linux_dsm_epyc7002/drivers/scsi/csiostor/csio_hw.c
Linus Torvalds 73287a43cc Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Highlights (1721 non-merge commits, this has to be a record of some
  sort):

   1) Add 'random' mode to team driver, from Jiri Pirko and Eric
      Dumazet.

   2) Make it so that any driver that supports configuration of multiple
      MAC addresses can provide the forwarding database add and del
      calls by providing a default implementation and hooking that up if
      the driver doesn't have an explicit set of handlers.  From Vlad
      Yasevich.

   3) Support GSO segmentation over tunnels and other encapsulating
      devices such as VXLAN, from Pravin B Shelar.

   4) Support L2 GRE tunnels in the flow dissector, from Michael Dalton.

   5) Implement Tail Loss Probe (TLP) detection in TCP, from Nandita
      Dukkipati.

   6) In the PHY layer, allow supporting wake-on-lan in situations where
      the PHY registers have to be written for it to be configured.

      Use it to support wake-on-lan in mv643xx_eth.

      From Michael Stapelberg.

   7) Significantly improve firewire IPV6 support, from YOSHIFUJI
      Hideaki.

   8) Allow multiple packets to be sent in a single transmission using
      network coding in batman-adv, from Martin Hundebøll.

   9) Add support for T5 cxgb4 chips, from Santosh Rastapur.

  10) Generalize the VXLAN forwarding tables so that there is more
      flexibility in configurating various aspects of the endpoints.
      From David Stevens.

  11) Support RSS and TSO in hardware over GRE tunnels in bxn2x driver,
      from Dmitry Kravkov.

  12) Zero copy support in nfnelink_queue, from Eric Dumazet and Pablo
      Neira Ayuso.

  13) Start adding networking selftests.

  14) In situations of overload on the same AF_PACKET fanout socket, or
      per-cpu packet receive queue, minimize drop by distributing the
      load to other cpus/fanouts.  From Willem de Bruijn and Eric
      Dumazet.

  15) Add support for new payload offset BPF instruction, from Daniel
      Borkmann.

  16) Convert several drivers over to mdoule_platform_driver(), from
      Sachin Kamat.

  17) Provide a minimal BPF JIT image disassembler userspace tool, from
      Daniel Borkmann.

  18) Rewrite F-RTO implementation in TCP to match the final
      specification of it in RFC4138 and RFC5682.  From Yuchung Cheng.

  19) Provide netlink socket diag of netlink sockets ("Yo dawg, I hear
      you like netlink, so I implemented netlink dumping of netlink
      sockets.") From Andrey Vagin.

  20) Remove ugly passing of rtnetlink attributes into rtnl_doit
      functions, from Thomas Graf.

  21) Allow userspace to be able to see if a configuration change occurs
      in the middle of an address or device list dump, from Nicolas
      Dichtel.

  22) Support RFC3168 ECN protection for ipv6 fragments, from Hannes
      Frederic Sowa.

  23) Increase accuracy of packet length used by packet scheduler, from
      Jason Wang.

  24) Beginning set of changes to make ipv4/ipv6 fragment handling more
      scalable and less susceptible to overload and locking contention,
      from Jesper Dangaard Brouer.

  25) Get rid of using non-type-safe NLMSG_* macros and use nlmsg_*()
      instead.  From Hong Zhiguo.

  26) Optimize route usage in IPVS by avoiding reference counting where
      possible, from Julian Anastasov.

  27) Convert IPVS schedulers to RCU, also from Julian Anastasov.

  28) Support cpu fanouts in xt_NFQUEUE netfilter target, from Holger
      Eitzenberger.

  29) Network namespace support for nf_log, ebt_log, xt_LOG, ipt_ULOG,
      nfnetlink_log, and nfnetlink_queue.  From Gao feng.

  30) Implement RFC3168 ECN protection, from Hannes Frederic Sowa.

  31) Support several new r8169 chips, from Hayes Wang.

  32) Support tokenized interface identifiers in ipv6, from Daniel
      Borkmann.

  33) Use usbnet_link_change() helper in USB net driver, from Ming Lei.

  34) Add 802.1ad vlan offload support, from Patrick McHardy.

  35) Support mmap() based netlink communication, also from Patrick
      McHardy.

  36) Support HW timestamping in mlx4 driver, from Amir Vadai.

  37) Rationalize AF_PACKET packet timestamping when transmitting, from
      Willem de Bruijn and Daniel Borkmann.

  38) Bring parity to what's provided by /proc/net/packet socket dumping
      and the info provided by netlink socket dumping of AF_PACKET
      sockets.  From Nicolas Dichtel.

