mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 14:50:53 +07:00
a2e5790d84
Merge misc updates from Andrew Morton: - kasan updates - procfs - lib/bitmap updates - other lib/ updates - checkpatch tweaks - rapidio - ubsan - pipe fixes and cleanups - lots of other misc bits * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits) Documentation/sysctl/user.txt: fix typo MAINTAINERS: update ARM/QUALCOMM SUPPORT patterns MAINTAINERS: update various PALM patterns MAINTAINERS: update "ARM/OXNAS platform support" patterns MAINTAINERS: update Cortina/Gemini patterns MAINTAINERS: remove ARM/CLKDEV SUPPORT file pattern MAINTAINERS: remove ANDROID ION pattern mm: docs: add blank lines to silence sphinx "Unexpected indentation" errors mm: docs: fix parameter names mismatch mm: docs: fixup punctuation pipe: read buffer limits atomically pipe: simplify round_pipe_size() pipe: reject F_SETPIPE_SZ with size over UINT_MAX pipe: fix off-by-one error when checking buffer limits pipe: actually allow root to exceed the pipe buffer limits pipe, sysctl: remove pipe_proc_fn() pipe, sysctl: drop 'min' parameter from pipe-max-size converter kasan: rework Kconfig settings crash_dump: is_kdump_kernel can be boolean kernel/mutex: mutex_is_locked can be boolean ...
1692 lines
46 KiB
C
1692 lines
46 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_SCHED_H
|
|
#define _LINUX_SCHED_H
|
|
|
|
/*
|
|
* Define 'struct task_struct' and provide the main scheduler
|
|
* APIs (schedule(), wakeup variants, etc.)
|
|
*/
|
|
|
|
#include <uapi/linux/sched.h>
|
|
|
|
#include <asm/current.h>
|
|
|
|
#include <linux/pid.h>
|
|
#include <linux/sem.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/kcov.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/plist.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/seccomp.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/latencytop.h>
|
|
#include <linux/sched/prio.h>
|
|
#include <linux/signal_types.h>
|
|
#include <linux/mm_types_task.h>
|
|
#include <linux/task_io_accounting.h>
|
|
|
|
/* task_struct member predeclarations (sorted alphabetically): */
|
|
struct audit_context;
|
|
struct backing_dev_info;
|
|
struct bio_list;
|
|
struct blk_plug;
|
|
struct cfs_rq;
|
|
struct fs_struct;
|
|
struct futex_pi_state;
|
|
struct io_context;
|
|
struct mempolicy;
|
|
struct nameidata;
|
|
struct nsproxy;
|
|
struct perf_event_context;
|
|
struct pid_namespace;
|
|
struct pipe_inode_info;
|
|
struct rcu_node;
|
|
struct reclaim_state;
|
|
struct robust_list_head;
|
|
struct sched_attr;
|
|
struct sched_param;
|
|
struct seq_file;
|
|
struct sighand_struct;
|
|
struct signal_struct;
|
|
struct task_delay_info;
|
|
struct task_group;
|
|
|
|
/*
|
|
* Task state bitmask. NOTE! These bits are also
|
|
* encoded in fs/proc/array.c: get_task_state().
|
|
*
|
|
* We have two separate sets of flags: task->state
|
|
* is about runnability, while task->exit_state are
|
|
* about the task exiting. Confusing, but this way
|
|
* modifying one set can't modify the other one by
|
|
* mistake.
|
|
*/
|
|
|
|
/* Used in tsk->state: */
|
|
#define TASK_RUNNING 0x0000
|
|
#define TASK_INTERRUPTIBLE 0x0001
|
|
#define TASK_UNINTERRUPTIBLE 0x0002
|
|
#define __TASK_STOPPED 0x0004
|
|
#define __TASK_TRACED 0x0008
|
|
/* Used in tsk->exit_state: */
|
|
#define EXIT_DEAD 0x0010
|
|
#define EXIT_ZOMBIE 0x0020
|
|
#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
|
|
/* Used in tsk->state again: */
|
|
#define TASK_PARKED 0x0040
|
|
#define TASK_DEAD 0x0080
|
|
#define TASK_WAKEKILL 0x0100
|
|
#define TASK_WAKING 0x0200
|
|
#define TASK_NOLOAD 0x0400
|
|
#define TASK_NEW 0x0800
|
|
#define TASK_STATE_MAX 0x1000
|
|
|
|
/* Convenience macros for the sake of set_current_state: */
|
|
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
|
|
#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
|
|
#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
|
|
|
|
#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
|
|
|
|
/* Convenience macros for the sake of wake_up(): */
|
|
#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
|
|
#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
|
|
|
|
/* get_task_state(): */
|
|
#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
|
|
TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
|
|
__TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
|
|
TASK_PARKED)
|
|
|
|
#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
|
|
|
|
#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
|
|
|
|
#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
|
|
|
|
#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
|
|
(task->flags & PF_FROZEN) == 0 && \
|
|
(task->state & TASK_NOLOAD) == 0)
|
|
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
|
|
#define __set_current_state(state_value) \
|
|
do { \
|
|
current->task_state_change = _THIS_IP_; \
|
|
current->state = (state_value); \
|
|
} while (0)
|
|
#define set_current_state(state_value) \
|
|
do { \
|
|
current->task_state_change = _THIS_IP_; \
|
|
smp_store_mb(current->state, (state_value)); \
|
|
} while (0)
|
|
|
|
#else
|
|
/*
|
|
* set_current_state() includes a barrier so that the write of current->state
|
|
* is correctly serialised wrt the caller's subsequent test of whether to
|
|
* actually sleep:
|
|
*
|
|
* for (;;) {
|
|
* set_current_state(TASK_UNINTERRUPTIBLE);
|
|
* if (!need_sleep)
|
|
* break;
|
|
*
|
|
* schedule();
|
|
* }
|
|
* __set_current_state(TASK_RUNNING);
|
|
*
|
|
* If the caller does not need such serialisation (because, for instance, the
|
|
* condition test and condition change and wakeup are under the same lock) then
|
|
* use __set_current_state().
|
|
*
|
|
* The above is typically ordered against the wakeup, which does:
|
|
*
|
|
* need_sleep = false;
|
|
* wake_up_state(p, TASK_UNINTERRUPTIBLE);
|
|
*
|
|
* Where wake_up_state() (and all other wakeup primitives) imply enough
|
|
* barriers to order the store of the variable against wakeup.
|
|
*
|
|
* Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
|
|
* once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
|
|
* TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
|
|
*
|
|
* This is obviously fine, since they both store the exact same value.
|
|
*
|
|
* Also see the comments of try_to_wake_up().
