linux_dsm_epyc7002/drivers/gpio/gpio-omap.c
Javier Martinez Canillas 2f56e0a57f gpio/omap: use gpiolib API to mark a GPIO used as an IRQ
The OMAP GPIO driver keeps track about GPIO pins that are
used as IRQ lines for two reasons:

1) To prevent GPIO banks to be disabled while one of their
   GPIO pins are only used as an interrupt line.

2) To not allow another caller to set the GPIO pin as output.

Now gpiolib has an API to mark GPIO pins as used as IRQ lines
so the GPIO core only allows to set as output GPIO pins not
tied to an IRQ. So there is no need to have custom code for 2).

The IRQ usage still has to be maintained locally for 1) though.

Signed-off-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2013-10-16 10:06:00 +02:00

1639 lines
43 KiB
C

/*
* Support functions for OMAP GPIO
*
* Copyright (C) 2003-2005 Nokia Corporation
* Written by Juha Yrjölä <juha.yrjola@nokia.com>
*
* Copyright (C) 2009 Texas Instruments
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/syscore_ops.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/pm_runtime.h>
#include <linux/pm.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/irqdomain.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/gpio.h>
#include <linux/platform_data/gpio-omap.h>
#define OFF_MODE 1
static LIST_HEAD(omap_gpio_list);
struct gpio_regs {
u32 irqenable1;
u32 irqenable2;
u32 wake_en;
u32 ctrl;
u32 oe;
u32 leveldetect0;
u32 leveldetect1;
u32 risingdetect;
u32 fallingdetect;
u32 dataout;
u32 debounce;
u32 debounce_en;
};
struct gpio_bank {
struct list_head node;
void __iomem *base;
u16 irq;
struct irq_domain *domain;
u32 non_wakeup_gpios;
u32 enabled_non_wakeup_gpios;
struct gpio_regs context;
u32 saved_datain;
u32 level_mask;
u32 toggle_mask;
spinlock_t lock;
struct gpio_chip chip;
struct clk *dbck;
u32 mod_usage;
u32 irq_usage;
u32 dbck_enable_mask;
bool dbck_enabled;
struct device *dev;
bool is_mpuio;
bool dbck_flag;
bool loses_context;
bool context_valid;
int stride;
u32 width;
int context_loss_count;
int power_mode;
bool workaround_enabled;
void (*set_dataout)(struct gpio_bank *bank, int gpio, int enable);
int (*get_context_loss_count)(struct device *dev);
struct omap_gpio_reg_offs *regs;
};
#define GPIO_INDEX(bank, gpio) (gpio % bank->width)
#define GPIO_BIT(bank, gpio) (1 << GPIO_INDEX(bank, gpio))
#define GPIO_MOD_CTRL_BIT BIT(0)
#define BANK_USED(bank) (bank->mod_usage || bank->irq_usage)
#define LINE_USED(line, offset) (line & (1 << offset))
static int irq_to_gpio(struct gpio_bank *bank, unsigned int gpio_irq)
{
return bank->chip.base + gpio_irq;
}
static int omap_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank = container_of(chip, struct gpio_bank, chip);
return irq_find_mapping(bank->domain, offset);
}
static void _set_gpio_direction(struct gpio_bank *bank, int gpio, int is_input)
{
void __iomem *reg = bank->base;
u32 l;
reg += bank->regs->direction;
l = __raw_readl(reg);
if (is_input)
l |= 1 << gpio;
else
l &= ~(1 << gpio);
__raw_writel(l, reg);
bank->context.oe = l;
}
/* set data out value using dedicate set/clear register */
static void _set_gpio_dataout_reg(struct gpio_bank *bank, int gpio, int enable)
{
void __iomem *reg = bank->base;
u32 l = GPIO_BIT(bank, gpio);
if (enable) {
reg += bank->regs->set_dataout;
bank->context.dataout |= l;
} else {
reg += bank->regs->clr_dataout;
bank->context.dataout &= ~l;
}
__raw_writel(l, reg);
}
/* set data out value using mask register */
static void _set_gpio_dataout_mask(struct gpio_bank *bank, int gpio, int enable)
{
void __iomem *reg = bank->base + bank->regs->dataout;
u32 gpio_bit = GPIO_BIT(bank, gpio);
u32 l;
l = __raw_readl(reg);
if (enable)
l |= gpio_bit;
else
l &= ~gpio_bit;
__raw_writel(l, reg);
bank->context.dataout = l;
}
static int _get_gpio_datain(struct gpio_bank *bank, int offset)
{
void __iomem *reg = bank->base + bank->regs->datain;
return (__raw_readl(reg) & (1 << offset)) != 0;
}
static int _get_gpio_dataout(struct gpio_bank *bank, int offset)
{
void __iomem *reg = bank->base + bank->regs->dataout;
return (__raw_readl(reg) & (1 << offset)) != 0;
}
static inline void _gpio_rmw(void __iomem *base, u32 reg, u32 mask, bool set)
{
int l = __raw_readl(base + reg);
if (set)
l |= mask;
else
l &= ~mask;
__raw_writel(l, base + reg);
}
static inline void _gpio_dbck_enable(struct gpio_bank *bank)
{
if (bank->dbck_enable_mask && !bank->dbck_enabled) {
clk_enable(bank->dbck);
bank->dbck_enabled = true;
__raw_writel(bank->dbck_enable_mask,
bank->base + bank->regs->debounce_en);
}
}
static inline void _gpio_dbck_disable(struct gpio_bank *bank)
{
if (bank->dbck_enable_mask && bank->dbck_enabled) {
/*
* Disable debounce before cutting it's clock. If debounce is
* enabled but the clock is not, GPIO module seems to be unable
* to detect events and generate interrupts at least on OMAP3.
*/
__raw_writel(0, bank->base + bank->regs->debounce_en);
clk_disable(bank->dbck);
bank->dbck_enabled = false;
}
}
/**
* _set_gpio_debounce - low level gpio debounce time
* @bank: the gpio bank we're acting upon
* @gpio: the gpio number on this @gpio
* @debounce: debounce time to use
*
* OMAP's debounce time is in 31us steps so we need
* to convert and round up to the closest unit.