  39) Fix peeking beyond zero sized SKBs in AF_UNIX, from Benjamin
      Poirier"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1722 commits)
  filter: fix va_list build error
  af_unix: fix a fatal race with bit fields
  bnx2x: Prevent memory leak when cnic is absent
  bnx2x: correct reading of speed capabilities
  net: sctp: attribute printl with __printf for gcc fmt checks
  netlink: kconfig: move mmap i/o into netlink kconfig
  netpoll: convert mutex into a semaphore
  netlink: Fix skb ref counting.
  net_sched: act_ipt forward compat with xtables
  mlx4_en: fix a build error on 32bit arches
  Revert "bnx2x: allow nvram test to run when device is down"
  bridge: avoid OOPS if root port not found
  drivers: net: cpsw: fix kernel warn on cpsw irq enable
  sh_eth: use random MAC address if no valid one supplied
  3c509.c: call SET_NETDEV_DEV for all device types (ISA/ISAPnP/EISA)
  tg3: fix to append hardware time stamping flags
  unix/stream: fix peeking with an offset larger than data in queue
  unix/dgram: fix peeking with an offset larger than data in queue
  unix/dgram: peek beyond 0-sized skbs
  openvswitch: Remove unneeded ovs_netdev_get_ifindex()
  ...
2013-05-01 14:08:52 -07:00