|
|
*/
|
|
#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
|
|
#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
|
|
#endif
|
|
|
|
/* Task command name length: */
|
|
#define TASK_COMM_LEN 16
|
|
|
|
extern void scheduler_tick(void);
|
|
|
|
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
|
|
|
|
extern long schedule_timeout(long timeout);
|
|
extern long schedule_timeout_interruptible(long timeout);
|
|
extern long schedule_timeout_killable(long timeout);
|
|
extern long schedule_timeout_uninterruptible(long timeout);
|
|
extern long schedule_timeout_idle(long timeout);
|
|
asmlinkage void schedule(void);
|
|
extern void schedule_preempt_disabled(void);
|
|
|
|
extern int __must_check io_schedule_prepare(void);
|
|
extern void io_schedule_finish(int token);
|
|
extern long io_schedule_timeout(long timeout);
|
|
extern void io_schedule(void);
|
|
|
|
/**
|
|
* struct prev_cputime - snapshot of system and user cputime
|
|
* @utime: time spent in user mode
|
|
* @stime: time spent in system mode
|
|
* @lock: protects the above two fields
|
|
*
|
|
* Stores previous user/system time values such that we can guarantee
|
|
* monotonicity.
|
|
*/
|
|
struct prev_cputime {
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
u64 utime;
|
|
u64 stime;
|
|
raw_spinlock_t lock;
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* struct task_cputime - collected CPU time counts
|
|
* @utime: time spent in user mode, in nanoseconds
|
|
* @stime: time spent in kernel mode, in nanoseconds
|
|
* @sum_exec_runtime: total time spent on the CPU, in nanoseconds
|
|
*
|
|
* This structure groups together three kinds of CPU time that are tracked for
|
|
* threads and thread groups. Most things considering CPU time want to group
|
|
* these counts together and treat all three of them in parallel.
|
|
*/
|
|
struct task_cputime {
|
|
u64 utime;
|
|
u64 stime;
|
|
unsigned long long sum_exec_runtime;
|
|
};
|
|
|
|
/* Alternate field names when used on cache expirations: */
|
|
#define virt_exp utime
|
|
#define prof_exp stime
|
|
#define sched_exp sum_exec_runtime
|
|
|
|
enum vtime_state {
|
|
/* Task is sleeping or running in a CPU with VTIME inactive: */
|
|
VTIME_INACTIVE = 0,
|
|
/* Task runs in userspace in a CPU with VTIME active: */
|
|
VTIME_USER,
|
|
/* Task runs in kernelspace in a CPU with VTIME active: */
|
|
VTIME_SYS,
|
|
};
|
|
|
|
struct vtime {
|
|
seqcount_t seqcount;
|
|
unsigned long long starttime;
|
|
enum vtime_state state;
|
|
u64 utime;
|
|
u64 stime;
|
|
u64 gtime;
|
|
};
|
|
|
|
struct sched_info {
|
|
#ifdef CONFIG_SCHED_INFO
|
|
/* Cumulative counters: */
|
|
|
|
/* # of times we have run on this CPU: */
|
|
unsigned long pcount;
|
|
|
|
/* Time spent waiting on a runqueue: */
|
|
unsigned long long run_delay;
|
|
|
|
/* Timestamps: */
|
|
|
|
/* When did we last run on a CPU? */
|
|
unsigned long long last_arrival;
|
|
|
|
/* When were we last queued to run? */
|
|
unsigned long long last_queued;
|
|
|
|
#endif /* CONFIG_SCHED_INFO */
|
|
};
|
|
|
|
/*
|
|
* Integer metrics need fixed point arithmetic, e.g., sched/fair
|
|
* has a few: load, load_avg, util_avg, freq, and capacity.
|
|
*
|
|
* We define a basic fixed point arithmetic range, and then formalize
|
|
* all these metrics based on that basic range.
|
|
*/
|
|
# define SCHED_FIXEDPOINT_SHIFT 10
|
|
# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
|
|
|
|
struct load_weight {
|
|
unsigned long weight;
|
|
u32 inv_weight;
|
|
};
|
|
|
|
/*
|
|
* The load_avg/util_avg accumulates an infinite geometric series
|
|
* (see __update_load_avg() in kernel/sched/fair.c).
|
|
*
|
|
* [load_avg definition]
|
|
*
|
|
* load_avg = runnable% * scale_load_down(load)
|
|
*
|
|
* where runnable% is the time ratio that a sched_entity is runnable.
|
|
* For cfs_rq, it is the aggregated load_avg of all runnable and
|
|
* blocked sched_entities.
|
|
*
|
|
* load_avg may also take frequency scaling into account:
|
|
*
|
|
* load_avg = runnable% * scale_load_down(load) * freq%
|
|
*
|
|
* where freq% is the CPU frequency normalized to the highest frequency.
|
|
*
|
|
* [util_avg definition]
|
|
*
|
|
* util_avg = running% * SCHED_CAPACITY_SCALE
|
|
*
|
|
* where running% is the time ratio that a sched_entity is running on
|
|
* a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
|
|
* and blocked sched_entities.
|
|
*
|
|
* util_avg may also factor frequency scaling and CPU capacity scaling:
|
|
*
|
|
* util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
|
|
*
|
|
* where freq% is the same as above, and capacity% is the CPU capacity
|
|
* normalized to the greatest capacity (due to uarch differences, etc).
|
|
*
|
|
* N.B., the above ratios (runnable%, running%, freq%, and capacity%)
|
|
* themselves are in the range of [0, 1]. To do fixed point arithmetics,
|
|
* we therefore scale them to as large a range as necessary. This is for
|
|
* example reflected by util_avg's SCHED_CAPACITY_SCALE.
|
|
*
|
|
* [Overflow issue]
|
|
*
|
|
* The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
|
|
* with the highest load (=88761), always runnable on a single cfs_rq,
|
|
* and should not overflow as the number already hits PID_MAX_LIMIT.
|
|
*
|
|
* For all other cases (including 32-bit kernels), struct load_weight's
|
|
* weight will overflow first before we do, because:
|
|
*
|
|
* Max(load_avg) <= Max(load.weight)
|
|
*
|
|
* Then it is the load_weight's responsibility to consider overflow
|
|
* issues.