*/
static void _set_gpio_debounce(struct gpio_bank *bank, unsigned gpio,
unsigned debounce)
{
void __iomem *reg;
u32 val;
u32 l;
if (!bank->dbck_flag)
return;
if (debounce < 32)
debounce = 0x01;
else if (debounce > 7936)
debounce = 0xff;
else
debounce = (debounce / 0x1f) - 1;
l = GPIO_BIT(bank, gpio);
clk_enable(bank->dbck);
reg = bank->base + bank->regs->debounce;
__raw_writel(debounce, reg);
reg = bank->base + bank->regs->debounce_en;
val = __raw_readl(reg);
if (debounce)
val |= l;
else
val &= ~l;
bank->dbck_enable_mask = val;
__raw_writel(val, reg);
clk_disable(bank->dbck);
/*
* Enable debounce clock per module.
* This call is mandatory because in omap_gpio_request() when
* *_runtime_get_sync() is called, _gpio_dbck_enable() within
* runtime callbck fails to turn on dbck because dbck_enable_mask
* used within _gpio_dbck_enable() is still not initialized at
* that point. Therefore we have to enable dbck here.
*/
_gpio_dbck_enable(bank);
if (bank->dbck_enable_mask) {
bank->context.debounce = debounce;
bank->context.debounce_en = val;
}
}
/**
* _clear_gpio_debounce - clear debounce settings for a gpio
* @bank: the gpio bank we're acting upon
* @gpio: the gpio number on this @gpio
*
* If a gpio is using debounce, then clear the debounce enable bit and if
* this is the only gpio in this bank using debounce, then clear the debounce
* time too. The debounce clock will also be disabled when calling this function
* if this is the only gpio in the bank using debounce.
*/
static void _clear_gpio_debounce(struct gpio_bank *bank, unsigned gpio)
{
u32 gpio_bit = GPIO_BIT(bank, gpio);
if (!bank->dbck_flag)
return;
if (!(bank->dbck_enable_mask & gpio_bit))
return;
bank->dbck_enable_mask &= ~gpio_bit;
bank->context.debounce_en &= ~gpio_bit;
__raw_writel(bank->context.debounce_en,
bank->base + bank->regs->debounce_en);
if (!bank->dbck_enable_mask) {
bank->context.debounce = 0;
__raw_writel(bank->context.debounce, bank->base +
bank->regs->debounce);
clk_disable(bank->dbck);
bank->dbck_enabled = false;
}
}
static inline void set_gpio_trigger(struct gpio_bank *bank, int gpio,
unsigned trigger)
{
void __iomem *base = bank->base;
u32 gpio_bit = 1 << gpio;
_gpio_rmw(base, bank->regs->leveldetect0, gpio_bit,
trigger & IRQ_TYPE_LEVEL_LOW);
_gpio_rmw(base, bank->regs->leveldetect1, gpio_bit,
trigger & IRQ_TYPE_LEVEL_HIGH);
_gpio_rmw(base, bank->regs->risingdetect, gpio_bit,
trigger & IRQ_TYPE_EDGE_RISING);
_gpio_rmw(base, bank->regs->fallingdetect, gpio_bit,
trigger & IRQ_TYPE_EDGE_FALLING);
bank->context.leveldetect0 =
__raw_readl(bank->base + bank->regs->leveldetect0);
bank->context.leveldetect1 =
__raw_readl(bank->base + bank->regs->leveldetect1);
bank->context.risingdetect =
__raw_readl(bank->base + bank->regs->risingdetect);
bank->context.fallingdetect =
__raw_readl(bank->base + bank->regs->fallingdetect);
if (likely(!(bank->non_wakeup_gpios & gpio_bit))) {
_gpio_rmw(base, bank->regs->wkup_en, gpio_bit, trigger != 0);
bank->context.wake_en =
__raw_readl(bank->base + bank->regs->wkup_en);
}
/* This part needs to be executed always for OMAP{34xx, 44xx} */
if (!bank->regs->irqctrl) {
/* On omap24xx proceed only when valid GPIO bit is set */
if (bank->non_wakeup_gpios) {
if (!(bank->non_wakeup_gpios & gpio_bit))
goto exit;
}
/*
* Log the edge gpio and manually trigger the IRQ
* after resume if the input level changes
* to avoid irq lost during PER RET/OFF mode
* Applies for omap2 non-wakeup gpio and all omap3 gpios
*/
if (trigger & IRQ_TYPE_EDGE_BOTH)
bank->enabled_non_wakeup_gpios |= gpio_bit;
else
bank->enabled_non_wakeup_gpios &= ~gpio_bit;
}
exit:
bank->level_mask =
__raw_readl(bank->base + bank->regs->leveldetect0) |
__raw_readl(bank->base + bank->regs->leveldetect1);
}
#ifdef CONFIG_ARCH_OMAP1
/*
* This only applies to chips that can't do both rising and falling edge
* detection at once. For all other chips, this function is a noop.