4073 lines
102 KiB
C

/*
* This file is part of the Chelsio FCoE driver for Linux.
*
* Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/firmware.h>
#include <linux/stddef.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/compiler.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include "csio_hw.h"
#include "csio_lnode.h"
#include "csio_rnode.h"
int csio_force_master;
int csio_dbg_level = 0xFEFF;
unsigned int csio_port_mask = 0xf;
/* Default FW event queue entries. */
static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
/* Default MSI param level */
int csio_msi = 2;
/* FCoE function instances */
static int dev_num;
/* FCoE Adapter types & its description */
static const struct csio_adap_desc csio_t4_fcoe_adapters[] = {
{"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
{"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
{"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
{"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
{"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
{"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
{"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
{"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
{"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
{"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
{"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
{"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
{"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
{"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
{"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
{"HUAWEI T480 10G", "Chelsio HUAWEI T480 10G [FCoE]"},
{"HUAWEI T440 10G", "Chelsio HUAWEI T440 10G [FCoE]"},
{"HUAWEI STG 10G", "Chelsio HUAWEI STG 10G [FCoE]"},
{"ACROMAG XAUI 10G", "Chelsio ACROMAG XAUI 10G [FCoE]"},
{"ACROMAG SFP+ 10G", "Chelsio ACROMAG SFP+ 10G [FCoE]"},
{"QUANTA SFP+ 10G", "Chelsio QUANTA SFP+ 10G [FCoE]"},
{"HUAWEI 10Gbase-T", "Chelsio HUAWEI 10Gbase-T [FCoE]"},
{"HUAWEI T4TOE 10G", "Chelsio HUAWEI T4TOE 10G [FCoE]"}
};
static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
{"T522-CR 10G/1G", "Chelsio T452-CR 10G/1G [FCoE]"},
{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}
};
static void csio_mgmtm_cleanup(struct csio_mgmtm *);
static void csio_hw_mbm_cleanup(struct csio_hw *);
/* State machine forward declarations */
static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
static void csio_hw_initialize(struct csio_hw *hw);
static void csio_evtq_stop(struct csio_hw *hw);
static void csio_evtq_start(struct csio_hw *hw);
int csio_is_hw_ready(struct csio_hw *hw)
{
return csio_match_state(hw, csio_hws_ready);
}
int csio_is_hw_removing(struct csio_hw *hw)
{
return csio_match_state(hw, csio_hws_removing);
}
/*
* csio_hw_wait_op_done_val - wait until an operation is completed
* @hw: the HW module
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
int
csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
int polarity, int attempts, int delay, uint32_t *valp)
{
uint32_t val;
while (1) {
val = csio_rd_reg32(hw, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
/*
* csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
* @hw: the adapter
* @addr: the indirect TP register address
* @mask: specifies the field within the register to modify
* @val: new value for the field
*
* Sets a field of an indirect TP register to the given value.
*/
void
csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
unsigned int mask, unsigned int val)
{
csio_wr_reg32(hw, addr, TP_PIO_ADDR);
val |= csio_rd_reg32(hw, TP_PIO_DATA) & ~mask;
csio_wr_reg32(hw, val, TP_PIO_DATA);
}
void
csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
uint32_t value)
{
uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
csio_wr_reg32(hw, val | value, reg);
/* Flush */
csio_rd_reg32(hw, reg);
}
static int
csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
{
return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
addr, len, buf, 0);
}
/*
* EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
*/
#define EEPROM_MAX_RD_POLL 40
#define EEPROM_MAX_WR_POLL 6
#define EEPROM_STAT_ADDR 0x7bfc
#define VPD_BASE 0x400
#define VPD_BASE_OLD 0
#define VPD_LEN 1024
#define VPD_INFO_FLD_HDR_SIZE 3
/*
* csio_hw_seeprom_read - read a serial EEPROM location
* @hw: hw to read
* @addr: EEPROM virtual address
* @data: where to store the read data
*
* Read a 32-bit word from a location in serial EEPROM using the card's PCI
* VPD capability. Note that this function must be called with a virtual
* address.
*/
static int
csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
{
uint16_t val = 0;
int attempts = EEPROM_MAX_RD_POLL;
uint32_t base = hw->params.pci.vpd_cap_addr;
if (addr >= EEPROMVSIZE || (addr & 3))
return -EINVAL;
pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
do {
udelay(10);
pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
if (!(val & PCI_VPD_ADDR_F)) {
csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
return -EINVAL;
}
pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
*data = le32_to_cpu(*data);
return 0;
}
/*
* Partial EEPROM Vital Product Data structure. Includes only the ID and
* VPD-R sections.
*/
struct t4_vpd_hdr {
u8 id_tag;
u8 id_len[2];
u8 id_data[ID_LEN];
u8 vpdr_tag;
u8 vpdr_len[2];
};
/*
* csio_hw_get_vpd_keyword_val - Locates an information field keyword in
* the VPD
* @v: Pointer to buffered vpd data structure
* @kw: The keyword to search for
*
* Returns the value of the information field keyword or
* -EINVAL otherwise.
*/
static int
csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