|
|
*/
|
|
struct sched_avg {
|
|
u64 last_update_time;
|
|
u64 load_sum;
|
|
u64 runnable_load_sum;
|
|
u32 util_sum;
|
|
u32 period_contrib;
|
|
unsigned long load_avg;
|
|
unsigned long runnable_load_avg;
|
|
unsigned long util_avg;
|
|
};
|
|
|
|
struct sched_statistics {
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
u64 wait_start;
|
|
u64 wait_max;
|
|
u64 wait_count;
|
|
u64 wait_sum;
|
|
u64 iowait_count;
|
|
u64 iowait_sum;
|
|
|
|
u64 sleep_start;
|
|
u64 sleep_max;
|
|
s64 sum_sleep_runtime;
|
|
|
|
u64 block_start;
|
|
u64 block_max;
|
|
u64 exec_max;
|
|
u64 slice_max;
|
|
|
|
u64 nr_migrations_cold;
|
|
u64 nr_failed_migrations_affine;
|
|
u64 nr_failed_migrations_running;
|
|
u64 nr_failed_migrations_hot;
|
|
u64 nr_forced_migrations;
|
|
|
|
u64 nr_wakeups;
|
|
u64 nr_wakeups_sync;
|
|
u64 nr_wakeups_migrate;
|
|
u64 nr_wakeups_local;
|
|
u64 nr_wakeups_remote;
|
|
u64 nr_wakeups_affine;
|
|
u64 nr_wakeups_affine_attempts;
|
|
u64 nr_wakeups_passive;
|
|
u64 nr_wakeups_idle;
|
|
#endif
|
|
};
|
|
|
|
struct sched_entity {
|
|
/* For load-balancing: */
|
|
struct load_weight load;
|
|
unsigned long runnable_weight;
|
|
struct rb_node run_node;
|
|
struct list_head group_node;
|
|
unsigned int on_rq;
|
|
|
|
u64 exec_start;
|
|
u64 sum_exec_runtime;
|
|
u64 vruntime;
|
|
u64 prev_sum_exec_runtime;
|
|
|
|
u64 nr_migrations;
|
|
|
|
struct sched_statistics statistics;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
int depth;
|
|
struct sched_entity *parent;
|
|
/* rq on which this entity is (to be) queued: */
|
|
struct cfs_rq *cfs_rq;
|
|
/* rq "owned" by this entity/group: */
|
|
struct cfs_rq *my_q;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Per entity load average tracking.
|
|
*
|
|
* Put into separate cache line so it does not
|
|
* collide with read-mostly values above.
|
|
*/
|
|
struct sched_avg avg ____cacheline_aligned_in_smp;
|
|
#endif
|
|
};
|
|
|
|
struct sched_rt_entity {
|
|
struct list_head run_list;
|
|
unsigned long timeout;
|
|
unsigned long watchdog_stamp;
|
|
unsigned int time_slice;
|
|
unsigned short on_rq;
|
|
unsigned short on_list;
|
|
|
|
struct sched_rt_entity *back;
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct sched_rt_entity *parent;
|
|
/* rq on which this entity is (to be) queued: */
|
|
struct rt_rq *rt_rq;
|
|
/* rq "owned" by this entity/group: */
|
|
struct rt_rq *my_q;
|
|
#endif
|
|
} __randomize_layout;
|
|
|
|
struct sched_dl_entity {
|
|
struct rb_node rb_node;
|
|
|
|
/*
|
|
* Original scheduling parameters. Copied here from sched_attr
|
|
* during sched_setattr(), they will remain the same until
|
|
* the next sched_setattr().
|
|
*/
|
|
u64 dl_runtime; /* Maximum runtime for each instance */
|
|
u64 dl_deadline; /* Relative deadline of each instance */
|
|
u64 dl_period; /* Separation of two instances (period) */
|
|
u64 dl_bw; /* dl_runtime / dl_period */
|
|
u64 dl_density; /* dl_runtime / dl_deadline */
|
|
|
|
/*
|
|
* Actual scheduling parameters. Initialized with the values above,
|
|
* they are continously updated during task execution. Note that
|
|
* the remaining runtime could be < 0 in case we are in overrun.
|
|
*/
|
|
s64 runtime; /* Remaining runtime for this instance */
|
|
u64 deadline; /* Absolute deadline for this instance */
|
|
unsigned int flags; /* Specifying the scheduler behaviour */
|
|
|
|
/*
|
|
* Some bool flags:
|
|
*
|
|
* @dl_throttled tells if we exhausted the runtime. If so, the
|
|
* task has to wait for a replenishment to be performed at the
|
|
* next firing of dl_timer.
|
|
*
|
|
* @dl_boosted tells if we are boosted due to DI. If so we are
|
|
* outside bandwidth enforcement mechanism (but only until we
|
|
* exit the critical section);
|
|
*
|
|
* @dl_yielded tells if task gave up the CPU before consuming
|
|
* all its available runtime during the last job.
|
|
*
|
|
* @dl_non_contending tells if the task is inactive while still
|
|
* contributing to the active utilization. In other words, it
|
|
* indicates if the inactive timer has been armed and its handler
|
|
* has not been executed yet. This flag is useful to avoid race
|
|
* conditions between the inactive timer handler and the wakeup
|
|
* code.
|
|
*
|
|
* @dl_overrun tells if the task asked to be informed about runtime
|
|
* overruns.
|
|
*/
|
|
unsigned int dl_throttled : 1;
|
|
unsigned int dl_boosted : 1;
|
|
unsigned int dl_yielded : 1;
|
|
unsigned int dl_non_contending : 1;
|
|
unsigned int dl_overrun : 1;
|
|
|
|
/*
|
|
* Bandwidth enforcement timer. Each -deadline task has its
|
|
* own bandwidth to be enforced, thus we need one timer per task.
|
|
*/
|
|
struct hrtimer dl_timer;
|
|
|
|
/*
|
|
* Inactive timer, responsible for decreasing the active utilization
|
|
* at the "0-lag time". When a -deadline task blocks, it contributes
|
|
* to GRUB's active utilization until the "0-lag time", hence a
|
|
* timer is needed to decrease the active utilization at the correct
|
|
* time.
|
|
*/
|
|
struct hrtimer inactive_timer;
|
|
};
|
|
|
|
union rcu_special {
|
|
struct {
|
|
u8 blocked;
|
|
u8 need_qs;
|
|
u8 exp_need_qs;
|
|
|
|
/* Otherwise the compiler can store garbage here: */
|
|
u8 pad;
|
|
} b; /* Bits. */
|
|
u32 s; /* Set of bits. */
|
|
};
|
|
|
|
enum perf_event_task_context {
|
|
perf_invalid_context = -1,
|
|
perf_hw_context = 0,
|
|
perf_sw_context,
|
|
perf_nr_task_contexts,
|
|
};
|
|
|
|
struct wake_q_node {
|
|
struct wake_q_node *next;
|
|
};
|
|
|
|
struct task_struct {
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
/*
|
|
* For reasons of header soup (see current_thread_info()), this
|
|
* must be the first element of task_struct.
|
|
*/
|
|
struct thread_info thread_info;
|
|
#endif
|
|
/* -1 unrunnable, 0 runnable, >0 stopped: */
|
|
volatile long state;
|
|
|
|
/*
|
|
* This begins the randomizable portion of task_struct. Only
|
|
* scheduling-critical items should be added above here.
|
|
*/
|
|
randomized_struct_fields_start
|
|
|
|
void *stack;
|
|
atomic_t usage;
|
|
/* Per task flags (PF_*), defined further below: */
|
|
unsigned int flags;
|
|
unsigned int ptrace;
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct llist_node wake_entry;
|
|
int on_cpu;
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
/* Current CPU: */
|
|
unsigned int cpu;
|
|
#endif
|
|
unsigned int wakee_flips;
|
|
unsigned long wakee_flip_decay_ts;
|
|
struct task_struct *last_wakee;
|
|
|
|
/*
|
|
* recent_used_cpu is initially set as the last CPU used by a task
|
|
* that wakes affine another task. Waker/wakee relationships can
|
|
* push tasks around a CPU where each wakeup moves to the next one.