*/
static void _toggle_gpio_edge_triggering(struct gpio_bank *bank, int gpio)
{
void __iomem *reg = bank->base;
u32 l = 0;
if (!bank->regs->irqctrl)
return;
reg += bank->regs->irqctrl;
l = __raw_readl(reg);
if ((l >> gpio) & 1)
l &= ~(1 << gpio);
else
l |= 1 << gpio;
__raw_writel(l, reg);
}
#else
static void _toggle_gpio_edge_triggering(struct gpio_bank *bank, int gpio) {}
#endif
static int _set_gpio_triggering(struct gpio_bank *bank, int gpio,
unsigned trigger)
{
void __iomem *reg = bank->base;
void __iomem *base = bank->base;
u32 l = 0;
if (bank->regs->leveldetect0 && bank->regs->wkup_en) {
set_gpio_trigger(bank, gpio, trigger);
} else if (bank->regs->irqctrl) {
reg += bank->regs->irqctrl;
l = __raw_readl(reg);
if ((trigger & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH)
bank->toggle_mask |= 1 << gpio;
if (trigger & IRQ_TYPE_EDGE_RISING)
l |= 1 << gpio;
else if (trigger & IRQ_TYPE_EDGE_FALLING)
l &= ~(1 << gpio);
else
return -EINVAL;
__raw_writel(l, reg);
} else if (bank->regs->edgectrl1) {
if (gpio & 0x08)
reg += bank->regs->edgectrl2;
else
reg += bank->regs->edgectrl1;
gpio &= 0x07;
l = __raw_readl(reg);
l &= ~(3 << (gpio << 1));
if (trigger & IRQ_TYPE_EDGE_RISING)
l |= 2 << (gpio << 1);
if (trigger & IRQ_TYPE_EDGE_FALLING)
l |= 1 << (gpio << 1);
/* Enable wake-up during idle for dynamic tick */
_gpio_rmw(base, bank->regs->wkup_en, 1 << gpio, trigger);
bank->context.wake_en =
__raw_readl(bank->base + bank->regs->wkup_en);
__raw_writel(l, reg);
}
return 0;
}
static void _enable_gpio_module(struct gpio_bank *bank, unsigned offset)
{
if (bank->regs->pinctrl) {
void __iomem *reg = bank->base + bank->regs->pinctrl;
/* Claim the pin for MPU */
__raw_writel(__raw_readl(reg) | (1 << offset), reg);
}
if (bank->regs->ctrl && !BANK_USED(bank)) {
void __iomem *reg = bank->base + bank->regs->ctrl;
u32 ctrl;
ctrl = __raw_readl(reg);
/* Module is enabled, clocks are not gated */
ctrl &= ~GPIO_MOD_CTRL_BIT;
__raw_writel(ctrl, reg);
bank->context.ctrl = ctrl;
}
}
static void _disable_gpio_module(struct gpio_bank *bank, unsigned offset)
{
void __iomem *base = bank->base;
if (bank->regs->wkup_en &&
!LINE_USED(bank->mod_usage, offset) &&
!LINE_USED(bank->irq_usage, offset)) {
/* Disable wake-up during idle for dynamic tick */
_gpio_rmw(base, bank->regs->wkup_en, 1 << offset, 0);
bank->context.wake_en =
__raw_readl(bank->base + bank->regs->wkup_en);
}
if (bank->regs->ctrl && !BANK_USED(bank)) {
void __iomem *reg = bank->base + bank->regs->ctrl;
u32 ctrl;
ctrl = __raw_readl(reg);
/* Module is disabled, clocks are gated */
ctrl |= GPIO_MOD_CTRL_BIT;
__raw_writel(ctrl, reg);
bank->context.ctrl = ctrl;
}
}
static int gpio_is_input(struct gpio_bank *bank, int mask)
{
void __iomem *reg = bank->base + bank->regs->direction;
return __raw_readl(reg) & mask;
}
static int gpio_irq_type(struct irq_data *d, unsigned type)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned gpio = 0;
int retval;
unsigned long flags;
unsigned offset;
if (!BANK_USED(bank))
pm_runtime_get_sync(bank->dev);
#ifdef CONFIG_ARCH_OMAP1
if (d->irq > IH_MPUIO_BASE)
gpio = OMAP_MPUIO(d->irq - IH_MPUIO_BASE);
#endif
if (!gpio)
gpio = irq_to_gpio(bank, d->hwirq);
if (type & ~IRQ_TYPE_SENSE_MASK)
return -EINVAL;
if (!bank->regs->leveldetect0 &&
(type & (IRQ_TYPE_LEVEL_LOW|IRQ_TYPE_LEVEL_HIGH)))
return -EINVAL;
spin_lock_irqsave(&bank->lock, flags);
offset = GPIO_INDEX(bank, gpio);
retval = _set_gpio_triggering(bank, offset, type);
if (!LINE_USED(bank->mod_usage, offset)) {
_enable_gpio_module(bank, offset);
_set_gpio_direction(bank, offset, 1);
} else if (!gpio_is_input(bank, 1 << offset)) {
spin_unlock_irqrestore(&bank->lock, flags);
return -EINVAL;
}
retval = gpio_lock_as_irq(&bank->chip, offset);
if (retval) {
dev_err(bank->dev, "unable to lock offset %d for IRQ\n",
offset);
spin_unlock_irqrestore(&bank->lock, flags);
return retval;
}
bank->irq_usage |= 1 << GPIO_INDEX(bank, gpio);
spin_unlock_irqrestore(&bank->lock, flags);
if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
__irq_set_handler_locked(d->irq, handle_level_irq);
else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
__irq_set_handler_locked(d->irq, handle_edge_irq);
return retval;
}
static void _clear_gpio_irqbank(struct gpio_bank *bank, int gpio_mask)
{
void __iomem *reg = bank->base;
reg += bank->regs->irqstatus;
__raw_writel(gpio_mask, reg);
/* Workaround for clearing DSP GPIO interrupts to allow retention */
if (bank->regs->irqstatus2) {
reg = bank->base + bank->regs->irqstatus2;
__raw_writel(gpio_mask, reg);
}
/* Flush posted write for the irq status to avoid spurious interrupts */
__raw_readl(reg);
}
static inline void _clear_gpio_irqstatus(struct gpio_bank *bank, int gpio)
{
_clear_gpio_irqbank(bank, GPIO_BIT(bank, gpio));
}
static u32 _get_gpio_irqbank_mask(struct gpio_bank *bank)
{
void __iomem *reg = bank->base;
u32 l;
u32 mask = (1 << bank->width) - 1;
reg += bank->regs->irqenable;
l = __raw_readl(reg);
if (bank->regs->irqenable_inv)
l = ~l;
l &= mask;
return l;
}
static void _enable_gpio_irqbank(struct gpio_bank *bank, int gpio_mask)
{
void __iomem *reg = bank->base;
u32 l;
if (bank->regs->set_irqenable) {
reg += bank->regs->set_irqenable;
l = gpio_mask;
bank->context.irqenable1 |= gpio_mask;
} else {
reg += bank->regs->irqenable;
l = __raw_readl(reg);
if (bank->regs->irqenable_inv)
l &= ~gpio_mask;
else
l |= gpio_mask;
bank->context.irqenable1 = l;
}
__raw_writel(l, reg);
}
static void _disable_gpio_irqbank(struct gpio_bank *bank, int gpio_mask)
{
void __iomem *reg = bank->base;
u32 l;
if (bank->regs->clr_irqenable) {
reg += bank->regs->clr_irqenable;
l = gpio_mask;
bank->context.irqenable1 &= ~gpio_mask;
} else {
reg += bank->regs->irqenable;
l = __raw_readl(reg);
if (bank->regs->irqenable_inv)
l |= gpio_mask;
else
l &= ~gpio_mask;
bank->context.irqenable1 = l;
}
__raw_writel(l, reg);
}
static inline void _set_gpio_irqenable(struct gpio_bank *bank, int gpio, int enable)
{
if (enable)
_enable_gpio_irqbank(bank, GPIO_BIT(bank, gpio));
else
_disable_gpio_irqbank(bank, GPIO_BIT(bank, gpio));
}
/*
* Note that ENAWAKEUP needs to be enabled in GPIO_SYSCONFIG register.