{
int32_t i;
int32_t offset , len;
const uint8_t *buf = &v->id_tag;
const uint8_t *vpdr_len = &v->vpdr_tag;
offset = sizeof(struct t4_vpd_hdr);
len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
return -EINVAL;
for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
if (memcmp(buf + i , kw, 2) == 0) {
i += VPD_INFO_FLD_HDR_SIZE;
return i;
}
i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
}
return -EINVAL;
}
static int
csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
{
*pos = pci_find_capability(pdev, cap);
if (*pos)
return 0;
return -1;
}
/*
* csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
* @hw: HW module
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
static int
csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
{
int i, ret, ec, sn, addr;
uint8_t *vpd, csum;
const struct t4_vpd_hdr *v;
/* To get around compilation warning from strstrip */
char *s;
if (csio_is_valid_vpd(hw))
return 0;
ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
&hw->params.pci.vpd_cap_addr);
if (ret)
return -EINVAL;
vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
if (vpd == NULL)
return -ENOMEM;
/*
* Card information normally starts at VPD_BASE but early cards had
* it at 0.
*/
ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
for (i = 0; i < VPD_LEN; i += 4) {
ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
if (ret) {
kfree(vpd);
return ret;
}
}
/* Reset the VPD flag! */
hw->flags &= (~CSIO_HWF_VPD_VALID);
v = (const struct t4_vpd_hdr *)vpd;
#define FIND_VPD_KW(var, name) do { \
var = csio_hw_get_vpd_keyword_val(v, name); \
if (var < 0) { \
csio_err(hw, "missing VPD keyword " name "\n"); \
kfree(vpd); \
return -EINVAL; \
} \
} while (0)
FIND_VPD_KW(i, "RV");
for (csum = 0; i >= 0; i--)
csum += vpd[i];
if (csum) {
csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
kfree(vpd);
return -EINVAL;
}
FIND_VPD_KW(ec, "EC");
FIND_VPD_KW(sn, "SN");
#undef FIND_VPD_KW
memcpy(p->id, v->id_data, ID_LEN);
s = strstrip(p->id);
memcpy(p->ec, vpd + ec, EC_LEN);
s = strstrip(p->ec);
i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
s = strstrip(p->sn);
csio_valid_vpd_copied(hw);
kfree(vpd);
return 0;
}
/*
* csio_hw_sf1_read - read data from the serial flash
* @hw: the HW module
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int
csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
int32_t lock, uint32_t *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
return -EBUSY;
cont = cont ? SF_CONT : 0;
lock = lock ? SF_LOCK : 0;
csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
10, NULL);
if (!ret)
*valp = csio_rd_reg32(hw, SF_DATA);
return ret;
}
/*
* csio_hw_sf1_write - write data to the serial flash
* @hw: the HW module
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int
csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
int32_t lock, uint32_t val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
return -EBUSY;
cont = cont ? SF_CONT : 0;
lock = lock ? SF_LOCK : 0;
csio_wr_reg32(hw, val, SF_DATA);
csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
10, NULL);
}
/*
* csio_hw_flash_wait_op - wait for a flash operation to complete
* @hw: the HW module
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int
csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
{
int ret;
uint32_t status;
while (1) {
ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
if (ret != 0)
return ret;
ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
if (ret != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/*
* csio_hw_read_flash - read words from serial flash
* @hw: the HW module
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
static int
csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
uint32_t *data, int32_t byte_oriented)
{
int ret;
if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
if (ret != 0)
return ret;
ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
if (ret != 0)
return ret;
for ( ; nwords; nwords--, data++) {
ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
if (nwords == 1)
csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
if (ret)
return ret;
if (byte_oriented)
*data = htonl(*data);
}
return 0;
}
/*
* csio_hw_write_flash - write up to a page of data to the serial flash
* @hw: the hw
* @addr: the start address to write
* @n: length of data to write in bytes
* @data: the data to write
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address. All the data must be written to the same page.
*/
static int
csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
uint32_t n, const uint8_t *data)
{
int ret = -EINVAL;
uint32_t buf[64];
uint32_t i, c, left, val, offset = addr & 0xff;
if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
if (ret != 0)
goto unlock;
ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
if (ret != 0)
goto unlock;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
if (ret)
goto unlock;
}
ret = csio_hw_flash_wait_op(hw, 8, 1);
if (ret)
goto unlock;
csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
/* Read the page to verify the write succeeded */
ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
if (ret)
return ret;
if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
csio_err(hw,
"failed to correctly write the flash page at %#x\n",
addr);
return -EINVAL;
}
return 0;
unlock:
csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
return ret;
}
/*
* csio_hw_flash_erase_sectors - erase a range of flash sectors
* @hw: the HW module
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given inclusive range.
*/
static int
csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
{
int ret = 0;
while (start <= end) {
ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
if (ret != 0)
goto out;
ret = csio_hw_sf1_write(hw, 4, 0, 1,
SF_ERASE_SECTOR | (start << 8));
if (ret != 0)
goto out;
ret = csio_hw_flash_wait_op(hw, 14, 500);
if (ret != 0)
goto out;
start++;
}
out:
if (ret)
csio_err(hw, "erase of flash sector %d failed, error %d\n",
start, ret);
csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
return 0;
}
static void
csio_hw_print_fw_version(struct csio_hw *hw, char *str)
{
csio_info(hw, "%s: %u.%u.%u.%u\n", str,
FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
}
/*
* csio_hw_get_fw_version - read the firmware version
* @hw: HW module
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
static int
csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
{
return csio_hw_read_flash(hw, FW_IMG_START +
offsetof(struct fw_hdr, fw_ver), 1,
vers, 0);
}
/*
* csio_hw_get_tp_version - read the TP microcode version
* @hw: HW module
* @vers: where to place the version
*
* Reads the TP microcode version from flash.
*/
static int
csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
{
return csio_hw_read_flash(hw, FLASH_FW_START +
offsetof(struct fw_hdr, tp_microcode_ver), 1,
vers, 0);
}
/*
* csio_hw_check_fw_version - check if the FW is compatible with
* this driver
* @hw: HW module
*
* Checks if an adapter's FW is compatible with the driver. Returns 0
* if there's exact match, a negative error if the version could not be
* read or there's a major/minor version mismatch/minor.
*/
static int
csio_hw_check_fw_version(struct csio_hw *hw)
{
int ret, major, minor, micro;
ret = csio_hw_get_fw_version(hw, &hw->fwrev);
if (!ret)
ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
if (ret)
return ret;
major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
if (major != FW_VERSION_MAJOR(hw)) { /* major mismatch - fail */
csio_err(hw, "card FW has major version %u, driver wants %u\n",
major, FW_VERSION_MAJOR(hw));
return -EINVAL;
}
if (minor == FW_VERSION_MINOR(hw) && micro == FW_VERSION_MICRO(hw))
return 0; /* perfect match */
/* Minor/micro version mismatch */
return -EINVAL;
}
/*
* csio_hw_fw_dload - download firmware.
* @hw: HW module
* @fw_data: firmware image to write.
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
*/
static int
csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
{
uint32_t csum;
int32_t addr;
int ret;
uint32_t i;
uint8_t first_page[SF_PAGE_SIZE];
const __be32 *p = (const __be32 *)fw_data;
struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
uint32_t sf_sec_size;
if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
csio_err(hw, "Serial Flash data invalid\n");
return -EINVAL;
}
if (!size) {
csio_err(hw, "FW image has no data\n");
return -EINVAL;
}
if (size & 511) {
csio_err(hw, "FW image size not multiple of 512 bytes\n");
return -EINVAL;
}
if (ntohs(hdr->len512) * 512 != size) {
csio_err(hw, "FW image size differs from size in FW header\n");
return -EINVAL;
}
if (size > FW_MAX_SIZE) {
csio_err(hw, "FW image too large, max is %u bytes\n",
FW_MAX_SIZE);
return -EINVAL;
}
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
return -EINVAL;
}
sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
FW_START_SEC, FW_START_SEC + i - 1);
ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
FW_START_SEC + i - 1);
if (ret) {
csio_err(hw, "Flash Erase failed\n");
goto out;
}
/*
* We write the correct version at the end so the driver can see a bad
* version if the FW write fails. Start by writing a copy of the
* first page with a bad version.
*/
memcpy(first_page, fw_data, SF_PAGE_SIZE);
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
if (ret)
goto out;
csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
FW_IMG_START, FW_IMG_START + size);
addr = FW_IMG_START;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
fw_data += SF_PAGE_SIZE;
ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
if (ret)
goto out;
}
ret = csio_hw_write_flash(hw,
FW_IMG_START +
offsetof(struct fw_hdr, fw_ver),
sizeof(hdr->fw_ver),
(const uint8_t *)&hdr->fw_ver);
out:
if (ret)
csio_err(hw, "firmware download failed, error %d\n", ret);
return ret;
}
static int
csio_hw_get_flash_params(struct csio_hw *hw)
{
int ret;
uint32_t info = 0;
ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
if (!ret)
ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
if (ret != 0)
return ret;
if ((info & 0xff) != 0x20) /* not a Numonix flash */
return -EINVAL;
info >>= 16; /* log2 of size */
if (info >= 0x14 && info < 0x18)
hw->params.sf_nsec = 1 << (info - 16);
else if (info == 0x18)
hw->params.sf_nsec = 64;
else
return -EINVAL;
hw->params.sf_size = 1 << info;
return 0;
}
static void
csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range)
{
uint16_t val;
int pcie_cap;
if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) {
pci_read_config_word(hw->pdev,
pcie_cap + PCI_EXP_DEVCTL2, &val);
val &= 0xfff0;
val |= range ;
pci_write_config_word(hw->pdev,
pcie_cap + PCI_EXP_DEVCTL2, val);
}
}
/*****************************************************************************/
/* HW State machine assists */
/*****************************************************************************/
static int
csio_hw_dev_ready(struct csio_hw *hw)
{
uint32_t reg;
int cnt = 6;
while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
(--cnt != 0))
mdelay(100);
if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
(SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
return -EIO;
}
hw->pfn = SOURCEPF_GET(reg);
return 0;
}
/*
