mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 23:09:41 +07:00
412c53a680
No users remain, so kill these off before we grow new ones. Link: http://lkml.kernel.org/r/20200110154232.4104492-3-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Deepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
910 lines
23 KiB
C
910 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* This file contains the interface functions for the various time related
|
|
* system calls: time, stime, gettimeofday, settimeofday, adjtime
|
|
*
|
|
* Modification history:
|
|
*
|
|
* 1993-09-02 Philip Gladstone
|
|
* Created file with time related functions from sched/core.c and adjtimex()
|
|
* 1993-10-08 Torsten Duwe
|
|
* adjtime interface update and CMOS clock write code
|
|
* 1995-08-13 Torsten Duwe
|
|
* kernel PLL updated to 1994-12-13 specs (rfc-1589)
|
|
* 1999-01-16 Ulrich Windl
|
|
* Introduced error checking for many cases in adjtimex().
|
|
* Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
* Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
|
|
* (Even though the technical memorandum forbids it)
|
|
* 2004-07-14 Christoph Lameter
|
|
* Added getnstimeofday to allow the posix timer functions to return
|
|
* with nanosecond accuracy
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/security.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/compat.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#include <generated/timeconst.h>
|
|
#include "timekeeping.h"
|
|
|
|
/*
|
|
* The timezone where the local system is located. Used as a default by some
|
|
* programs who obtain this value by using gettimeofday.
|
|
*/
|
|
struct timezone sys_tz;
|
|
|
|
EXPORT_SYMBOL(sys_tz);
|
|
|
|
#ifdef __ARCH_WANT_SYS_TIME
|
|
|
|
/*
|
|
* sys_time() can be implemented in user-level using
|
|
* sys_gettimeofday(). Is this for backwards compatibility? If so,
|
|
* why not move it into the appropriate arch directory (for those
|
|
* architectures that need it).
|
|
*/
|
|
SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
|
|
{
|
|
__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
|
|
|
|
if (tloc) {
|
|
if (put_user(i,tloc))
|
|
return -EFAULT;
|
|
}
|
|
force_successful_syscall_return();
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* sys_stime() can be implemented in user-level using
|
|
* sys_settimeofday(). Is this for backwards compatibility? If so,
|
|
* why not move it into the appropriate arch directory (for those
|
|
* architectures that need it).
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
|
|
{
|
|
struct timespec64 tv;
|
|
int err;
|
|
|
|
if (get_user(tv.tv_sec, tptr))
|
|
return -EFAULT;
|
|
|
|
tv.tv_nsec = 0;
|
|
|
|
err = security_settime64(&tv, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
do_settimeofday64(&tv);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __ARCH_WANT_SYS_TIME */
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
#ifdef __ARCH_WANT_SYS_TIME32
|
|
|
|
/* old_time32_t is a 32 bit "long" and needs to get converted. */
|
|
SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
|
|
{
|
|
old_time32_t i;
|
|
|
|
i = (old_time32_t)ktime_get_real_seconds();
|
|
|
|
if (tloc) {
|
|
if (put_user(i,tloc))
|
|
return -EFAULT;
|
|
}
|
|
force_successful_syscall_return();
|
|
return i;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
|
|
{
|
|
struct timespec64 tv;
|
|
int err;
|
|
|
|
if (get_user(tv.tv_sec, tptr))
|
|
return -EFAULT;
|
|
|
|
tv.tv_nsec = 0;
|
|
|
|
err = security_settime64(&tv, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
do_settimeofday64(&tv);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __ARCH_WANT_SYS_TIME32 */
|
|
#endif
|
|
|
|
SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
if (likely(tv != NULL)) {
|
|
struct timespec64 ts;
|
|
|
|
ktime_get_real_ts64(&ts);
|
|
if (put_user(ts.tv_sec, &tv->tv_sec) ||
|
|
put_user(ts.tv_nsec / 1000, &tv->tv_usec))
|
|
return -EFAULT;
|
|
}
|
|
if (unlikely(tz != NULL)) {
|
|
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In case for some reason the CMOS clock has not already been running
|
|
* in UTC, but in some local time: The first time we set the timezone,
|
|
* we will warp the clock so that it is ticking UTC time instead of
|
|
* local time. Presumably, if someone is setting the timezone then we
|
|
* are running in an environment where the programs understand about
|
|
* timezones. This should be done at boot time in the /etc/rc script,
|
|
* as soon as possible, so that the clock can be set right. Otherwise,
|
|
* various programs will get confused when the clock gets warped.