* 1510 does not seem to have a wake-up register. If JTAG is connected
* to the target, system will wake up always on GPIO events. While
* system is running all registered GPIO interrupts need to have wake-up
* enabled. When system is suspended, only selected GPIO interrupts need
* to have wake-up enabled.
*/
static int _set_gpio_wakeup(struct gpio_bank *bank, int gpio, int enable)
{
u32 gpio_bit = GPIO_BIT(bank, gpio);
unsigned long flags;
if (bank->non_wakeup_gpios & gpio_bit) {
dev_err(bank->dev,
"Unable to modify wakeup on non-wakeup GPIO%d\n", gpio);
return -EINVAL;
}
spin_lock_irqsave(&bank->lock, flags);
if (enable)
bank->context.wake_en |= gpio_bit;
else
bank->context.wake_en &= ~gpio_bit;
__raw_writel(bank->context.wake_en, bank->base + bank->regs->wkup_en);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void _reset_gpio(struct gpio_bank *bank, int gpio)
{
_set_gpio_direction(bank, GPIO_INDEX(bank, gpio), 1);
_set_gpio_irqenable(bank, gpio, 0);
_clear_gpio_irqstatus(bank, gpio);
_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), IRQ_TYPE_NONE);
_clear_gpio_debounce(bank, gpio);
}
/* Use disable_irq_wake() and enable_irq_wake() functions from drivers */
static int gpio_wake_enable(struct irq_data *d, unsigned int enable)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->hwirq);
return _set_gpio_wakeup(bank, gpio, enable);
}
static int omap_gpio_request(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank = container_of(chip, struct gpio_bank, chip);
unsigned long flags;
/*
* If this is the first gpio_request for the bank,
* enable the bank module.
*/
if (!BANK_USED(bank))
pm_runtime_get_sync(bank->dev);
spin_lock_irqsave(&bank->lock, flags);
/* Set trigger to none. You need to enable the desired trigger with
* request_irq() or set_irq_type(). Only do this if the IRQ line has
* not already been requested.
*/
if (!LINE_USED(bank->irq_usage, offset)) {
_set_gpio_triggering(bank, offset, IRQ_TYPE_NONE);
_enable_gpio_module(bank, offset);
}
bank->mod_usage |= 1 << offset;
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void omap_gpio_free(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank = container_of(chip, struct gpio_bank, chip);
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
bank->mod_usage &= ~(1 << offset);
_disable_gpio_module(bank, offset);
_reset_gpio(bank, bank->chip.base + offset);
spin_unlock_irqrestore(&bank->lock, flags);
/*
* If this is the last gpio to be freed in the bank,
* disable the bank module.
*/
if (!BANK_USED(bank))
pm_runtime_put(bank->dev);
}
/*
* We need to unmask the GPIO bank interrupt as soon as possible to
* avoid missing GPIO interrupts for other lines in the bank.
* Then we need to mask-read-clear-unmask the triggered GPIO lines
* in the bank to avoid missing nested interrupts for a GPIO line.
* If we wait to unmask individual GPIO lines in the bank after the
* line's interrupt handler has been run, we may miss some nested
* interrupts.
*/
static void gpio_irq_handler(unsigned int irq, struct irq_desc *desc)
{
void __iomem *isr_reg = NULL;
u32 isr;
unsigned int bit;
struct gpio_bank *bank;
int unmasked = 0;
struct irq_chip *chip = irq_desc_get_chip(desc);
chained_irq_enter(chip, desc);
bank = irq_get_handler_data(irq);
isr_reg = bank->base + bank->regs->irqstatus;
pm_runtime_get_sync(bank->dev);
if (WARN_ON(!isr_reg))
goto exit;
while (1) {
u32 isr_saved, level_mask = 0;
u32 enabled;
enabled = _get_gpio_irqbank_mask(bank);
isr_saved = isr = __raw_readl(isr_reg) & enabled;
if (bank->level_mask)
level_mask = bank->level_mask & enabled;
/* clear edge sensitive interrupts before handler(s) are
called so that we don't miss any interrupt occurred while
executing them */
_disable_gpio_irqbank(bank, isr_saved & ~level_mask);
_clear_gpio_irqbank(bank, isr_saved & ~level_mask);
_enable_gpio_irqbank(bank, isr_saved & ~level_mask);
/* if there is only edge sensitive GPIO pin interrupts
configured, we could unmask GPIO bank interrupt immediately */
if (!level_mask && !unmasked) {
unmasked = 1;
chained_irq_exit(chip, desc);
}
if (!isr)
break;
while (isr) {
bit = __ffs(isr);
isr &= ~(1 << bit);
/*
* Some chips can't respond to both rising and falling
* at the same time. If this irq was requested with
* both flags, we need to flip the ICR data for the IRQ
* to respond to the IRQ for the opposite direction.
* This will be indicated in the bank toggle_mask.
*/
if (bank->toggle_mask & (1 << bit))
_toggle_gpio_edge_triggering(bank, bit);
generic_handle_irq(irq_find_mapping(bank->domain, bit));
}
}
/* if bank has any level sensitive GPIO pin interrupt
configured, we must unmask the bank interrupt only after
handler(s) are executed in order to avoid spurious bank
interrupt */
exit:
if (!unmasked)
chained_irq_exit(chip, desc);
pm_runtime_put(bank->dev);
}
static void gpio_irq_shutdown(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->hwirq);
unsigned long flags;
unsigned offset = GPIO_INDEX(bank, gpio);
spin_lock_irqsave(&bank->lock, flags);
gpio_unlock_as_irq(&bank->chip, offset);
bank->irq_usage &= ~(1 << offset);
_disable_gpio_module(bank, offset);
_reset_gpio(bank, gpio);
spin_unlock_irqrestore(&bank->lock, flags);
/*
* If this is the last IRQ to be freed in the bank,
* disable the bank module.