* csio_do_hello - Perform the HELLO FW Mailbox command and process response.
* @hw: HW module
* @state: Device state
*
* FW_HELLO_CMD has to be polled for completion.
*/
static int
csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
{
struct csio_mb *mbp;
int rv = 0;
enum csio_dev_master master;
enum fw_retval retval;
uint8_t mpfn;
char state_str[16];
int retries = FW_CMD_HELLO_RETRIES;
memset(state_str, 0, sizeof(state_str));
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
rv = -ENOMEM;
CSIO_INC_STATS(hw, n_err_nomem);
goto out;
}
master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
retry:
csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
hw->pfn, master, NULL);
rv = csio_mb_issue(hw, mbp);
if (rv) {
csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
goto out_free_mb;
}
csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
if (retval != FW_SUCCESS) {
csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
rv = -EINVAL;
goto out_free_mb;
}
/* Firmware has designated us to be master */
if (hw->pfn == mpfn) {
hw->flags |= CSIO_HWF_MASTER;
} else if (*state == CSIO_DEV_STATE_UNINIT) {
/*
* If we're not the Master PF then we need to wait around for
* the Master PF Driver to finish setting up the adapter.
*
* Note that we also do this wait if we're a non-Master-capable
* PF and there is no current Master PF; a Master PF may show up
* momentarily and we wouldn't want to fail pointlessly. (This
* can happen when an OS loads lots of different drivers rapidly
* at the same time). In this case, the Master PF returned by
* the firmware will be PCIE_FW_MASTER_MASK so the test below
* will work ...
*/
int waiting = FW_CMD_HELLO_TIMEOUT;
/*
* Wait for the firmware to either indicate an error or
* initialized state. If we see either of these we bail out
* and report the issue to the caller. If we exhaust the
* "hello timeout" and we haven't exhausted our retries, try
* again. Otherwise bail with a timeout error.
*/
for (;;) {
uint32_t pcie_fw;
spin_unlock_irq(&hw->lock);
msleep(50);
spin_lock_irq(&hw->lock);
waiting -= 50;
/*
* If neither Error nor Initialialized are indicated
* by the firmware keep waiting till we exaust our
* timeout ... and then retry if we haven't exhausted
* our retries ...
*/
pcie_fw = csio_rd_reg32(hw, PCIE_FW);
if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
if (waiting <= 0) {
if (retries-- > 0)
goto retry;
rv = -ETIMEDOUT;
break;
}
continue;
}
/*
* We either have an Error or Initialized condition
* report errors preferentially.
*/
if (state) {
if (pcie_fw & PCIE_FW_ERR) {
*state = CSIO_DEV_STATE_ERR;
rv = -ETIMEDOUT;
} else if (pcie_fw & PCIE_FW_INIT)
*state = CSIO_DEV_STATE_INIT;
}
/*
* If we arrived before a Master PF was selected and
* there's not a valid Master PF, grab its identity
* for our caller.
*/
if (mpfn == PCIE_FW_MASTER_MASK &&
(pcie_fw & PCIE_FW_MASTER_VLD))
mpfn = PCIE_FW_MASTER_GET(pcie_fw);
break;
}
hw->flags &= ~CSIO_HWF_MASTER;
}
switch (*state) {
case CSIO_DEV_STATE_UNINIT:
strcpy(state_str, "Initializing");
break;
case CSIO_DEV_STATE_INIT:
strcpy(state_str, "Initialized");
break;
case CSIO_DEV_STATE_ERR:
strcpy(state_str, "Error");
break;
default:
strcpy(state_str, "Unknown");
break;
}
if (hw->pfn == mpfn)
csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
hw->pfn, state_str);
else
csio_info(hw,
"PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
hw->pfn, mpfn, state_str);
out_free_mb:
mempool_free(mbp, hw->mb_mempool);
out:
return rv;
}
/*
* csio_do_bye - Perform the BYE FW Mailbox command and process response.
* @hw: HW module
*
*/
static int
csio_do_bye(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of BYE command failed\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_do_reset- Perform the device reset.
* @hw: HW module
* @fw_rst: FW reset
*
* If fw_rst is set, issues FW reset mbox cmd otherwise
* does PIO reset.
* Performs reset of the function.
*/
static int
csio_do_reset(struct csio_hw *hw, bool fw_rst)
{
struct csio_mb *mbp;
enum fw_retval retval;
if (!fw_rst) {
/* PIO reset */
csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
mdelay(2000);
return 0;
}
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
PIORSTMODE | PIORST, 0, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of RESET command failed.n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
static int
csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
{
struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
uint16_t caps;
caps = ntohs(rsp->fcoecaps);
if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
return -EINVAL;
}
if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
csio_err(hw, "No FCoE Control Offload capability\n");
return -EINVAL;
}
return 0;
}
/*
* csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
* @hw: the HW module
* @mbox: mailbox to use for the FW RESET command (if desired)
* @force: force uP into RESET even if FW RESET command fails
*
* Issues a RESET command to firmware (if desired) with a HALT indication
* and then puts the microprocessor into RESET state. The RESET command
* will only be issued if a legitimate mailbox is provided (mbox <=
* PCIE_FW_MASTER_MASK).
*
* This is generally used in order for the host to safely manipulate the
* adapter without fear of conflicting with whatever the firmware might
* be doing. The only way out of this state is to RESTART the firmware
* ...
*/
static int
csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
{
enum fw_retval retval = 0;
/*
* If a legitimate mailbox is provided, issue a RESET command
* with a HALT indication.
*/
