
* variable is a count of such acquires.
|
|
*
|
|
* Notably, the inline "up()" and "down()" functions can
|
|
* efficiently test if they need to do any extra work (up
|
|
* needs to do something only if count was negative before
|
|
* the increment operation.
|
|
*
|
|
* "sleeping" and the contention routine ordering is
|
|
* protected by the semaphore spinlock.
|
|
*
|
|
* Note that these functions are only called when there is
|
|
* contention on the lock, and as such all this is the
|
|
* "non-critical" part of the whole semaphore business. The
|
|
* critical part is the inline stuff in <asm/semaphore.h>
|
|
* where we want to avoid any extra jumps and calls.
|
|
*/
|
|
|
|
/*
|
|
* Logic:
|
|
* - only on a boundary condition do we need to care. When we go
|
|
* from a negative count to a non-negative, we wake people up.
|
|
* - when we go from a non-negative count to a negative do we
|
|
* (a) synchronize with the "sleeper" count and (b) make sure
|
|
* that we're on the wakeup list before we synchronize so that
|
|
* we cannot lose wakeup events.
|
|
*/
|
|
|
|
void __up(struct semaphore *sem)
|
|
{
|
|
wake_up(&sem->wait);
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(semaphore_lock);
|
|
|
|
void __sched __down(struct semaphore * sem)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
DECLARE_WAITQUEUE(wait, tsk);
|
|
tsk->state = TASK_UNINTERRUPTIBLE;
|
|
add_wait_queue_exclusive(&sem->wait, &wait);
|
|
|
|
spin_lock_irq(&semaphore_lock);
|
|
sem->sleepers++;
|
|
for (;;) {
|
|
int sleepers = sem->sleepers;
|
|
|
|
/*
|
|
* Add "everybody else" into it. They aren't
|
|
* playing, because we own the spinlock.
|
|
*/
|
|
if (!atomic_add_negative(sleepers - 1, &sem->count)) {
|
|
sem->sleepers = 0;
|
|
break;
|
|
}
|
|
sem->sleepers = 1; /* us - see -1 above */
|
|
spin_unlock_irq(&semaphore_lock);
|
|
|
|
schedule();
|
|
tsk->state = TASK_UNINTERRUPTIBLE;
|
|
spin_lock_irq(&semaphore_lock);
|
|
}
|
|
spin_unlock_irq(&semaphore_lock);
|
|
remove_wait_queue(&sem->wait, &wait);
|
|
tsk->state = TASK_RUNNING;
|
|
wake_up(&sem->wait);
|
|
}
|
|
|
|
int __sched __down_interruptible(struct semaphore * sem)
|
|
{
|
|
int retval = 0;
|
|
struct task_struct *tsk = current;
|
|
DECLARE_WAITQUEUE(wait, tsk);
|
|
tsk->state = TASK_INTERRUPTIBLE;
|
|
add_wait_queue_exclusive(&sem->wait, &wait);
|
|
|
|
spin_lock_irq(&semaphore_lock);
|
|
sem->sleepers ++;
|
|
for (;;) {
|
|
int sleepers = sem->sleepers;
|
|
|
|
/*
|
|
* With signals pending, this turns into
|
|
* the trylock failure case - we won't be
|
|
* sleeping, and we* can't get the lock as
|
|
* it has contention. Just correct the count
|
|
* and exit.
|
|
*/
|
|
if (signal_pending(current)) {
|
|
retval = -EINTR;
|
|
sem->sleepers = 0;
|
|
atomic_add(sleepers, &sem->count);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Add "everybody else" into it. They aren't
|
|
* playing, because we own the spinlock. The
|
|
* "-1" is because we're still hoping to get
|
|
* the lock.
|
|
*/
|
|
if (!atomic_add_negative(sleepers - 1, &sem->count)) {
|
|
sem->sleepers = 0;
|
|
break;
|
|
}
|
|
sem->sleepers = 1; /* us - see -1 above */
|
|
spin_unlock_irq(&semaphore_lock);
|
|
|
|
schedule();
|
|
tsk->state = TASK_INTERRUPTIBLE;
|
|
spin_lock_irq(&semaphore_lock);
|
|
}
|
|
spin_unlock_irq(&semaphore_lock);
|
|
tsk->state = TASK_RUNNING;
|
|
remove_wait_queue(&sem->wait, &wait);
|
|
wake_up(&sem->wait);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Trylock failed - make sure we correct for
|
|
* having decremented the count.
|
|
*/
|
|
int __down_trylock(struct semaphore * sem)
|
|
{
|
|
unsigned long flags;
|
|
int sleepers;
|
|
|
|
spin_lock_irqsave(&semaphore_lock, flags);
|
|
sleepers = sem->sleepers + 1;
|
|
sem->sleepers = 0;
|
|
|
|
/*
|
|
* Add "everybody else" and us into it. They aren't
|
|
* playing, because we own the spinlock.
|
|
*/
|
|
if (!atomic_add_negative(sleepers, &sem->count))
|
|
wake_up(&sem->wait);
|
|
|
|
spin_unlock_irqrestore(&semaphore_lock, flags);
|
|
return 1;
|
|
}
|