mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
05fafbfb3d
This new firmware for the qed* adpaters fixes several issues: - Better blocking of malicious VFs. - After FLR, Tx-switching [internal routing] of packets might be incorrect. - Deletion of unicast MAC filters would sometime have side-effect of corrupting the MAC filters configred for a device. It also contains fixes for future qed* drivers that *hopefully* would be sent for review in the near future. In addition, it would allow driver some new functionality, including: - Allowing PF/VF driver compaitibility with old drivers [running pre-8.10.5.0 firmware]. - Better debug facilities. This would also bump the qed* driver versions to 8.10.9.20. Signed-off-by: Yuval Mintz <Yuval.Mintz@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
646 lines
17 KiB
C
646 lines
17 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015 QLogic Corporation
|
|
*
|
|
* This software is available under the terms of the GNU General Public License
|
|
* (GPL) Version 2, available from the file COPYING in the main directory of
|
|
* this source tree.
|
|
*/
|
|
|
|
#ifndef _QED_CHAIN_H
|
|
#define _QED_CHAIN_H
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/qed/common_hsi.h>
|
|
|
|
enum qed_chain_mode {
|
|
/* Each Page contains a next pointer at its end */
|
|
QED_CHAIN_MODE_NEXT_PTR,
|
|
|
|
/* Chain is a single page (next ptr) is unrequired */
|
|
QED_CHAIN_MODE_SINGLE,
|
|
|
|
/* Page pointers are located in a side list */
|
|
QED_CHAIN_MODE_PBL,
|
|
};
|
|
|
|
enum qed_chain_use_mode {
|
|
QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
|
|
QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */
|
|
QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
|
|
};
|
|
|
|
enum qed_chain_cnt_type {
|
|
/* The chain's size/prod/cons are kept in 16-bit variables */
|
|
QED_CHAIN_CNT_TYPE_U16,
|
|
|
|
/* The chain's size/prod/cons are kept in 32-bit variables */
|
|
QED_CHAIN_CNT_TYPE_U32,
|
|
};
|
|
|
|
struct qed_chain_next {
|
|
struct regpair next_phys;
|
|
void *next_virt;
|
|
};
|
|
|
|
struct qed_chain_pbl_u16 {
|
|
u16 prod_page_idx;
|
|
u16 cons_page_idx;
|
|
};
|
|
|
|
struct qed_chain_pbl_u32 {
|
|
u32 prod_page_idx;
|
|
u32 cons_page_idx;
|
|
};
|
|
|
|
struct qed_chain_pbl {
|
|
/* Base address of a pre-allocated buffer for pbl */
|
|
dma_addr_t p_phys_table;
|
|
void *p_virt_table;
|
|
|
|
/* Table for keeping the virtual addresses of the chain pages,
|
|
* respectively to the physical addresses in the pbl table.
|
|
*/
|
|
void **pp_virt_addr_tbl;
|
|
|
|
/* Index to current used page by producer/consumer */
|
|
union {
|
|
struct qed_chain_pbl_u16 pbl16;
|
|
struct qed_chain_pbl_u32 pbl32;
|
|
} u;
|
|
};
|
|
|
|
struct qed_chain_u16 {
|
|
/* Cyclic index of next element to produce/consme */
|
|
u16 prod_idx;
|
|
u16 cons_idx;
|
|
};
|
|
|
|
struct qed_chain_u32 {
|
|
/* Cyclic index of next element to produce/consme */
|
|
u32 prod_idx;
|
|
u32 cons_idx;
|
|
};
|
|
|
|
struct qed_chain {
|
|
void *p_virt_addr;
|
|
dma_addr_t p_phys_addr;
|
|
void *p_prod_elem;
|
|
void *p_cons_elem;
|
|
|
|
enum qed_chain_mode mode;
|
|
enum qed_chain_use_mode intended_use; /* used to produce/consume */
|
|
enum qed_chain_cnt_type cnt_type;
|
|
|
|
union {
|
|
struct qed_chain_u16 chain16;
|
|
struct qed_chain_u32 chain32;
|
|
} u;
|
|
|
|
u32 page_cnt;
|
|
|
|
/* Number of elements - capacity is for usable elements only,
|
|
* while size will contain total number of elements [for entire chain].