|
|
* Tracking a recently used CPU allows a quick search for a recently
|
|
* used CPU that may be idle.
|
|
*/
|
|
int recent_used_cpu;
|
|
int wake_cpu;
|
|
#endif
|
|
int on_rq;
|
|
|
|
int prio;
|
|
int static_prio;
|
|
int normal_prio;
|
|
unsigned int rt_priority;
|
|
|
|
const struct sched_class *sched_class;
|
|
struct sched_entity se;
|
|
struct sched_rt_entity rt;
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
struct task_group *sched_task_group;
|
|
#endif
|
|
struct sched_dl_entity dl;
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
/* List of struct preempt_notifier: */
|
|
struct hlist_head preempt_notifiers;
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLK_DEV_IO_TRACE
|
|
unsigned int btrace_seq;
|
|
#endif
|
|
|
|
unsigned int policy;
|
|
int nr_cpus_allowed;
|
|
cpumask_t cpus_allowed;
|
|
|
|
#ifdef CONFIG_PREEMPT_RCU
|
|
int rcu_read_lock_nesting;
|
|
union rcu_special rcu_read_unlock_special;
|
|
struct list_head rcu_node_entry;
|
|
struct rcu_node *rcu_blocked_node;
|
|
#endif /* #ifdef CONFIG_PREEMPT_RCU */
|
|
|
|
#ifdef CONFIG_TASKS_RCU
|
|
unsigned long rcu_tasks_nvcsw;
|
|
u8 rcu_tasks_holdout;
|
|
u8 rcu_tasks_idx;
|
|
int rcu_tasks_idle_cpu;
|
|
struct list_head rcu_tasks_holdout_list;
|
|
#endif /* #ifdef CONFIG_TASKS_RCU */
|
|
|
|
struct sched_info sched_info;
|
|
|
|
struct list_head tasks;
|
|
#ifdef CONFIG_SMP
|
|
struct plist_node pushable_tasks;
|
|
struct rb_node pushable_dl_tasks;
|
|
#endif
|
|
|
|
struct mm_struct *mm;
|
|
struct mm_struct *active_mm;
|
|
|
|
/* Per-thread vma caching: */
|
|
struct vmacache vmacache;
|
|
|
|
#ifdef SPLIT_RSS_COUNTING
|
|
struct task_rss_stat rss_stat;
|
|
#endif
|
|
int exit_state;
|
|
int exit_code;
|
|
int exit_signal;
|
|
/* The signal sent when the parent dies: */
|
|
int pdeath_signal;
|
|
/* JOBCTL_*, siglock protected: */
|
|
unsigned long jobctl;
|
|
|
|
/* Used for emulating ABI behavior of previous Linux versions: */
|
|
unsigned int personality;
|
|
|
|
/* Scheduler bits, serialized by scheduler locks: */
|
|
unsigned sched_reset_on_fork:1;
|
|
unsigned sched_contributes_to_load:1;
|
|
unsigned sched_migrated:1;
|
|
unsigned sched_remote_wakeup:1;
|
|
/* Force alignment to the next boundary: */
|
|
unsigned :0;
|
|
|
|
/* Unserialized, strictly 'current' */
|
|
|
|
/* Bit to tell LSMs we're in execve(): */
|
|
unsigned in_execve:1;
|
|
unsigned in_iowait:1;
|
|
#ifndef TIF_RESTORE_SIGMASK
|
|
unsigned restore_sigmask:1;
|
|
#endif
|
|
#ifdef CONFIG_MEMCG
|
|
unsigned memcg_may_oom:1;
|
|
#ifndef CONFIG_SLOB
|
|
unsigned memcg_kmem_skip_account:1;
|
|
#endif
|
|
#endif
|
|
#ifdef CONFIG_COMPAT_BRK
|
|
unsigned brk_randomized:1;
|
|
#endif
|
|
#ifdef CONFIG_CGROUPS
|
|
/* disallow userland-initiated cgroup migration */
|
|
unsigned no_cgroup_migration:1;
|
|
#endif
|
|
|
|
unsigned long atomic_flags; /* Flags requiring atomic access. */
|
|
|
|
struct restart_block restart_block;
|
|
|
|
pid_t pid;
|
|
pid_t tgid;
|
|
|
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
|
/* Canary value for the -fstack-protector GCC feature: */
|
|
unsigned long stack_canary;
|
|
#endif
|
|
/*
|
|
* Pointers to the (original) parent process, youngest child, younger sibling,
|
|
* older sibling, respectively. (p->father can be replaced with
|
|
* p->real_parent->pid)
|
|
*/
|
|
|
|
/* Real parent process: */
|
|
struct task_struct __rcu *real_parent;
|
|
|
|
/* Recipient of SIGCHLD, wait4() reports: */
|
|
struct task_struct __rcu *parent;
|
|
|
|
/*
|
|
* Children/sibling form the list of natural children:
|
|
*/
|
|
struct list_head children;
|
|
struct list_head sibling;
|
|
struct task_struct *group_leader;
|
|
|
|
/*
|
|
* 'ptraced' is the list of tasks this task is using ptrace() on.
|
|
*
|
|
* This includes both natural children and PTRACE_ATTACH targets.
|
|
* 'ptrace_entry' is this task's link on the p->parent->ptraced list.
|
|
*/
|
|
struct list_head ptraced;
|
|
struct list_head ptrace_entry;
|
|
|
|
/* PID/PID hash table linkage. */
|
|
struct pid_link pids[PIDTYPE_MAX];
|
|
struct list_head thread_group;
|
|
struct list_head thread_node;
|
|
|
|
struct completion *vfork_done;
|
|
|
|
/* CLONE_CHILD_SETTID: */
|
|
int __user *set_child_tid;
|
|
|
|
/* CLONE_CHILD_CLEARTID: */
|
|
int __user *clear_child_tid;
|
|
|
|
u64 utime;
|
|
u64 stime;
|
|
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
|
|
u64 utimescaled;
|
|
u64 stimescaled;
|
|
#endif
|
|
u64 gtime;
|
|
struct prev_cputime prev_cputime;
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
|
|
struct vtime vtime;
|
|
#endif
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
atomic_t tick_dep_mask;
|
|
#endif
|
|
/* Context switch counts: */
|
|
unsigned long nvcsw;
|
|
unsigned long nivcsw;
|
|
|
|
/* Monotonic time in nsecs: */
|
|
u64 start_time;
|
|
|
|
/* Boot based time in nsecs: */
|
|
u64 real_start_time;
|
|
|
|
/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
|
|
unsigned long min_flt;
|
|
unsigned long maj_flt;
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
struct task_cputime cputime_expires;
|
|
struct list_head cpu_timers[3];
|
|
#endif
|
|
|
|
/* Process credentials: */
|
|
|
|
/* Tracer's credentials at attach: */
|
|
const struct cred __rcu *ptracer_cred;
|
|
|
|
/* Objective and real subjective task credentials (COW): */
|
|
const struct cred __rcu *real_cred;
|
|
|
|
/* Effective (overridable) subjective task credentials (COW): */
|
|
const struct cred __rcu *cred;
|
|
|
|
/*
|
|
* executable name, excluding path.