*/
if (!BANK_USED(bank))
pm_runtime_put(bank->dev);
}
static void gpio_ack_irq(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->hwirq);
_clear_gpio_irqstatus(bank, gpio);
}
static void gpio_mask_irq(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->hwirq);
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
_set_gpio_irqenable(bank, gpio, 0);
_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), IRQ_TYPE_NONE);
spin_unlock_irqrestore(&bank->lock, flags);
}
static void gpio_unmask_irq(struct irq_data *d)
{
struct gpio_bank *bank = irq_data_get_irq_chip_data(d);
unsigned int gpio = irq_to_gpio(bank, d->hwirq);
unsigned int irq_mask = GPIO_BIT(bank, gpio);
u32 trigger = irqd_get_trigger_type(d);
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
if (trigger)
_set_gpio_triggering(bank, GPIO_INDEX(bank, gpio), trigger);
/* For level-triggered GPIOs, the clearing must be done after
* the HW source is cleared, thus after the handler has run */
if (bank->level_mask & irq_mask) {
_set_gpio_irqenable(bank, gpio, 0);
_clear_gpio_irqstatus(bank, gpio);
}
_set_gpio_irqenable(bank, gpio, 1);
spin_unlock_irqrestore(&bank->lock, flags);
}
static struct irq_chip gpio_irq_chip = {
.name = "GPIO",
.irq_shutdown = gpio_irq_shutdown,
.irq_ack = gpio_ack_irq,
.irq_mask = gpio_mask_irq,
.irq_unmask = gpio_unmask_irq,
.irq_set_type = gpio_irq_type,
.irq_set_wake = gpio_wake_enable,
};
/*---------------------------------------------------------------------*/
static int omap_mpuio_suspend_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
void __iomem *mask_reg = bank->base +
OMAP_MPUIO_GPIO_MASKIT / bank->stride;
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
__raw_writel(0xffff & ~bank->context.wake_en, mask_reg);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int omap_mpuio_resume_noirq(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
void __iomem *mask_reg = bank->base +
OMAP_MPUIO_GPIO_MASKIT / bank->stride;
unsigned long flags;
spin_lock_irqsave(&bank->lock, flags);
__raw_writel(bank->context.wake_en, mask_reg);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static const struct dev_pm_ops omap_mpuio_dev_pm_ops = {
.suspend_noirq = omap_mpuio_suspend_noirq,
.resume_noirq = omap_mpuio_resume_noirq,
};
/* use platform_driver for this. */
static struct platform_driver omap_mpuio_driver = {
.driver = {
.name = "mpuio",
.pm = &omap_mpuio_dev_pm_ops,
},
};
static struct platform_device omap_mpuio_device = {
.name = "mpuio",
.id = -1,
.dev = {
.driver = &omap_mpuio_driver.driver,
}
/* could list the /proc/iomem resources */
};
static inline void mpuio_init(struct gpio_bank *bank)
{
platform_set_drvdata(&omap_mpuio_device, bank);
if (platform_driver_register(&omap_mpuio_driver) == 0)
(void) platform_device_register(&omap_mpuio_device);
}
/*---------------------------------------------------------------------*/
static int gpio_input(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
_set_gpio_direction(bank, offset, 1);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct gpio_bank *bank;
u32 mask;
bank = container_of(chip, struct gpio_bank, chip);
mask = (1 << offset);
if (gpio_is_input(bank, mask))
return _get_gpio_datain(bank, offset);
else
return _get_gpio_dataout(bank, offset);
}
static int gpio_output(struct gpio_chip *chip, unsigned offset, int value)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
bank->set_dataout(bank, offset, value);
_set_gpio_direction(bank, offset, 0);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static int gpio_debounce(struct gpio_chip *chip, unsigned offset,
unsigned debounce)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
_set_gpio_debounce(bank, offset, debounce);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct gpio_bank *bank;
unsigned long flags;
bank = container_of(chip, struct gpio_bank, chip);
spin_lock_irqsave(&bank->lock, flags);
bank->set_dataout(bank, offset, value);
spin_unlock_irqrestore(&bank->lock, flags);
}
/*---------------------------------------------------------------------*/
static void __init omap_gpio_show_rev(struct gpio_bank *bank)
{
static bool called;
u32 rev;
if (called || bank->regs->revision == USHRT_MAX)
return;
rev = __raw_readw(bank->base + bank->regs->revision);
pr_info("OMAP GPIO hardware version %d.%d\n",
(rev >> 4) & 0x0f, rev & 0x0f);
called = true;
}
/* This lock class tells lockdep that GPIO irqs are in a different
* category than their parents, so it won't report false recursion.