|
|
*/
|
|
u32 capacity;
|
|
u32 size;
|
|
|
|
/* Elements information for fast calculations */
|
|
u16 elem_per_page;
|
|
u16 elem_per_page_mask;
|
|
u16 elem_unusable;
|
|
u16 usable_per_page;
|
|
u16 elem_size;
|
|
u16 next_page_mask;
|
|
struct qed_chain_pbl pbl;
|
|
};
|
|
|
|
#define QED_CHAIN_PBL_ENTRY_SIZE (8)
|
|
#define QED_CHAIN_PAGE_SIZE (0x1000)
|
|
#define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size))
|
|
|
|
#define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((mode == QED_CHAIN_MODE_NEXT_PTR) ? \
|
|
(1 + ((sizeof(struct qed_chain_next) - 1) / \
|
|
(elem_size))) : 0)
|
|
|
|
#define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((u32)(ELEMS_PER_PAGE(elem_size) - \
|
|
UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
|
|
|
|
#define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
|
|
DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
|
|
|
|
#define is_chain_u16(p) ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U16)
|
|
#define is_chain_u32(p) ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U32)
|
|
|
|
/* Accessors */
|
|
static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->u.chain16.prod_idx;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->u.chain16.cons_idx;
|
|
}
|
|
|
|
static inline u32 qed_chain_get_cons_idx_u32(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->u.chain32.cons_idx;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
|
|
{
|
|
u16 used;
|
|
|
|
used = (u16) (((u32)0x10000 +
|
|
(u32)p_chain->u.chain16.prod_idx) -
|
|
(u32)p_chain->u.chain16.cons_idx);
|
|
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
|
|
used -= p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
|
|
p_chain->u.chain16.cons_idx / p_chain->elem_per_page;
|
|
|
|
return (u16)(p_chain->capacity - used);
|
|
}
|
|
|
|
static inline u32 qed_chain_get_elem_left_u32(struct qed_chain *p_chain)
|
|
{
|
|
u32 used;
|
|
|
|
used = (u32) (((u64)0x100000000ULL +
|
|
(u64)p_chain->u.chain32.prod_idx) -
|
|
(u64)p_chain->u.chain32.cons_idx);
|
|
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
|
|
used -= p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
|
|
p_chain->u.chain32.cons_idx / p_chain->elem_per_page;
|
|
|
|
return p_chain->capacity - used;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_usable_per_page(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->usable_per_page;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_unusable_per_page(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->elem_unusable;
|
|
}
|
|
|
|
static inline u32 qed_chain_get_page_cnt(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->page_cnt;
|
|
}
|
|
|
|
static inline dma_addr_t qed_chain_get_pbl_phys(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->pbl.p_phys_table;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_advance_page -
|
|
*
|
|
* Advance the next element accros pages for a linked chain
|
|
*
|
|
* @param p_chain
|
|
* @param p_next_elem
|
|
* @param idx_to_inc
|
|
* @param page_to_inc
|
|
*/
|
|
static inline void
|
|
qed_chain_advance_page(struct qed_chain *p_chain,
|
|
void **p_next_elem, void *idx_to_inc, void *page_to_inc)
|
|
|
|
{
|
|
struct qed_chain_next *p_next = NULL;
|
|
u32 page_index = 0;
|
|
switch (p_chain->mode) {
|
|
case QED_CHAIN_MODE_NEXT_PTR:
|
|
p_next = *p_next_elem;
|
|
*p_next_elem = p_next->next_virt;
|
|
if (is_chain_u16(p_chain))
|
|
*(u16 *)idx_to_inc += p_chain->elem_unusable;
|
|
else
|
|
*(u32 *)idx_to_inc += p_chain->elem_unusable;
|
|
break;
|
|
case QED_CHAIN_MODE_SINGLE:
|
|
*p_next_elem = p_chain->p_virt_addr;
|
|
break;
|
|
|
|
case QED_CHAIN_MODE_PBL:
|
|
if (is_chain_u16(p_chain)) {
|
|
if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
|
|
*(u16 *)page_to_inc = 0;
|
|
page_index = *(u16 *)page_to_inc;
|
|
} else {
|
|
if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
|
|
*(u32 *)page_to_inc = 0;
|
|
page_index = *(u32 *)page_to_inc;
|
|
}
|
|
*p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
|
|
}
|
|
}
|
|
|
|
#define is_unusable_idx(p, idx) \
|
|
(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define is_unusable_idx_u32(p, idx) \
|
|
(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
#define is_unusable_next_idx(p, idx) \
|
|
((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == \
|
|
(p)->usable_per_page)
|
|
|
|
#define is_unusable_next_idx_u32(p, idx) \
|
|
((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == \
|
|
(p)->usable_per_page)
|
|
|
|
#define test_and_skip(p, idx) \
|
|
do { \
|
|
if (is_chain_u16(p)) { \
|
|
if (is_unusable_idx(p, idx)) \
|
|