|
|
*/
|
|
|
|
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
|
|
{
|
|
static int firsttime = 1;
|
|
int error = 0;
|
|
|
|
if (tv && !timespec64_valid_settod(tv))
|
|
return -EINVAL;
|
|
|
|
error = security_settime64(tv, tz);
|
|
if (error)
|
|
return error;
|
|
|
|
if (tz) {
|
|
/* Verify we're within the +-15 hrs range */
|
|
if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
|
|
return -EINVAL;
|
|
|
|
sys_tz = *tz;
|
|
update_vsyscall_tz();
|
|
if (firsttime) {
|
|
firsttime = 0;
|
|
if (!tv)
|
|
timekeeping_warp_clock();
|
|
}
|
|
}
|
|
if (tv)
|
|
return do_settimeofday64(tv);
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
struct timespec64 new_ts;
|
|
struct timezone new_tz;
|
|
|
|
if (tv) {
|
|
if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
|
|
get_user(new_ts.tv_nsec, &tv->tv_usec))
|
|
return -EFAULT;
|
|
|
|
if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
|
|
return -EINVAL;
|
|
|
|
new_ts.tv_nsec *= NSEC_PER_USEC;
|
|
}
|
|
if (tz) {
|
|
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
if (tv) {
|
|
struct timespec64 ts;
|
|
|
|
ktime_get_real_ts64(&ts);
|
|
if (put_user(ts.tv_sec, &tv->tv_sec) ||
|
|
put_user(ts.tv_nsec / 1000, &tv->tv_usec))
|
|
return -EFAULT;
|
|
}
|
|
if (tz) {
|
|
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
struct timespec64 new_ts;
|
|
struct timezone new_tz;
|
|
|
|
if (tv) {
|
|
if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
|
|
get_user(new_ts.tv_nsec, &tv->tv_usec))
|
|
return -EFAULT;
|
|
|
|
if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
|
|
return -EINVAL;
|
|
|
|
new_ts.tv_nsec *= NSEC_PER_USEC;
|
|
}
|
|
if (tz) {
|
|
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_64BIT
|
|
SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
|
|
{
|
|
struct __kernel_timex txc; /* Local copy of parameter */
|
|
int ret;
|
|
|
|
/* Copy the user data space into the kernel copy
|
|
* structure. But bear in mind that the structures
|
|
* may change
|
|
*/
|
|
if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
|
|
return -EFAULT;
|
|
ret = do_adjtimex(&txc);
|
|
return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
|
|
{
|
|
struct old_timex32 tx32;
|
|
|
|
memset(txc, 0, sizeof(struct __kernel_timex));
|
|
if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
|
|
return -EFAULT;
|
|
|
|
txc->modes = tx32.modes;
|
|
txc->offset = tx32.offset;
|
|
txc->freq = tx32.freq;
|
|
txc->maxerror = tx32.maxerror;
|
|
txc->esterror = tx32.esterror;
|
|
txc->status = tx32.status;
|
|
txc->constant = tx32.constant;
|
|
txc->precision = tx32.precision;
|
|
txc->tolerance = tx32.tolerance;
|
|
txc->time.tv_sec = tx32.time.tv_sec;
|
|
txc->time.tv_usec = tx32.time.tv_usec;
|
|
txc->tick = tx32.tick;
|
|
txc->ppsfreq = tx32.ppsfreq;
|
|
txc->jitter = tx32.jitter;
|
|
txc->shift = tx32.shift;
|
|
txc->stabil = tx32.stabil;
|
|
txc->jitcnt = tx32.jitcnt;
|
|
txc->calcnt = tx32.calcnt;
|
|
txc->errcnt = tx32.errcnt;
|
|
txc->stbcnt = tx32.stbcnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
|
|
{
|
|
struct old_timex32 tx32;
|
|
|
|
memset(&tx32, 0, sizeof(struct old_timex32));
|
|
tx32.modes = txc->modes;
|
|
tx32.offset = txc->offset;
|
|
tx32.freq = txc->freq;
|
|
tx32.maxerror = txc->maxerror;
|
|
tx32.esterror = txc->esterror;
|
|
tx32.status = txc->status;
|
|
tx32.constant = txc->constant;
|
|
tx32.precision = txc->precision;
|
|
tx32.tolerance = txc->tolerance;
|
|
tx32.time.tv_sec = txc->time.tv_sec;
|
|
tx32.time.tv_usec = txc->time.tv_usec;
|
|
tx32.tick = txc->tick;
|
|
tx32.ppsfreq = txc->ppsfreq;
|
|
tx32.jitter = txc->jitter;
|
|
tx32.shift = txc->shift;
|
|
tx32.stabil = txc->stabil;
|
|
tx32.jitcnt = txc->jitcnt;
|
|
tx32.calcnt = txc->calcnt;
|
|
tx32.errcnt = txc->errcnt;
|
|
tx32.stbcnt = txc->stbcnt;
|
|
tx32.tai = txc->tai;
|
|
if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
|
|
{
|
|
struct __kernel_timex txc;
|
|
int err, ret;
|
|
|
|
err = get_old_timex32(&txc, utp);
|
|
if (err)
|
|
return err;
|
|
|
|
ret = do_adjtimex(&txc);
|
|
|
|
err = put_old_timex32(utp, &txc);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Convert jiffies to milliseconds and back.