|
|
*
|
|
* - normally initialized setup_new_exec()
|
|
* - access it with [gs]et_task_comm()
|
|
* - lock it with task_lock()
|
|
*/
|
|
char comm[TASK_COMM_LEN];
|
|
|
|
struct nameidata *nameidata;
|
|
|
|
#ifdef CONFIG_SYSVIPC
|
|
struct sysv_sem sysvsem;
|
|
struct sysv_shm sysvshm;
|
|
#endif
|
|
#ifdef CONFIG_DETECT_HUNG_TASK
|
|
unsigned long last_switch_count;
|
|
#endif
|
|
/* Filesystem information: */
|
|
struct fs_struct *fs;
|
|
|
|
/* Open file information: */
|
|
struct files_struct *files;
|
|
|
|
/* Namespaces: */
|
|
struct nsproxy *nsproxy;
|
|
|
|
/* Signal handlers: */
|
|
struct signal_struct *signal;
|
|
struct sighand_struct *sighand;
|
|
sigset_t blocked;
|
|
sigset_t real_blocked;
|
|
/* Restored if set_restore_sigmask() was used: */
|
|
sigset_t saved_sigmask;
|
|
struct sigpending pending;
|
|
unsigned long sas_ss_sp;
|
|
size_t sas_ss_size;
|
|
unsigned int sas_ss_flags;
|
|
|
|
struct callback_head *task_works;
|
|
|
|
struct audit_context *audit_context;
|
|
#ifdef CONFIG_AUDITSYSCALL
|
|
kuid_t loginuid;
|
|
unsigned int sessionid;
|
|
#endif
|
|
struct seccomp seccomp;
|
|
|
|
/* Thread group tracking: */
|
|
u32 parent_exec_id;
|
|
u32 self_exec_id;
|
|
|
|
/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
|
|
spinlock_t alloc_lock;
|
|
|
|
/* Protection of the PI data structures: */
|
|
raw_spinlock_t pi_lock;
|
|
|
|
struct wake_q_node wake_q;
|
|
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
/* PI waiters blocked on a rt_mutex held by this task: */
|
|
struct rb_root_cached pi_waiters;
|
|
/* Updated under owner's pi_lock and rq lock */
|
|
struct task_struct *pi_top_task;
|
|
/* Deadlock detection and priority inheritance handling: */
|
|
struct rt_mutex_waiter *pi_blocked_on;
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_MUTEXES
|
|
/* Mutex deadlock detection: */
|
|
struct mutex_waiter *blocked_on;
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
unsigned int irq_events;
|
|
unsigned long hardirq_enable_ip;
|
|
unsigned long hardirq_disable_ip;
|
|
unsigned int hardirq_enable_event;
|
|
unsigned int hardirq_disable_event;
|
|
int hardirqs_enabled;
|
|
int hardirq_context;
|
|
unsigned long softirq_disable_ip;
|
|
unsigned long softirq_enable_ip;
|
|
unsigned int softirq_disable_event;
|
|
unsigned int softirq_enable_event;
|
|
int softirqs_enabled;
|
|
int softirq_context;
|
|
#endif
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
# define MAX_LOCK_DEPTH 48UL
|
|
u64 curr_chain_key;
|
|
int lockdep_depth;
|
|
unsigned int lockdep_recursion;
|
|
struct held_lock held_locks[MAX_LOCK_DEPTH];
|
|
#endif
|
|
|
|
#ifdef CONFIG_UBSAN
|
|
unsigned int in_ubsan;
|
|
#endif
|
|
|
|
/* Journalling filesystem info: */
|
|
void *journal_info;
|
|
|
|
/* Stacked block device info: */
|
|
struct bio_list *bio_list;
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/* Stack plugging: */
|
|
struct blk_plug *plug;
|
|
#endif
|
|
|
|
/* VM state: */
|
|
struct reclaim_state *reclaim_state;
|
|
|
|
struct backing_dev_info *backing_dev_info;
|
|
|
|
struct io_context *io_context;
|
|
|
|
/* Ptrace state: */
|
|
unsigned long ptrace_message;
|
|
siginfo_t *last_siginfo;
|
|
|
|
struct task_io_accounting ioac;
|
|
#ifdef CONFIG_TASK_XACCT
|
|
/* Accumulated RSS usage: */
|
|
u64 acct_rss_mem1;
|
|
/* Accumulated virtual memory usage: */
|
|
u64 acct_vm_mem1;
|
|
/* stime + utime since last update: */
|
|
u64 acct_timexpd;
|
|
#endif
|
|
#ifdef CONFIG_CPUSETS
|
|
/* Protected by ->alloc_lock: */
|
|
nodemask_t mems_allowed;
|
|
/* Seqence number to catch updates: */
|
|
seqcount_t mems_allowed_seq;
|
|
int cpuset_mem_spread_rotor;
|
|
int cpuset_slab_spread_rotor;
|
|
#endif
|
|
#ifdef CONFIG_CGROUPS
|
|
/* Control Group info protected by css_set_lock: */
|
|
struct css_set __rcu *cgroups;
|
|
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
|
|
struct list_head cg_list;
|
|
#endif
|
|
#ifdef CONFIG_INTEL_RDT
|
|
u32 closid;
|
|
u32 rmid;
|
|
#endif
|
|
#ifdef CONFIG_FUTEX
|
|
struct robust_list_head __user *robust_list;
|
|
#ifdef CONFIG_COMPAT
|
|
struct compat_robust_list_head __user *compat_robust_list;
|
|
#endif
|
|
struct list_head pi_state_list;
|
|
struct futex_pi_state *pi_state_cache;
|
|
#endif
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
|
|
struct mutex perf_event_mutex;
|
|
struct list_head perf_event_list;
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
unsigned long preempt_disable_ip;
|
|
#endif
|
|
#ifdef CONFIG_NUMA
|
|
/* Protected by alloc_lock: */
|
|
struct mempolicy *mempolicy;
|
|
short il_prev;
|
|
short pref_node_fork;
|
|
#endif
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
int numa_scan_seq;
|
|
unsigned int numa_scan_period;
|
|
unsigned int numa_scan_period_max;
|
|
int numa_preferred_nid;
|
|
unsigned long numa_migrate_retry;
|
|
/* Migration stamp: */
|
|
u64 node_stamp;
|
|
u64 last_task_numa_placement;
|
|
u64 last_sum_exec_runtime;
|
|
struct callback_head numa_work;
|
|
|
|
struct list_head numa_entry;
|
|
struct numa_group *numa_group;
|
|
|
|
/*
|
|
* numa_faults is an array split into four regions:
|
|
* faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
|
|
* in this precise order.
|
|
*
|
|
* faults_memory: Exponential decaying average of faults on a per-node
|
|
* basis. Scheduling placement decisions are made based on these
|
|
* counts. The values remain static for the duration of a PTE scan.