(p)->u.chain16.idx += (p)->elem_unusable; \
|
|
} else { \
|
|
if (is_unusable_idx_u32(p, idx)) \
|
|
(p)->u.chain32.idx += (p)->elem_unusable; \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* @brief qed_chain_return_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void qed_chain_return_produced(struct qed_chain *p_chain)
|
|
{
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.cons_idx++;
|
|
else
|
|
p_chain->u.chain32.cons_idx++;
|
|
test_and_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_produce -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this to get
|
|
* a pointer to the next element which can be "Produced". It's driver
|
|
* responsibility to validate that the chain has room for new element.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to next element
|
|
*/
|
|
static inline void *qed_chain_produce(struct qed_chain *p_chain)
|
|
{
|
|
void *p_ret = NULL, *p_prod_idx, *p_prod_page_idx;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
if ((p_chain->u.chain16.prod_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_prod_idx = &p_chain->u.chain16.prod_idx;
|
|
p_prod_page_idx = &p_chain->pbl.u.pbl16.prod_page_idx;
|
|
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
|
|
p_prod_idx, p_prod_page_idx);
|
|
}
|
|
p_chain->u.chain16.prod_idx++;
|
|
} else {
|
|
if ((p_chain->u.chain32.prod_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_prod_idx = &p_chain->u.chain32.prod_idx;
|
|
p_prod_page_idx = &p_chain->pbl.u.pbl32.prod_page_idx;
|
|
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
|
|
p_prod_idx, p_prod_page_idx);
|
|
}
|
|
p_chain->u.chain32.prod_idx++;
|
|
}
|
|
|
|
p_ret = p_chain->p_prod_elem;
|
|
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return p_ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_get_capacity -
|
|
*
|
|
* Get the maximum number of BDs in chain
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*
|
|
* @return number of unusable BDs
|
|
*/
|
|
static inline u32 qed_chain_get_capacity(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->capacity;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_recycle_consumed -
|
|
*
|
|
* Returns an element which was previously consumed;
|
|
* Increments producers so they could be written to FW.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void qed_chain_recycle_consumed(struct qed_chain *p_chain)
|
|
{
|
|
test_and_skip(p_chain, prod_idx);
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.prod_idx++;
|
|
else
|
|
p_chain->u.chain32.prod_idx++;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_consume -
|
|
*
|
|
* A Chain in which the driver utilizes data written by a different source
|
|
* (i.e., FW) should use this to access passed buffers.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to the next buffer written
|
|
*/
|
|
static inline void *qed_chain_consume(struct qed_chain *p_chain)
|
|
{
|
|
void *p_ret = NULL, *p_cons_idx, *p_cons_page_idx;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
if ((p_chain->u.chain16.cons_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_cons_idx = &p_chain->u.chain16.cons_idx;
|
|
p_cons_page_idx = &p_chain->pbl.u.pbl16.cons_page_idx;
|
|
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
|
|
p_cons_idx, p_cons_page_idx);
|
|
}
|
|
p_chain->u.chain16.cons_idx++;
|
|
} else {
|
|
if ((p_chain->u.chain32.cons_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_cons_idx = &p_chain->u.chain32.cons_idx;
|
|
p_cons_page_idx = &p_chain->pbl.u.pbl32.cons_page_idx;
|
|
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
|
|
p_cons_idx, p_cons_page_idx);
|
|
}
|
|
p_chain->u.chain32.cons_idx++;
|
|
}
|
|
|
|
p_ret = p_chain->p_cons_elem;
|
|
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return p_ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_reset - Resets the chain to its start state
|
|
*
|
|
* @param p_chain pointer to a previously allocted chain
|
|
*/
|
|
static inline void qed_chain_reset(struct qed_chain *p_chain)
|
|
{
|
|
u32 i;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
p_chain->u.chain16.prod_idx = 0;
|
|
p_chain->u.chain16.cons_idx = 0;
|
|
} else {
|
|
p_chain->u.chain32.prod_idx = 0;
|
|
p_chain->u.chain32.cons_idx = 0;
|
|
}
|
|
p_chain->p_cons_elem = p_chain->p_virt_addr;
|
|
p_chain->p_prod_elem = p_chain->p_virt_addr;
|
|
|
|
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
|
|
/* Use (page_cnt - 1) as a reset value for the prod/cons page's
|
|
* indices, to avoid unnecessary page advancing on the first
|
|
* call to qed_chain_produce/consume. Instead, the indices
|
|
* will be advanced to page_cnt and then will be wrapped to 0.