|
|
*
|
|
* Avoid unnecessary multiplications/divisions in the
|
|
* two most common HZ cases:
|
|
*/
|
|
unsigned int jiffies_to_msecs(const unsigned long j)
|
|
{
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
|
return (MSEC_PER_SEC / HZ) * j;
|
|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
|
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
|
#else
|
|
# if BITS_PER_LONG == 32
|
|
return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
|
|
HZ_TO_MSEC_SHR32;
|
|
# else
|
|
return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
|
|
# endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_msecs);
|
|
|
|
unsigned int jiffies_to_usecs(const unsigned long j)
|
|
{
|
|
/*
|
|
* Hz usually doesn't go much further MSEC_PER_SEC.
|
|
* jiffies_to_usecs() and usecs_to_jiffies() depend on that.
|
|
*/
|
|
BUILD_BUG_ON(HZ > USEC_PER_SEC);
|
|
|
|
#if !(USEC_PER_SEC % HZ)
|
|
return (USEC_PER_SEC / HZ) * j;
|
|
#else
|
|
# if BITS_PER_LONG == 32
|
|
return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
|
|
# else
|
|
return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
|
|
# endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_usecs);
|
|
|
|
/*
|
|
* mktime64 - Converts date to seconds.
|
|
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
|
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
|
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
|
*
|
|
* [For the Julian calendar (which was used in Russia before 1917,
|
|
* Britain & colonies before 1752, anywhere else before 1582,
|
|
* and is still in use by some communities) leave out the
|
|
* -year/100+year/400 terms, and add 10.]
|
|
*
|
|
* This algorithm was first published by Gauss (I think).
|
|
*
|
|
* A leap second can be indicated by calling this function with sec as
|
|
* 60 (allowable under ISO 8601). The leap second is treated the same
|
|
* as the following second since they don't exist in UNIX time.
|
|
*
|
|
* An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
|
|
* tomorrow - (allowable under ISO 8601) is supported.
|
|
*/
|
|
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
|
|
const unsigned int day, const unsigned int hour,
|
|
const unsigned int min, const unsigned int sec)
|
|
{
|
|
unsigned int mon = mon0, year = year0;
|
|
|
|
/* 1..12 -> 11,12,1..10 */
|
|
if (0 >= (int) (mon -= 2)) {
|
|
mon += 12; /* Puts Feb last since it has leap day */
|
|
year -= 1;
|
|
}
|
|
|
|
return ((((time64_t)
|
|
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
|
|
year*365 - 719499
|
|
)*24 + hour /* now have hours - midnight tomorrow handled here */
|
|
)*60 + min /* now have minutes */
|
|
)*60 + sec; /* finally seconds */
|
|
}
|
|
EXPORT_SYMBOL(mktime64);
|
|
|
|
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
|
|
{
|
|
struct timespec64 ts = ns_to_timespec64(nsec);
|
|
struct __kernel_old_timeval tv;
|
|
|
|
tv.tv_sec = ts.tv_sec;
|
|
tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
|
|
|
|
return tv;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_kernel_old_timeval);
|
|
|
|
/**
|
|
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
|
*
|
|
* @ts: pointer to timespec variable to be set
|
|
* @sec: seconds to set
|
|
* @nsec: nanoseconds to set
|
|
*
|
|
* Set seconds and nanoseconds field of a timespec variable and
|
|
* normalize to the timespec storage format
|
|
*
|
|
* Note: The tv_nsec part is always in the range of
|
|
* 0 <= tv_nsec < NSEC_PER_SEC
|
|
* For negative values only the tv_sec field is negative !