|
|
* faults_cpu: Track the nodes the process was running on when a NUMA
|
|
* hinting fault was incurred.
|
|
* faults_memory_buffer and faults_cpu_buffer: Record faults per node
|
|
* during the current scan window. When the scan completes, the counts
|
|
* in faults_memory and faults_cpu decay and these values are copied.
|
|
*/
|
|
unsigned long *numa_faults;
|
|
unsigned long total_numa_faults;
|
|
|
|
/*
|
|
* numa_faults_locality tracks if faults recorded during the last
|
|
* scan window were remote/local or failed to migrate. The task scan
|
|
* period is adapted based on the locality of the faults with different
|
|
* weights depending on whether they were shared or private faults
|
|
*/
|
|
unsigned long numa_faults_locality[3];
|
|
|
|
unsigned long numa_pages_migrated;
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
struct tlbflush_unmap_batch tlb_ubc;
|
|
|
|
struct rcu_head rcu;
|
|
|
|
/* Cache last used pipe for splice(): */
|
|
struct pipe_inode_info *splice_pipe;
|
|
|
|
struct page_frag task_frag;
|
|
|
|
#ifdef CONFIG_TASK_DELAY_ACCT
|
|
struct task_delay_info *delays;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAULT_INJECTION
|
|
int make_it_fail;
|
|
unsigned int fail_nth;
|
|
#endif
|
|
/*
|
|
* When (nr_dirtied >= nr_dirtied_pause), it's time to call
|
|
* balance_dirty_pages() for a dirty throttling pause:
|
|
*/
|
|
int nr_dirtied;
|
|
int nr_dirtied_pause;
|
|
/* Start of a write-and-pause period: */
|
|
unsigned long dirty_paused_when;
|
|
|
|
#ifdef CONFIG_LATENCYTOP
|
|
int latency_record_count;
|
|
struct latency_record latency_record[LT_SAVECOUNT];
|
|
#endif
|
|
/*
|
|
* Time slack values; these are used to round up poll() and
|
|
* select() etc timeout values. These are in nanoseconds.
|
|
*/
|
|
u64 timer_slack_ns;
|
|
u64 default_timer_slack_ns;
|
|
|
|
#ifdef CONFIG_KASAN
|
|
unsigned int kasan_depth;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
/* Index of current stored address in ret_stack: */
|
|
int curr_ret_stack;
|
|
|
|
/* Stack of return addresses for return function tracing: */
|
|
struct ftrace_ret_stack *ret_stack;
|
|
|
|
/* Timestamp for last schedule: */
|
|
unsigned long long ftrace_timestamp;
|
|
|
|
/*
|
|
* Number of functions that haven't been traced
|
|
* because of depth overrun:
|
|
*/
|
|
atomic_t trace_overrun;
|
|
|
|
/* Pause tracing: */
|
|
atomic_t tracing_graph_pause;
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACING
|
|
/* State flags for use by tracers: */
|
|
unsigned long trace;
|
|
|
|
/* Bitmask and counter of trace recursion: */
|
|
unsigned long trace_recursion;
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
#ifdef CONFIG_KCOV
|
|
/* Coverage collection mode enabled for this task (0 if disabled): */
|
|
enum kcov_mode kcov_mode;
|
|
|
|
/* Size of the kcov_area: */
|
|
unsigned int kcov_size;
|
|
|
|
/* Buffer for coverage collection: */
|
|
void *kcov_area;
|
|
|
|
/* KCOV descriptor wired with this task or NULL: */
|
|
struct kcov *kcov;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
struct mem_cgroup *memcg_in_oom;
|
|
gfp_t memcg_oom_gfp_mask;
|
|
int memcg_oom_order;
|
|
|
|
/* Number of pages to reclaim on returning to userland: */
|
|
unsigned int memcg_nr_pages_over_high;
|
|
#endif
|
|
|
|
#ifdef CONFIG_UPROBES
|
|
struct uprobe_task *utask;
|
|
#endif
|
|
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
|
|
unsigned int sequential_io;
|
|
unsigned int sequential_io_avg;
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
unsigned long task_state_change;
|
|
#endif
|
|
int pagefault_disabled;
|
|
#ifdef CONFIG_MMU
|
|
struct task_struct *oom_reaper_list;
|
|
#endif
|
|
#ifdef CONFIG_VMAP_STACK
|
|
struct vm_struct *stack_vm_area;
|
|
#endif
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
/* A live task holds one reference: */
|
|
atomic_t stack_refcount;
|
|
#endif
|
|
#ifdef CONFIG_LIVEPATCH
|
|
int patch_state;
|
|
#endif
|
|
#ifdef CONFIG_SECURITY
|
|
/* Used by LSM modules for access restriction: */
|
|
void *security;
|
|
#endif
|
|
|
|
/*
|
|
* New fields for task_struct should be added above here, so that
|
|
* they are included in the randomized portion of task_struct.
|
|
*/
|
|
randomized_struct_fields_end
|
|
|
|
/* CPU-specific state of this task: */
|
|
struct thread_struct thread;
|
|
|
|
/*
|
|
* WARNING: on x86, 'thread_struct' contains a variable-sized
|
|
* structure. It *MUST* be at the end of 'task_struct'.
|
|
*
|
|
* Do not put anything below here!
|
|
*/
|
|
};
|
|
|
|
static inline struct pid *task_pid(struct task_struct *task)
|
|
{
|
|
return task->pids[PIDTYPE_PID].pid;
|
|
}
|
|
|
|
static inline struct pid *task_tgid(struct task_struct *task)
|
|
{
|
|
return task->group_leader->pids[PIDTYPE_PID].pid;
|
|
}
|
|
|
|
/*
|
|
* Without tasklist or RCU lock it is not safe to dereference
|
|
* the result of task_pgrp/task_session even if task == current,
|
|
* we can race with another thread doing sys_setsid/sys_setpgid.
|
|
*/
|
|
static inline struct pid *task_pgrp(struct task_struct *task)
|
|
{
|
|
return task->group_leader->pids[PIDTYPE_PGID].pid;
|
|
}
|
|
|
|
static inline struct pid *task_session(struct task_struct *task)
|
|
{
|
|
return task->group_leader->pids[PIDTYPE_SID].pid;
|
|
}
|
|
|
|
/*
|
|
* the helpers to get the task's different pids as they are seen
|
|
* from various namespaces
|
|
*
|
|
* task_xid_nr() : global id, i.e. the id seen from the init namespace;
|
|
* task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
|
|
* current.
|
|
* task_xid_nr_ns() : id seen from the ns specified;
|
|
*
|
|
* see also pid_nr() etc in include/linux/pid.h
|
|
*/
|
|
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
|
|
|
|
static inline pid_t task_pid_nr(struct task_struct *tsk)
|
|
{
|
|
return tsk->pid;
|
|
}
|
|
|
|
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
|
|
}
|
|
|
|
static inline pid_t task_pid_vnr(struct task_struct *tsk)
|
|
{
|
|
return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
|
|
}
|
|
|
|
|
|
static inline pid_t task_tgid_nr(struct task_struct *tsk)
|
|
{
|
|
return tsk->tgid;
|
|
}
|
|
|
|
/**
|
|
* pid_alive - check that a task structure is not stale
|
|
* @p: Task structure to be checked.