if (mbox <= PCIE_FW_MASTER_MASK) {
struct csio_mb *mbp;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of RESET command failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
mempool_free(mbp, hw->mb_mempool);
}
/*
* Normally we won't complete the operation if the firmware RESET
* command fails but if our caller insists we'll go ahead and put the
* uP into RESET. This can be useful if the firmware is hung or even
* missing ... We'll have to take the risk of putting the uP into
* RESET without the cooperation of firmware in that case.
*
* We also force the firmware's HALT flag to be on in case we bypassed
* the firmware RESET command above or we're dealing with old firmware
* which doesn't have the HALT capability. This will serve as a flag
* for the incoming firmware to know that it's coming out of a HALT
* rather than a RESET ... if it's new enough to understand that ...
*/
if (retval == 0 || force) {
csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
}
/*
* And we always return the result of the firmware RESET command
* even when we force the uP into RESET ...
*/
return retval ? -EINVAL : 0;
}
/*
* csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
* @hw: the HW module
* @reset: if we want to do a RESET to restart things
*
* Restart firmware previously halted by csio_hw_fw_halt(). On successful
* return the previous PF Master remains as the new PF Master and there
* is no need to issue a new HELLO command, etc.
*
* We do this in two ways:
*
* 1. If we're dealing with newer firmware we'll simply want to take
* the chip's microprocessor out of RESET. This will cause the
* firmware to start up from its start vector. And then we'll loop
* until the firmware indicates it's started again (PCIE_FW.HALT
* reset to 0) or we timeout.
*
* 2. If we're dealing with older firmware then we'll need to RESET
* the chip since older firmware won't recognize the PCIE_FW.HALT
* flag and automatically RESET itself on startup.
*/
static int
csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
{
if (reset) {
/*
* Since we're directing the RESET instead of the firmware
* doing it automatically, we need to clear the PCIE_FW.HALT
* bit.
*/
csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
/*
* If we've been given a valid mailbox, first try to get the
* firmware to do the RESET. If that works, great and we can
* return success. Otherwise, if we haven't been given a
* valid mailbox or the RESET command failed, fall back to
* hitting the chip with a hammer.
*/
if (mbox <= PCIE_FW_MASTER_MASK) {
csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
msleep(100);
if (csio_do_reset(hw, true) == 0)
return 0;
}
csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
msleep(2000);
} else {
int ms;
csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
return 0;
msleep(100);
ms += 100;
}
return -ETIMEDOUT;
}
return 0;
}
/*
* csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
* @hw: the HW module
* @mbox: mailbox to use for the FW RESET command (if desired)
* @fw_data: the firmware image to write
* @size: image size
* @force: force upgrade even if firmware doesn't cooperate
*
* Perform all of the steps necessary for upgrading an adapter's
* firmware image. Normally this requires the cooperation of the
* existing firmware in order to halt all existing activities
* but if an invalid mailbox token is passed in we skip that step
* (though we'll still put the adapter microprocessor into RESET in
* that case).
*
* On successful return the new firmware will have been loaded and
* the adapter will have been fully RESET losing all previous setup
* state. On unsuccessful return the adapter may be completely hosed ...
* positive errno indicates that the adapter is ~probably~ intact, a
* negative errno indicates that things are looking bad ...
*/
static int
csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
const u8 *fw_data, uint32_t size, int32_t force)
{
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
int reset, ret;
ret = csio_hw_fw_halt(hw, mbox, force);
if (ret != 0 && !force)
return ret;
ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
if (ret != 0)
return ret;
/*
* Older versions of the firmware don't understand the new
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
* restart. So for newly loaded older firmware we'll have to do the
* RESET for it so it starts up on a clean slate. We can tell if
* the newly loaded firmware will handle this right by checking
* its header flags to see if it advertises the capability.
*/
reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
return csio_hw_fw_restart(hw, mbox, reset);
}
/*
* csio_hw_fw_config_file - setup an adapter via a Configuration File
* @hw: the HW module
* @mbox: mailbox to use for the FW command
* @mtype: the memory type where the Configuration File is located
* @maddr: the memory address where the Configuration File is located
* @finiver: return value for CF [fini] version
* @finicsum: return value for CF [fini] checksum
* @cfcsum: return value for CF computed checksum
*
* Issue a command to get the firmware to process the Configuration
* File located at the specified mtype/maddress. If the Configuration
* File is processed successfully and return value pointers are
* provided, the Configuration File "[fini] section version and
* checksum values will be returned along with the computed checksum.
* It's up to the caller to decide how it wants to respond to the
* checksums not matching but it recommended that a prominant warning
* be emitted in order to help people rapidly identify changed or
* corrupted Configuration Files.