|
|
*/
|
|
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
|
|
{
|
|
while (nsec >= NSEC_PER_SEC) {
|
|
/*
|
|
* The following asm() prevents the compiler from
|
|
* optimising this loop into a modulo operation. See
|
|
* also __iter_div_u64_rem() in include/linux/time.h
|
|
*/
|
|
asm("" : "+rm"(nsec));
|
|
nsec -= NSEC_PER_SEC;
|
|
++sec;
|
|
}
|
|
while (nsec < 0) {
|
|
asm("" : "+rm"(nsec));
|
|
nsec += NSEC_PER_SEC;
|
|
--sec;
|
|
}
|
|
ts->tv_sec = sec;
|
|
ts->tv_nsec = nsec;
|
|
}
|
|
EXPORT_SYMBOL(set_normalized_timespec64);
|
|
|
|
/**
|
|
* ns_to_timespec64 - Convert nanoseconds to timespec64
|
|
* @nsec: the nanoseconds value to be converted
|
|
*
|
|
* Returns the timespec64 representation of the nsec parameter.
|
|
*/
|
|
struct timespec64 ns_to_timespec64(const s64 nsec)
|
|
{
|
|
struct timespec64 ts = { 0, 0 };
|
|
s32 rem;
|
|
|
|
if (likely(nsec > 0)) {
|
|
ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
|
|
ts.tv_nsec = rem;
|
|
} else if (nsec < 0) {
|
|
/*
|
|
* With negative times, tv_sec points to the earlier
|
|
* second, and tv_nsec counts the nanoseconds since
|
|
* then, so tv_nsec is always a positive number.
|
|
*/
|
|
ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
|
|
ts.tv_nsec = NSEC_PER_SEC - rem - 1;
|
|
}
|
|
|
|
return ts;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_timespec64);
|
|
|
|
/**
|
|
* msecs_to_jiffies: - convert milliseconds to jiffies
|
|
* @m: time in milliseconds
|
|
*
|
|
* conversion is done as follows:
|
|
*
|
|
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
|
|
*
|
|
* - 'too large' values [that would result in larger than
|
|
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
|
|
*
|
|
* - all other values are converted to jiffies by either multiplying
|
|
* the input value by a factor or dividing it with a factor and
|
|
* handling any 32-bit overflows.
|
|
* for the details see __msecs_to_jiffies()
|
|
*
|
|
* msecs_to_jiffies() checks for the passed in value being a constant
|
|
* via __builtin_constant_p() allowing gcc to eliminate most of the
|
|
* code, __msecs_to_jiffies() is called if the value passed does not
|
|
* allow constant folding and the actual conversion must be done at
|
|
* runtime.
|
|
* the _msecs_to_jiffies helpers are the HZ dependent conversion
|
|
* routines found in include/linux/jiffies.h
|
|
*/
|
|
unsigned long __msecs_to_jiffies(const unsigned int m)
|
|
{
|
|
/*
|
|
* Negative value, means infinite timeout:
|
|
*/
|
|
if ((int)m < 0)
|
|
return MAX_JIFFY_OFFSET;
|
|
return _msecs_to_jiffies(m);
|
|
}
|
|
EXPORT_SYMBOL(__msecs_to_jiffies);
|
|
|
|
unsigned long __usecs_to_jiffies(const unsigned int u)
|
|
{
|
|
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
|
return MAX_JIFFY_OFFSET;
|
|
return _usecs_to_jiffies(u);
|
|
}
|
|
EXPORT_SYMBOL(__usecs_to_jiffies);
|
|
|
|
/*
|
|
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
|
* that a remainder subtract here would not do the right thing as the
|
|
* resolution values don't fall on second boundries. I.e. the line:
|
|
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
|
* Note that due to the small error in the multiplier here, this
|
|
* rounding is incorrect for sufficiently large values of tv_nsec, but
|
|
* well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
|
|
* OK.
|
|
*
|
|
* Rather, we just shift the bits off the right.
|
|
*
|
|
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
|
* value to a scaled second value.