*/
static struct lock_class_key gpio_lock_class;
static void omap_gpio_mod_init(struct gpio_bank *bank)
{
void __iomem *base = bank->base;
u32 l = 0xffffffff;
if (bank->width == 16)
l = 0xffff;
if (bank->is_mpuio) {
__raw_writel(l, bank->base + bank->regs->irqenable);
return;
}
_gpio_rmw(base, bank->regs->irqenable, l, bank->regs->irqenable_inv);
_gpio_rmw(base, bank->regs->irqstatus, l, !bank->regs->irqenable_inv);
if (bank->regs->debounce_en)
__raw_writel(0, base + bank->regs->debounce_en);
/* Save OE default value (0xffffffff) in the context */
bank->context.oe = __raw_readl(bank->base + bank->regs->direction);
/* Initialize interface clk ungated, module enabled */
if (bank->regs->ctrl)
__raw_writel(0, base + bank->regs->ctrl);
bank->dbck = clk_get(bank->dev, "dbclk");
if (IS_ERR(bank->dbck))
dev_err(bank->dev, "Could not get gpio dbck\n");
}
static void
omap_mpuio_alloc_gc(struct gpio_bank *bank, unsigned int irq_start,
unsigned int num)
{
struct irq_chip_generic *gc;
struct irq_chip_type *ct;
gc = irq_alloc_generic_chip("MPUIO", 1, irq_start, bank->base,
handle_simple_irq);
if (!gc) {
dev_err(bank->dev, "Memory alloc failed for gc\n");
return;
}
ct = gc->chip_types;
/* NOTE: No ack required, reading IRQ status clears it. */
ct->chip.irq_mask = irq_gc_mask_set_bit;
ct->chip.irq_unmask = irq_gc_mask_clr_bit;
ct->chip.irq_set_type = gpio_irq_type;
if (bank->regs->wkup_en)
ct->chip.irq_set_wake = gpio_wake_enable;
ct->regs.mask = OMAP_MPUIO_GPIO_INT / bank->stride;
irq_setup_generic_chip(gc, IRQ_MSK(num), IRQ_GC_INIT_MASK_CACHE,
IRQ_NOREQUEST | IRQ_NOPROBE, 0);
}
static void omap_gpio_chip_init(struct gpio_bank *bank)
{
int j;
static int gpio;
/*
* REVISIT eventually switch from OMAP-specific gpio structs
* over to the generic ones
*/
bank->chip.request = omap_gpio_request;
bank->chip.free = omap_gpio_free;
bank->chip.direction_input = gpio_input;
bank->chip.get = gpio_get;
bank->chip.direction_output = gpio_output;
bank->chip.set_debounce = gpio_debounce;
bank->chip.set = gpio_set;
bank->chip.to_irq = omap_gpio_to_irq;
if (bank->is_mpuio) {
bank->chip.label = "mpuio";
if (bank->regs->wkup_en)
bank->chip.dev = &omap_mpuio_device.dev;
bank->chip.base = OMAP_MPUIO(0);
} else {
bank->chip.label = "gpio";
bank->chip.base = gpio;
gpio += bank->width;
}
bank->chip.ngpio = bank->width;
gpiochip_add(&bank->chip);
for (j = 0; j < bank->width; j++) {
int irq = irq_create_mapping(bank->domain, j);
irq_set_lockdep_class(irq, &gpio_lock_class);
irq_set_chip_data(irq, bank);
if (bank->is_mpuio) {
omap_mpuio_alloc_gc(bank, irq, bank->width);
} else {
irq_set_chip_and_handler(irq, &gpio_irq_chip,
handle_simple_irq);
set_irq_flags(irq, IRQF_VALID);
}
}
irq_set_chained_handler(bank->irq, gpio_irq_handler);
irq_set_handler_data(bank->irq, bank);
}
static const struct of_device_id omap_gpio_match[];
static int omap_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
const struct of_device_id *match;
const struct omap_gpio_platform_data *pdata;
struct resource *res;
struct gpio_bank *bank;
#ifdef CONFIG_ARCH_OMAP1
int irq_base;
#endif
match = of_match_device(of_match_ptr(omap_gpio_match), dev);
pdata = match ? match->data : dev_get_platdata(dev);
if (!pdata)
return -EINVAL;
bank = devm_kzalloc(dev, sizeof(struct gpio_bank), GFP_KERNEL);
if (!bank) {
dev_err(dev, "Memory alloc failed\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (unlikely(!res)) {
dev_err(dev, "Invalid IRQ resource\n");
return -ENODEV;
}
bank->irq = res->start;
bank->dev = dev;
bank->dbck_flag = pdata->dbck_flag;
bank->stride = pdata->bank_stride;
bank->width = pdata->bank_width;
bank->is_mpuio = pdata->is_mpuio;
bank->non_wakeup_gpios = pdata->non_wakeup_gpios;
bank->regs = pdata->regs;
#ifdef CONFIG_OF_GPIO
bank->chip.of_node = of_node_get(node);
#endif
if (node) {
if (!of_property_read_bool(node, "ti,gpio-always-on"))
bank->loses_context = true;
} else {
bank->loses_context = pdata->loses_context;
if (bank->loses_context)
bank->get_context_loss_count =
pdata->get_context_loss_count;
}
#ifdef CONFIG_ARCH_OMAP1
/*
* REVISIT: Once we have OMAP1 supporting SPARSE_IRQ, we can drop
* irq_alloc_descs() and irq_domain_add_legacy() and just use a
* linear IRQ domain mapping for all OMAP platforms.
*/
irq_base = irq_alloc_descs(-1, 0, bank->width, 0);
if (irq_base < 0) {
dev_err(dev, "Couldn't allocate IRQ numbers\n");
return -ENODEV;
}
bank->domain = irq_domain_add_legacy(node, bank->width, irq_base,
0, &irq_domain_simple_ops, NULL);
#else
bank->domain = irq_domain_add_linear(node, bank->width,
&irq_domain_simple_ops, NULL);
#endif
if (!bank->domain) {
dev_err(dev, "Couldn't register an IRQ domain\n");
return -ENODEV;
}
if (bank->regs->set_dataout && bank->regs->clr_dataout)
bank->set_dataout = _set_gpio_dataout_reg;
else
bank->set_dataout = _set_gpio_dataout_mask;
spin_lock_init(&bank->lock);
/* Static mapping, never released */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!res)) {
dev_err(dev, "Invalid mem resource\n");
irq_domain_remove(bank->domain);
return -ENODEV;
}
if (!devm_request_mem_region(dev, res->start, resource_size(res),
pdev->name)) {
dev_err(dev, "Region already claimed\n");
irq_domain_remove(bank->domain);
return -EBUSY;
}
bank->base = devm_ioremap(dev, res->start, resource_size(res));
if (!bank->base) {
dev_err(dev, "Could not ioremap\n");
irq_domain_remove(bank->domain);
return -ENOMEM;
}
platform_set_drvdata(pdev, bank);
pm_runtime_enable(bank->dev);
pm_runtime_irq_safe(bank->dev);
pm_runtime_get_sync(bank->dev);
if (bank->is_mpuio)
mpuio_init(bank);
omap_gpio_mod_init(bank);
omap_gpio_chip_init(bank);
omap_gpio_show_rev(bank);
pm_runtime_put(bank->dev);
list_add_tail(&bank->node, &omap_gpio_list);
return 0;
}
#ifdef CONFIG_ARCH_OMAP2PLUS
#if defined(CONFIG_PM_RUNTIME)
static void omap_gpio_restore_context(struct gpio_bank *bank);
static int omap_gpio_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
u32 l1 = 0, l2 = 0;
unsigned long flags;
u32 wake_low, wake_hi;
spin_lock_irqsave(&bank->lock, flags);
/*
* Only edges can generate a wakeup event to the PRCM.