|
|
*/
|
|
u32 reset_val = p_chain->page_cnt - 1;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
p_chain->pbl.u.pbl16.prod_page_idx = (u16)reset_val;
|
|
p_chain->pbl.u.pbl16.cons_page_idx = (u16)reset_val;
|
|
} else {
|
|
p_chain->pbl.u.pbl32.prod_page_idx = reset_val;
|
|
p_chain->pbl.u.pbl32.cons_page_idx = reset_val;
|
|
}
|
|
}
|
|
|
|
switch (p_chain->intended_use) {
|
|
case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
|
|
case QED_CHAIN_USE_TO_PRODUCE:
|
|
/* Do nothing */
|
|
break;
|
|
|
|
case QED_CHAIN_USE_TO_CONSUME:
|
|
/* produce empty elements */
|
|
for (i = 0; i < p_chain->capacity; i++)
|
|
qed_chain_recycle_consumed(p_chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_init - Initalizes a basic chain struct
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_addr
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
* @param page_cnt number of pages in the allocated buffer
|
|
* @param elem_size size of each element in the chain
|
|
* @param intended_use
|
|
* @param mode
|
|
*/
|
|
static inline void qed_chain_init_params(struct qed_chain *p_chain,
|
|
u32 page_cnt,
|
|
u8 elem_size,
|
|
enum qed_chain_use_mode intended_use,
|
|
enum qed_chain_mode mode,
|
|
enum qed_chain_cnt_type cnt_type)
|
|
{
|
|
/* chain fixed parameters */
|
|
p_chain->p_virt_addr = NULL;
|
|
p_chain->p_phys_addr = 0;
|
|
p_chain->elem_size = elem_size;
|
|
p_chain->intended_use = intended_use;
|
|
p_chain->mode = mode;
|
|
p_chain->cnt_type = cnt_type;
|
|
|
|
p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
|
|
p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
|
|
p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
p_chain->next_page_mask = (p_chain->usable_per_page &
|
|
p_chain->elem_per_page_mask);
|
|
|
|
p_chain->page_cnt = page_cnt;
|
|
p_chain->capacity = p_chain->usable_per_page * page_cnt;
|
|
p_chain->size = p_chain->elem_per_page * page_cnt;
|
|
|
|
p_chain->pbl.p_phys_table = 0;
|
|
p_chain->pbl.p_virt_table = NULL;
|
|
p_chain->pbl.pp_virt_addr_tbl = NULL;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_init_mem -
|
|
*
|
|
* Initalizes a basic chain struct with its chain buffers
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_addr virtual address of allocated buffer's beginning
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
*
|
|
*/
|
|
static inline void qed_chain_init_mem(struct qed_chain *p_chain,
|
|
void *p_virt_addr, dma_addr_t p_phys_addr)
|
|
{
|
|
p_chain->p_virt_addr = p_virt_addr;
|
|
p_chain->p_phys_addr = p_phys_addr;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_init_pbl_mem -
|
|
*
|
|
* Initalizes a basic chain struct with its pbl buffers
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_pbl pointer to a pre allocated side table which will hold
|
|
* virtual page addresses.