|
|
*
|
|
* Test if a process is not yet dead (at most zombie state)
|
|
* If pid_alive fails, then pointers within the task structure
|
|
* can be stale and must not be dereferenced.
|
|
*
|
|
* Return: 1 if the process is alive. 0 otherwise.
|
|
*/
|
|
static inline int pid_alive(const struct task_struct *p)
|
|
{
|
|
return p->pids[PIDTYPE_PID].pid != NULL;
|
|
}
|
|
|
|
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
|
|
}
|
|
|
|
static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
|
|
{
|
|
return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
|
|
}
|
|
|
|
|
|
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
|
|
}
|
|
|
|
static inline pid_t task_session_vnr(struct task_struct *tsk)
|
|
{
|
|
return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
|
|
}
|
|
|
|
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
|
|
}
|
|
|
|
static inline pid_t task_tgid_vnr(struct task_struct *tsk)
|
|
{
|
|
return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
|
|
}
|
|
|
|
static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
pid_t pid = 0;
|
|
|
|
rcu_read_lock();
|
|
if (pid_alive(tsk))
|
|
pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
|
|
static inline pid_t task_ppid_nr(const struct task_struct *tsk)
|
|
{
|
|
return task_ppid_nr_ns(tsk, &init_pid_ns);
|
|
}
|
|
|
|
/* Obsolete, do not use: */
|
|
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
|
|
{
|
|
return task_pgrp_nr_ns(tsk, &init_pid_ns);
|
|
}
|
|
|
|
#define TASK_REPORT_IDLE (TASK_REPORT + 1)
|
|
#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
|
|
|
|
static inline unsigned int task_state_index(struct task_struct *tsk)
|
|
{
|
|
unsigned int tsk_state = READ_ONCE(tsk->state);
|
|
unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
|
|
|
|
BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
|
|
|
|
if (tsk_state == TASK_IDLE)
|
|
state = TASK_REPORT_IDLE;
|
|
|
|
return fls(state);
|
|
}
|
|
|
|
static inline char task_index_to_char(unsigned int state)
|
|
{
|
|
static const char state_char[] = "RSDTtXZPI";
|
|
|
|
BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
|
|
|
|
return state_char[state];
|
|
}
|
|
|
|
static inline char task_state_to_char(struct task_struct *tsk)
|
|
{
|
|
return task_index_to_char(task_state_index(tsk));
|
|
}
|
|
|
|
/**
|
|
* is_global_init - check if a task structure is init. Since init
|
|
* is free to have sub-threads we need to check tgid.
|
|
* @tsk: Task structure to be checked.
|
|
*
|
|
* Check if a task structure is the first user space task the kernel created.
|
|
*
|
|
* Return: 1 if the task structure is init. 0 otherwise.
|
|
*/
|
|
static inline int is_global_init(struct task_struct *tsk)
|
|
{
|
|
return task_tgid_nr(tsk) == 1;
|
|
}
|
|
|
|
extern struct pid *cad_pid;
|
|
|
|
/*
|
|
* Per process flags
|
|
*/
|
|
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
|
|
#define PF_EXITING 0x00000004 /* Getting shut down */
|
|
#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
|
|
#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
|
|
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
|
|
#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
|
|
#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
|
|
#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
|
|
#define PF_DUMPCORE 0x00000200 /* Dumped core */
|
|
#define PF_SIGNALED 0x00000400 /* Killed by a signal */
|
|
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
|
|
#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
|
|
#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
|
|
#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
|
|
#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
|
|
#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
|
|
#define PF_KSWAPD 0x00020000 /* I am kswapd */
|
|
#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
|
|
#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
|
|
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
|
|
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
|
|
#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
|
|
#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
|
|
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
|
|
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
|
|
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
|
|
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
|
|
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
|
|
|
|
/*
|
|
* Only the _current_ task can read/write to tsk->flags, but other
|
|
* tasks can access tsk->flags in readonly mode for example
|
|
* with tsk_used_math (like during threaded core dumping).
|
|
* There is however an exception to this rule during ptrace
|
|
* or during fork: the ptracer task is allowed to write to the
|
|
* child->flags of its traced child (same goes for fork, the parent
|
|
* can write to the child->flags), because we're guaranteed the
|
|
* child is not running and in turn not changing child->flags
|
|
* at the same time the parent does it.
|
|
*/
|
|
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
|
|
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
|
|
#define clear_used_math() clear_stopped_child_used_math(current)
|
|
#define set_used_math() set_stopped_child_used_math(current)
|
|
|
|
#define conditional_stopped_child_used_math(condition, child) \
|
|
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
|
|
|
|
#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
|
|
|
|
#define copy_to_stopped_child_used_math(child) \
|
|
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
|
|
|
|
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
|
|
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
|
|
#define used_math() tsk_used_math(current)
|
|
|
|
static inline bool is_percpu_thread(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return (current->flags & PF_NO_SETAFFINITY) &&
|
|
(current->nr_cpus_allowed == 1);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/* Per-process atomic flags. */
|
|
#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
|
|
#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
|
|
#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
|
|
|
|
|
|
#define TASK_PFA_TEST(name, func) \
|
|
static inline bool task_##func(struct task_struct *p) \
|
|
{ return test_bit(PFA_##name, &p->atomic_flags); }
|
|
|
|
#define TASK_PFA_SET(name, func) \
|
|
static inline void task_set_##func(struct task_struct *p) \
|
|
{ set_bit(PFA_##name, &p->atomic_flags); }
|
|
|
|
#define TASK_PFA_CLEAR(name, func) \
|
|
static inline void task_clear_##func(struct task_struct *p) \
|
|
{ clear_bit(PFA_##name, &p->atomic_flags); }
|
|
|
|
TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
|
|
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
|
|
|
|
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
|
|
TASK_PFA_SET(SPREAD_PAGE, spread_page)
|
|
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
|
|
|
|
TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
|
|
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
|
|
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
|
|
|
|
static inline void
|
|
current_restore_flags(unsigned long orig_flags, unsigned long flags)
|
|
{
|
|
current->flags &= ~flags;
|
|
current->flags |= orig_flags & flags;
|
|
}
|
|
|
|
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
|
|
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
|
|
#ifdef CONFIG_SMP
|
|
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
|
|
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
|
|
#else
|
|
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
}
|
|
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
if (!cpumask_test_cpu(0, new_mask))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifndef cpu_relax_yield
|
|
#define cpu_relax_yield() cpu_relax()
|
|
#endif
|
|
|
|
extern int yield_to(struct task_struct *p, bool preempt);
|
|
extern void set_user_nice(struct task_struct *p, long nice);
|
|
extern int task_prio(const struct task_struct *p);
|
|
|
|
/**
|
|
* task_nice - return the nice value of a given task.