|
|
*/
|
|
|
|
unsigned long
|
|
timespec64_to_jiffies(const struct timespec64 *value)
|
|
{
|
|
u64 sec = value->tv_sec;
|
|
long nsec = value->tv_nsec + TICK_NSEC - 1;
|
|
|
|
if (sec >= MAX_SEC_IN_JIFFIES){
|
|
sec = MAX_SEC_IN_JIFFIES;
|
|
nsec = 0;
|
|
}
|
|
return ((sec * SEC_CONVERSION) +
|
|
(((u64)nsec * NSEC_CONVERSION) >>
|
|
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
|
|
|
}
|
|
EXPORT_SYMBOL(timespec64_to_jiffies);
|
|
|
|
void
|
|
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
|
|
{
|
|
/*
|
|
* Convert jiffies to nanoseconds and separate with
|
|
* one divide.
|
|
*/
|
|
u32 rem;
|
|
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
|
NSEC_PER_SEC, &rem);
|
|
value->tv_nsec = rem;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_timespec64);
|
|
|
|
/*
|
|
* Convert jiffies/jiffies_64 to clock_t and back.
|
|
*/
|
|
clock_t jiffies_to_clock_t(unsigned long x)
|
|
{
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
|
# if HZ < USER_HZ
|
|
return x * (USER_HZ / HZ);
|
|
# else
|
|
return x / (HZ / USER_HZ);
|
|
# endif
|
|
#else
|
|
return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_clock_t);
|
|
|
|
unsigned long clock_t_to_jiffies(unsigned long x)
|
|
{
|
|
#if (HZ % USER_HZ)==0
|
|
if (x >= ~0UL / (HZ / USER_HZ))
|
|
return ~0UL;
|
|
return x * (HZ / USER_HZ);
|
|
#else
|
|
/* Don't worry about loss of precision here .. */
|
|
if (x >= ~0UL / HZ * USER_HZ)
|
|
return ~0UL;
|
|
|
|
/* .. but do try to contain it here */
|
|
return div_u64((u64)x * HZ, USER_HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(clock_t_to_jiffies);
|
|
|
|
u64 jiffies_64_to_clock_t(u64 x)
|
|
{
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
|
# if HZ < USER_HZ
|
|
x = div_u64(x * USER_HZ, HZ);
|
|
# elif HZ > USER_HZ
|
|
x = div_u64(x, HZ / USER_HZ);
|
|
# else
|
|
/* Nothing to do */
|
|
# endif
|
|
#else
|
|
/*
|
|
* There are better ways that don't overflow early,
|
|
* but even this doesn't overflow in hundreds of years
|
|
* in 64 bits, so..
|
|
*/
|
|
x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
|
|
#endif
|
|
return x;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_64_to_clock_t);
|
|
|
|
u64 nsec_to_clock_t(u64 x)
|
|
{
|
|
#if (NSEC_PER_SEC % USER_HZ) == 0
|
|
return div_u64(x, NSEC_PER_SEC / USER_HZ);
|
|
#elif (USER_HZ % 512) == 0
|
|
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
|
|
#else
|
|
/*
|
|
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
|
* overflow after 64.99 years.
|
|
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
|
*/
|
|
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
|
|
#endif
|
|
}
|
|
|
|
u64 jiffies64_to_nsecs(u64 j)
|
|
{
|
|
#if !(NSEC_PER_SEC % HZ)
|
|
return (NSEC_PER_SEC / HZ) * j;
|
|
# else
|
|
return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies64_to_nsecs);
|
|
|
|
u64 jiffies64_to_msecs(const u64 j)
|
|
{
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
|
return (MSEC_PER_SEC / HZ) * j;
|
|
#else
|
|
return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies64_to_msecs);
|
|
|
|
/**
|
|
* nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
|
|
*
|
|
* @n: nsecs in u64
|
|
*
|
|
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
|
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
|
* for scheduler, not for use in device drivers to calculate timeout value.
|
|
*
|
|
* note:
|
|
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
|
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
|
*/
|
|
u64 nsecs_to_jiffies64(u64 n)
|
|
{
|
|
#if (NSEC_PER_SEC % HZ) == 0
|
|
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
|
|
return div_u64(n, NSEC_PER_SEC / HZ);
|
|
#elif (HZ % 512) == 0
|
|
/* overflow after 292 years if HZ = 1024 */
|
|
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
|
|
#else
|
|
/*
|
|
* Generic case - optimized for cases where HZ is a multiple of 3.