*
* Therefore, ensure any wake-up capable GPIOs have
* edge-detection enabled before going idle to ensure a wakeup
* to the PRCM is generated on a GPIO transition. (c.f. 34xx
* NDA TRM 25.5.3.1)
*
* The normal values will be restored upon ->runtime_resume()
* by writing back the values saved in bank->context.
*/
wake_low = bank->context.leveldetect0 & bank->context.wake_en;
if (wake_low)
__raw_writel(wake_low | bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
wake_hi = bank->context.leveldetect1 & bank->context.wake_en;
if (wake_hi)
__raw_writel(wake_hi | bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
if (!bank->enabled_non_wakeup_gpios)
goto update_gpio_context_count;
if (bank->power_mode != OFF_MODE) {
bank->power_mode = 0;
goto update_gpio_context_count;
}
/*
* If going to OFF, remove triggering for all
* non-wakeup GPIOs. Otherwise spurious IRQs will be
* generated. See OMAP2420 Errata item 1.101.
*/
bank->saved_datain = __raw_readl(bank->base +
bank->regs->datain);
l1 = bank->context.fallingdetect;
l2 = bank->context.risingdetect;
l1 &= ~bank->enabled_non_wakeup_gpios;
l2 &= ~bank->enabled_non_wakeup_gpios;
__raw_writel(l1, bank->base + bank->regs->fallingdetect);
__raw_writel(l2, bank->base + bank->regs->risingdetect);
bank->workaround_enabled = true;
update_gpio_context_count:
if (bank->get_context_loss_count)
bank->context_loss_count =
bank->get_context_loss_count(bank->dev);
_gpio_dbck_disable(bank);
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
static void omap_gpio_init_context(struct gpio_bank *p);
static int omap_gpio_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct gpio_bank *bank = platform_get_drvdata(pdev);
u32 l = 0, gen, gen0, gen1;
unsigned long flags;
int c;
spin_lock_irqsave(&bank->lock, flags);
/*
* On the first resume during the probe, the context has not
* been initialised and so initialise it now. Also initialise
* the context loss count.
*/
if (bank->loses_context && !bank->context_valid) {
omap_gpio_init_context(bank);
if (bank->get_context_loss_count)
bank->context_loss_count =
bank->get_context_loss_count(bank->dev);
}
_gpio_dbck_enable(bank);
/*
* In ->runtime_suspend(), level-triggered, wakeup-enabled
* GPIOs were set to edge trigger also in order to be able to
* generate a PRCM wakeup. Here we restore the
* pre-runtime_suspend() values for edge triggering.
*/
__raw_writel(bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
__raw_writel(bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
if (bank->loses_context) {
if (!bank->get_context_loss_count) {
omap_gpio_restore_context(bank);
} else {
c = bank->get_context_loss_count(bank->dev);
if (c != bank->context_loss_count) {
omap_gpio_restore_context(bank);
} else {
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
}
}
if (!bank->workaround_enabled) {
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
l = __raw_readl(bank->base + bank->regs->datain);
/*
* Check if any of the non-wakeup interrupt GPIOs have changed
* state. If so, generate an IRQ by software. This is
* horribly racy, but it's the best we can do to work around
* this silicon bug.
*/
l ^= bank->saved_datain;
l &= bank->enabled_non_wakeup_gpios;
/*
* No need to generate IRQs for the rising edge for gpio IRQs
* configured with falling edge only; and vice versa.
*/
gen0 = l & bank->context.fallingdetect;
gen0 &= bank->saved_datain;
gen1 = l & bank->context.risingdetect;
gen1 &= ~(bank->saved_datain);
/* FIXME: Consider GPIO IRQs with level detections properly! */
gen = l & (~(bank->context.fallingdetect) &
~(bank->context.risingdetect));
/* Consider all GPIO IRQs needed to be updated */
gen |= gen0 | gen1;
if (gen) {
u32 old0, old1;
old0 = __raw_readl(bank->base + bank->regs->leveldetect0);
old1 = __raw_readl(bank->base + bank->regs->leveldetect1);
if (!bank->regs->irqstatus_raw0) {
__raw_writel(old0 | gen, bank->base +
bank->regs->leveldetect0);
__raw_writel(old1 | gen, bank->base +
bank->regs->leveldetect1);
}
if (bank->regs->irqstatus_raw0) {
__raw_writel(old0 | l, bank->base +
bank->regs->leveldetect0);
__raw_writel(old1 | l, bank->base +
bank->regs->leveldetect1);
}
__raw_writel(old0, bank->base + bank->regs->leveldetect0);
__raw_writel(old1, bank->base + bank->regs->leveldetect1);
}
bank->workaround_enabled = false;
spin_unlock_irqrestore(&bank->lock, flags);
return 0;
}
#endif /* CONFIG_PM_RUNTIME */
void omap2_gpio_prepare_for_idle(int pwr_mode)
{
struct gpio_bank *bank;
list_for_each_entry(bank, &omap_gpio_list, node) {
if (!BANK_USED(bank) || !bank->loses_context)
continue;
bank->power_mode = pwr_mode;
pm_runtime_put_sync_suspend(bank->dev);
}
}
void omap2_gpio_resume_after_idle(void)
{
struct gpio_bank *bank;
list_for_each_entry(bank, &omap_gpio_list, node) {
if (!BANK_USED(bank) || !bank->loses_context)
continue;
pm_runtime_get_sync(bank->dev);
}
}
#if defined(CONFIG_PM_RUNTIME)
static void omap_gpio_init_context(struct gpio_bank *p)
{
struct omap_gpio_reg_offs *regs = p->regs;
void __iomem *base = p->base;