|
|
* @p: the task in question.
|
|
*
|
|
* Return: The nice value [ -20 ... 0 ... 19 ].
|
|
*/
|
|
static inline int task_nice(const struct task_struct *p)
|
|
{
|
|
return PRIO_TO_NICE((p)->static_prio);
|
|
}
|
|
|
|
extern int can_nice(const struct task_struct *p, const int nice);
|
|
extern int task_curr(const struct task_struct *p);
|
|
extern int idle_cpu(int cpu);
|
|
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
|
|
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
|
|
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
|
|
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
|
|
extern struct task_struct *idle_task(int cpu);
|
|
|
|
/**
|
|
* is_idle_task - is the specified task an idle task?
|
|
* @p: the task in question.
|
|
*
|
|
* Return: 1 if @p is an idle task. 0 otherwise.
|
|
*/
|
|
static inline bool is_idle_task(const struct task_struct *p)
|
|
{
|
|
return !!(p->flags & PF_IDLE);
|
|
}
|
|
|
|
extern struct task_struct *curr_task(int cpu);
|
|
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
|
|
|
|
void yield(void);
|
|
|
|
union thread_union {
|
|
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
|
|
struct task_struct task;
|
|
#endif
|
|
#ifndef CONFIG_THREAD_INFO_IN_TASK
|
|
struct thread_info thread_info;
|
|
#endif
|
|
unsigned long stack[THREAD_SIZE/sizeof(long)];
|
|
};
|
|
|
|
#ifndef CONFIG_THREAD_INFO_IN_TASK
|
|
extern struct thread_info init_thread_info;
|
|
#endif
|
|
|
|
extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
|
|
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
static inline struct thread_info *task_thread_info(struct task_struct *task)
|
|
{
|
|
return &task->thread_info;
|
|
}
|
|
#elif !defined(__HAVE_THREAD_FUNCTIONS)
|
|
# define task_thread_info(task) ((struct thread_info *)(task)->stack)
|
|
#endif
|
|
|
|
/*
|
|
* find a task by one of its numerical ids
|
|
*
|
|
* find_task_by_pid_ns():
|
|
* finds a task by its pid in the specified namespace
|
|
* find_task_by_vpid():
|
|
* finds a task by its virtual pid
|
|
*
|
|
* see also find_vpid() etc in include/linux/pid.h
|
|
*/
|
|
|
|
extern struct task_struct *find_task_by_vpid(pid_t nr);
|
|
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
|
|
|
|
/*
|
|
* find a task by its virtual pid and get the task struct
|
|
*/
|
|
extern struct task_struct *find_get_task_by_vpid(pid_t nr);
|
|
|
|
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
|
|
extern int wake_up_process(struct task_struct *tsk);
|
|
extern void wake_up_new_task(struct task_struct *tsk);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void kick_process(struct task_struct *tsk);
|
|
#else
|
|
static inline void kick_process(struct task_struct *tsk) { }
|
|
#endif
|
|
|
|
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
|
|
|
|
static inline void set_task_comm(struct task_struct *tsk, const char *from)
|
|
{
|
|
__set_task_comm(tsk, from, false);
|
|
}
|
|
|
|
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
|
|
#define get_task_comm(buf, tsk) ({ \
|
|
BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
|
|
__get_task_comm(buf, sizeof(buf), tsk); \
|
|
})
|
|
|
|
#ifdef CONFIG_SMP
|
|
void scheduler_ipi(void);
|
|
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
|
|
#else
|
|
static inline void scheduler_ipi(void) { }
|
|
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set thread flags in other task's structures.
|
|
* See asm/thread_info.h for TIF_xxxx flags available:
|
|
*/
|
|
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
set_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
clear_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
return test_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline void set_tsk_need_resched(struct task_struct *tsk)
|
|
{
|
|
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
|
|
}
|
|
|
|
static inline void clear_tsk_need_resched(struct task_struct *tsk)
|
|
{
|
|
clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
|
|
}
|
|
|
|
static inline int test_tsk_need_resched(struct task_struct *tsk)
|
|
{
|
|
return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
|
|
}
|
|
|
|
/*
|
|
* cond_resched() and cond_resched_lock(): latency reduction via
|
|
* explicit rescheduling in places that are safe. The return
|
|
* value indicates whether a reschedule was done in fact.
|
|
* cond_resched_lock() will drop the spinlock before scheduling,
|
|
* cond_resched_softirq() will enable bhs before scheduling.
|
|
*/
|
|
#ifndef CONFIG_PREEMPT
|
|
extern int _cond_resched(void);
|
|
#else
|
|
static inline int _cond_resched(void) { return 0; }
|
|
#endif
|
|
|
|
#define cond_resched() ({ \
|
|
___might_sleep(__FILE__, __LINE__, 0); \
|
|
_cond_resched(); \
|
|
})
|
|
|
|
extern int __cond_resched_lock(spinlock_t *lock);
|
|
|
|
#define cond_resched_lock(lock) ({ \
|
|
___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
|
|
__cond_resched_lock(lock); \
|
|
})
|
|
|
|
extern int __cond_resched_softirq(void);
|
|
|
|
#define cond_resched_softirq() ({ \
|
|
___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
|
|
__cond_resched_softirq(); \
|
|
})
|
|
|
|
static inline void cond_resched_rcu(void)
|
|
{
|
|
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
|
|
rcu_read_unlock();
|
|
cond_resched();
|
|
rcu_read_lock();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Does a critical section need to be broken due to another
|
|
* task waiting?: (technically does not depend on CONFIG_PREEMPT,
|
|
* but a general need for low latency)
|
|
*/
|
|
static inline int spin_needbreak(spinlock_t *lock)
|
|
{
|
|
#ifdef CONFIG_PREEMPT
|
|
return spin_is_contended(lock);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static __always_inline bool need_resched(void)
|
|
{
|
|
return unlikely(tif_need_resched());
|
|
}
|
|
|
|
/*
|
|
* Wrappers for p->thread_info->cpu access. No-op on UP.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline unsigned int task_cpu(const struct task_struct *p)
|
|
{
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
return p->cpu;
|
|
#else
|
|
return task_thread_info(p)->cpu;
|
|
#endif
|
|
}
|
|
|
|
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
|
|
|
|
#else
|
|
|
|
static inline unsigned int task_cpu(const struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* In order to reduce various lock holder preemption latencies provide an
|
|
* interface to see if a vCPU is currently running or not.
|
|
*
|
|
* This allows us to terminate optimistic spin loops and block, analogous to
|
|
* the native optimistic spin heuristic of testing if the lock owner task is
|
|
* running or not.
|
|
*/
|
|
#ifndef vcpu_is_preempted
|
|
# define vcpu_is_preempted(cpu) false
|
|
#endif
|
|
|
|
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
|
|
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
|
|
|
|
#ifndef TASK_SIZE_OF
|
|
#define TASK_SIZE_OF(tsk) TASK_SIZE
|
|
#endif
|
|
|
|
#endif
|