|
|
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
|
|
*/
|
|
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(nsecs_to_jiffies64);
|
|
|
|
/**
|
|
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
|
|
*
|
|
* @n: nsecs in u64
|
|
*
|
|
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
|
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
|
* for scheduler, not for use in device drivers to calculate timeout value.
|
|
*
|
|
* note:
|
|
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
|
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
|
*/
|
|
unsigned long nsecs_to_jiffies(u64 n)
|
|
{
|
|
return (unsigned long)nsecs_to_jiffies64(n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
|
|
|
|
/*
|
|
* Add two timespec64 values and do a safety check for overflow.
|
|
* It's assumed that both values are valid (>= 0).
|
|
* And, each timespec64 is in normalized form.
|
|
*/
|
|
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
|
|
const struct timespec64 rhs)
|
|
{
|
|
struct timespec64 res;
|
|
|
|
set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
|
|
lhs.tv_nsec + rhs.tv_nsec);
|
|
|
|
if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
|
|
res.tv_sec = TIME64_MAX;
|
|
res.tv_nsec = 0;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int get_timespec64(struct timespec64 *ts,
|
|
const struct __kernel_timespec __user *uts)
|
|
{
|
|
struct __kernel_timespec kts;
|
|
int ret;
|
|
|
|
ret = copy_from_user(&kts, uts, sizeof(kts));
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
ts->tv_sec = kts.tv_sec;
|
|
|
|
/* Zero out the padding in compat mode */
|
|
if (in_compat_syscall())
|
|
kts.tv_nsec &= 0xFFFFFFFFUL;
|
|
|
|
/* In 32-bit mode, this drops the padding */
|
|
ts->tv_nsec = kts.tv_nsec;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_timespec64);
|
|
|
|
int put_timespec64(const struct timespec64 *ts,
|
|
struct __kernel_timespec __user *uts)
|
|
{
|
|
struct __kernel_timespec kts = {
|
|
.tv_sec = ts->tv_sec,
|
|
.tv_nsec = ts->tv_nsec
|
|
};
|
|
|
|
return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_timespec64);
|
|
|
|
static int __get_old_timespec32(struct timespec64 *ts64,
|
|
const struct old_timespec32 __user *cts)
|
|
{
|
|
struct old_timespec32 ts;
|
|
int ret;
|
|
|
|
ret = copy_from_user(&ts, cts, sizeof(ts));
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
ts64->tv_sec = ts.tv_sec;
|
|
ts64->tv_nsec = ts.tv_nsec;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __put_old_timespec32(const struct timespec64 *ts64,
|
|
struct old_timespec32 __user *cts)
|
|
{
|
|
struct old_timespec32 ts = {
|
|
.tv_sec = ts64->tv_sec,
|
|
.tv_nsec = ts64->tv_nsec
|
|
};
|
|
return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
|
|
}
|
|
|
|
int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
|
|
{
|
|
if (COMPAT_USE_64BIT_TIME)
|
|
return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
|
|
else
|
|
return __get_old_timespec32(ts, uts);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_old_timespec32);
|
|
|
|
int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
|
|
{
|
|
if (COMPAT_USE_64BIT_TIME)
|
|
return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
|
|
else
|
|
return __put_old_timespec32(ts, uts);
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_old_timespec32);
|
|
|
|
int get_itimerspec64(struct itimerspec64 *it,
|
|
const struct __kernel_itimerspec __user *uit)
|
|
{
|
|
int ret;
|
|
|
|
ret = get_timespec64(&it->it_interval, &uit->it_interval);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = get_timespec64(&it->it_value, &uit->it_value);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_itimerspec64);
|
|
|
|
int put_itimerspec64(const struct itimerspec64 *it,
|
|
struct __kernel_itimerspec __user *uit)
|
|
{
|
|
int ret;
|
|
|
|
ret = put_timespec64(&it->it_interval, &uit->it_interval);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = put_timespec64(&it->it_value, &uit->it_value);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_itimerspec64);
|
|
|
|
int get_old_itimerspec32(struct itimerspec64 *its,
|
|
const struct old_itimerspec32 __user *uits)
|
|
{
|
|
|
|
if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
|
|
__get_old_timespec32(&its->it_value, &uits->it_value))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_old_itimerspec32);
|
|
|
|
int put_old_itimerspec32(const struct itimerspec64 *its,
|
|
struct old_itimerspec32 __user *uits)
|
|
{
|
|
if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
|
|
__put_old_timespec32(&its->it_value, &uits->it_value))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_old_itimerspec32);
|