p->context.ctrl = __raw_readl(base + regs->ctrl);
p->context.oe = __raw_readl(base + regs->direction);
p->context.wake_en = __raw_readl(base + regs->wkup_en);
p->context.leveldetect0 = __raw_readl(base + regs->leveldetect0);
p->context.leveldetect1 = __raw_readl(base + regs->leveldetect1);
p->context.risingdetect = __raw_readl(base + regs->risingdetect);
p->context.fallingdetect = __raw_readl(base + regs->fallingdetect);
p->context.irqenable1 = __raw_readl(base + regs->irqenable);
p->context.irqenable2 = __raw_readl(base + regs->irqenable2);
if (regs->set_dataout && p->regs->clr_dataout)
p->context.dataout = __raw_readl(base + regs->set_dataout);
else
p->context.dataout = __raw_readl(base + regs->dataout);
p->context_valid = true;
}
static void omap_gpio_restore_context(struct gpio_bank *bank)
{
__raw_writel(bank->context.wake_en,
bank->base + bank->regs->wkup_en);
__raw_writel(bank->context.ctrl, bank->base + bank->regs->ctrl);
__raw_writel(bank->context.leveldetect0,
bank->base + bank->regs->leveldetect0);
__raw_writel(bank->context.leveldetect1,
bank->base + bank->regs->leveldetect1);
__raw_writel(bank->context.risingdetect,
bank->base + bank->regs->risingdetect);
__raw_writel(bank->context.fallingdetect,
bank->base + bank->regs->fallingdetect);
if (bank->regs->set_dataout && bank->regs->clr_dataout)
__raw_writel(bank->context.dataout,
bank->base + bank->regs->set_dataout);
else
__raw_writel(bank->context.dataout,
bank->base + bank->regs->dataout);
__raw_writel(bank->context.oe, bank->base + bank->regs->direction);
if (bank->dbck_enable_mask) {
__raw_writel(bank->context.debounce, bank->base +
bank->regs->debounce);
__raw_writel(bank->context.debounce_en,
bank->base + bank->regs->debounce_en);
}
__raw_writel(bank->context.irqenable1,
bank->base + bank->regs->irqenable);
__raw_writel(bank->context.irqenable2,
bank->base + bank->regs->irqenable2);
}
#endif /* CONFIG_PM_RUNTIME */
#else
#define omap_gpio_runtime_suspend NULL
#define omap_gpio_runtime_resume NULL
static inline void omap_gpio_init_context(struct gpio_bank *p) {}
#endif
static const struct dev_pm_ops gpio_pm_ops = {
SET_RUNTIME_PM_OPS(omap_gpio_runtime_suspend, omap_gpio_runtime_resume,
NULL)
};
#if defined(CONFIG_OF)
static struct omap_gpio_reg_offs omap2_gpio_regs = {
.revision = OMAP24XX_GPIO_REVISION,
.direction = OMAP24XX_GPIO_OE,
.datain = OMAP24XX_GPIO_DATAIN,
.dataout = OMAP24XX_GPIO_DATAOUT,
.set_dataout = OMAP24XX_GPIO_SETDATAOUT,
.clr_dataout = OMAP24XX_GPIO_CLEARDATAOUT,
.irqstatus = OMAP24XX_GPIO_IRQSTATUS1,
.irqstatus2 = OMAP24XX_GPIO_IRQSTATUS2,
.irqenable = OMAP24XX_GPIO_IRQENABLE1,
.irqenable2 = OMAP24XX_GPIO_IRQENABLE2,
.set_irqenable = OMAP24XX_GPIO_SETIRQENABLE1,
.clr_irqenable = OMAP24XX_GPIO_CLEARIRQENABLE1,
.debounce = OMAP24XX_GPIO_DEBOUNCE_VAL,
.debounce_en = OMAP24XX_GPIO_DEBOUNCE_EN,
.ctrl = OMAP24XX_GPIO_CTRL,
.wkup_en = OMAP24XX_GPIO_WAKE_EN,
.leveldetect0 = OMAP24XX_GPIO_LEVELDETECT0,
.leveldetect1 = OMAP24XX_GPIO_LEVELDETECT1,
.risingdetect = OMAP24XX_GPIO_RISINGDETECT,
.fallingdetect = OMAP24XX_GPIO_FALLINGDETECT,
};
static struct omap_gpio_reg_offs omap4_gpio_regs = {
.revision = OMAP4_GPIO_REVISION,
.direction = OMAP4_GPIO_OE,
.datain = OMAP4_GPIO_DATAIN,
.dataout = OMAP4_GPIO_DATAOUT,
.set_dataout = OMAP4_GPIO_SETDATAOUT,
.clr_dataout = OMAP4_GPIO_CLEARDATAOUT,
.irqstatus = OMAP4_GPIO_IRQSTATUS0,
.irqstatus2 = OMAP4_GPIO_IRQSTATUS1,
.irqenable = OMAP4_GPIO_IRQSTATUSSET0,
.irqenable2 = OMAP4_GPIO_IRQSTATUSSET1,
.set_irqenable = OMAP4_GPIO_IRQSTATUSSET0,
.clr_irqenable = OMAP4_GPIO_IRQSTATUSCLR0,
.debounce = OMAP4_GPIO_DEBOUNCINGTIME,
.debounce_en = OMAP4_GPIO_DEBOUNCENABLE,
.ctrl = OMAP4_GPIO_CTRL,
.wkup_en = OMAP4_GPIO_IRQWAKEN0,
.leveldetect0 = OMAP4_GPIO_LEVELDETECT0,
.leveldetect1 = OMAP4_GPIO_LEVELDETECT1,
.risingdetect = OMAP4_GPIO_RISINGDETECT,
.fallingdetect = OMAP4_GPIO_FALLINGDETECT,
};
static const struct omap_gpio_platform_data omap2_pdata = {
.regs = &omap2_gpio_regs,
.bank_width = 32,
.dbck_flag = false,
};
static const struct omap_gpio_platform_data omap3_pdata = {
.regs = &omap2_gpio_regs,
.bank_width = 32,
.dbck_flag = true,
};
static const struct omap_gpio_platform_data omap4_pdata = {
.regs = &omap4_gpio_regs,
.bank_width = 32,
.dbck_flag = true,
};
static const struct of_device_id omap_gpio_match[] = {
{
.compatible = "ti,omap4-gpio",
.data = &omap4_pdata,
},
{
.compatible = "ti,omap3-gpio",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap2-gpio",
.data = &omap2_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_gpio_match);
#endif
static struct platform_driver omap_gpio_driver = {
.probe = omap_gpio_probe,
.driver = {
.name = "omap_gpio",
.pm = &gpio_pm_ops,
.of_match_table = of_match_ptr(omap_gpio_match),
},
};
/*
* gpio driver register needs to be done before
* machine_init functions access gpio APIs.
* Hence omap_gpio_drv_reg() is a postcore_initcall.
*/
static int __init omap_gpio_drv_reg(void)
{
return platform_driver_register(&omap_gpio_driver);
}
postcore_initcall(omap_gpio_drv_reg);