|
|
* @param p_phys_pbl pointer to a pre-allocated side table which will hold
|
|
* physical page addresses.
|
|
* @param pp_virt_addr_tbl
|
|
* pointer to a pre-allocated side table which will hold
|
|
* the virtual addresses of the chain pages.
|
|
*
|
|
*/
|
|
static inline void qed_chain_init_pbl_mem(struct qed_chain *p_chain,
|
|
void *p_virt_pbl,
|
|
dma_addr_t p_phys_pbl,
|
|
void **pp_virt_addr_tbl)
|
|
{
|
|
p_chain->pbl.p_phys_table = p_phys_pbl;
|
|
p_chain->pbl.p_virt_table = p_virt_pbl;
|
|
p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_init_next_ptr_elem -
|
|
*
|
|
* Initalizes a next pointer element
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_curr virtual address of a chain page of which the next
|
|
* pointer element is initialized
|
|
* @param p_virt_next virtual address of the next chain page
|
|
* @param p_phys_next physical address of the next chain page
|
|
*
|
|
*/
|
|
static inline void
|
|
qed_chain_init_next_ptr_elem(struct qed_chain *p_chain,
|
|
void *p_virt_curr,
|
|
void *p_virt_next, dma_addr_t p_phys_next)
|
|
{
|
|
struct qed_chain_next *p_next;
|
|
u32 size;
|
|
|
|
size = p_chain->elem_size * p_chain->usable_per_page;
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_curr + size);
|
|
|
|
DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
|
|
|
|
p_next->next_virt = p_virt_next;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_get_last_elem -
|
|
*
|
|
* Returns a pointer to the last element of the chain
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*
|
|
*/
|
|
static inline void *qed_chain_get_last_elem(struct qed_chain *p_chain)
|
|
{
|
|
struct qed_chain_next *p_next = NULL;
|
|
void *p_virt_addr = NULL;
|
|
u32 size, last_page_idx;
|
|
|
|
if (!p_chain->p_virt_addr)
|
|
goto out;
|
|
|
|
switch (p_chain->mode) {
|
|
case QED_CHAIN_MODE_NEXT_PTR:
|
|
size = p_chain->elem_size * p_chain->usable_per_page;
|
|
p_virt_addr = p_chain->p_virt_addr;
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + size);
|
|
while (p_next->next_virt != p_chain->p_virt_addr) {
|
|
p_virt_addr = p_next->next_virt;
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
|
|
size);
|
|
}
|
|
break;
|
|
case QED_CHAIN_MODE_SINGLE:
|
|
p_virt_addr = p_chain->p_virt_addr;
|
|
break;
|
|
case QED_CHAIN_MODE_PBL:
|
|
last_page_idx = p_chain->page_cnt - 1;
|
|
p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
|
|
break;
|
|
}
|
|
/* p_virt_addr points at this stage to the last page of the chain */
|
|
size = p_chain->elem_size * (p_chain->usable_per_page - 1);
|
|
p_virt_addr = (u8 *)p_virt_addr + size;
|
|
out:
|
|
return p_virt_addr;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_set_prod - sets the prod to the given value
|
|
*
|
|
* @param prod_idx
|
|
* @param p_prod_elem
|
|
*/
|
|
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
|
|
u32 prod_idx, void *p_prod_elem)
|
|
{
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.prod_idx = (u16) prod_idx;
|
|
else
|
|
p_chain->u.chain32.prod_idx = prod_idx;
|
|
p_chain->p_prod_elem = p_prod_elem;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_pbl_zero_mem - set chain memory to 0
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void qed_chain_pbl_zero_mem(struct qed_chain *p_chain)
|
|
{
|
|
u32 i, page_cnt;
|
|
|
|
if (p_chain->mode != QED_CHAIN_MODE_PBL)
|
|
return;
|
|
|
|
page_cnt = qed_chain_get_page_cnt(p_chain);
|
|
|
|
for (i = 0; i < page_cnt; i++)
|
|
memset(p_chain->pbl.pp_virt_addr_tbl[i], 0,
|
|
QED_CHAIN_PAGE_SIZE);
|
|
}
|
|
|
|
#endif
|