*
* Also note that it's possible to modify things like "niccaps",
* "toecaps",etc. between processing the Configuration File and telling
* the firmware to use the new configuration. Callers which want to
* do this will need to "hand-roll" their own CAPS_CONFIGS commands for
* Configuration Files if they want to do this.
*/
static int
csio_hw_fw_config_file(struct csio_hw *hw,
unsigned int mtype, unsigned int maddr,
uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
{
struct csio_mb *mbp;
struct fw_caps_config_cmd *caps_cmd;
int rv = -EINVAL;
enum fw_retval ret;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/*
* Tell the firmware to process the indicated Configuration File.
* If there are no errors and the caller has provided return value
* pointers for the [fini] section version, checksum and computed
* checksum, pass those back to the caller.
*/
caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
caps_cmd->op_to_write =
htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST |
FW_CMD_READ);
caps_cmd->cfvalid_to_len16 =
htonl(FW_CAPS_CONFIG_CMD_CFVALID |
FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
FW_LEN16(*caps_cmd));
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
goto out;
}
ret = csio_mb_fw_retval(mbp);
if (ret != FW_SUCCESS) {
csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
goto out;
}
if (finiver)
*finiver = ntohl(caps_cmd->finiver);
if (finicsum)
*finicsum = ntohl(caps_cmd->finicsum);
if (cfcsum)
*cfcsum = ntohl(caps_cmd->cfcsum);
/* Validate device capabilities */
if (csio_hw_validate_caps(hw, mbp)) {
rv = -ENOENT;
goto out;
}
/*
* And now tell the firmware to use the configuration we just loaded.
*/
caps_cmd->op_to_write =
htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST |
FW_CMD_WRITE);
caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
goto out;
}
ret = csio_mb_fw_retval(mbp);
if (ret != FW_SUCCESS) {
csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
goto out;
}
rv = 0;
out:
mempool_free(mbp, hw->mb_mempool);
return rv;
}
/*
* csio_get_device_params - Get device parameters.
* @hw: HW module
*
*/
static int
csio_get_device_params(struct csio_hw *hw)
{
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
struct csio_mb *mbp;
enum fw_retval retval;
u32 param[6];
int i, j = 0;
/* Initialize portids to -1 */
for (i = 0; i < CSIO_MAX_PPORTS; i++)
hw->pport[i].portid = -1;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/* Get port vec information. */
param[0] = FW_PARAM_DEV(PORTVEC);
/* Get Core clock. */
param[1] = FW_PARAM_DEV(CCLK);
/* Get EQ id start and end. */
param[2] = FW_PARAM_PFVF(EQ_START);
param[3] = FW_PARAM_PFVF(EQ_END);
/* Get IQ id start and end. */
param[4] = FW_PARAM_PFVF(IQFLINT_START);
param[5] = FW_PARAM_PFVF(IQFLINT_END);
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
ARRAY_SIZE(param), param, NULL, false, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_params_rsp(hw, mbp, &retval,
ARRAY_SIZE(param), param);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
/* cache the information. */
hw->port_vec = param[0];
hw->vpd.cclk = param[1];
wrm->fw_eq_start = param[2];
wrm->fw_iq_start = param[4];
/* Using FW configured max iqs & eqs */
if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
!csio_is_hw_master(hw)) {
hw->cfg_niq = param[5] - param[4] + 1;
hw->cfg_neq = param[3] - param[2] + 1;
csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
hw->cfg_niq, hw->cfg_neq);
}
hw->port_vec &= csio_port_mask;
hw->num_pports = hweight32(hw->port_vec);
csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
hw->port_vec, hw->num_pports);
for (i = 0; i < hw->num_pports; i++) {
while ((hw->port_vec & (1 << j)) == 0)
j++;
hw->pport[i].portid = j++;
csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_config_device_caps - Get and set device capabilities.
* @hw: HW module
*
*/
static int
csio_config_device_caps(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
int rv = -EINVAL;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/* Get device capabilities */
csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
goto out;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
goto out;
}
/* Validate device capabilities */
if (csio_hw_validate_caps(hw, mbp))
goto out;
/* Don't config device capabilities if already configured */
if (hw->fw_state == CSIO_DEV_STATE_INIT) {
rv = 0;
goto out;
}
/* Write back desired device capabilities */
csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
false, true, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
goto out;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
goto out;
}
rv = 0;
out:
mempool_free(mbp, hw->mb_mempool);
return rv;
}
static int
csio_config_global_rss(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
csio_rss_glb_config(hw, mbp, CSIO_MB_DEFAULT_TMO,
FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
FW_RSS_GLB_CONFIG_CMD_TNLALLLKP,
NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_RSS_GLB_CONFIG_CMD failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_RSS_GLB_CONFIG_CMD returned 0x%x!\n", retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_config_pfvf - Configure Physical/Virtual functions settings.
* @hw: HW module
*
*/
static int
csio_config_pfvf(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/*
* For now, allow all PFs to access to all ports using a pmask
* value of 0xF (M_FW_PFVF_CMD_PMASK). Once we have VFs, we will
* need to provide access based on some rule.
*/
csio_mb_pfvf(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, CSIO_NEQ,
CSIO_NETH_CTRL, CSIO_NIQ_FLINT, 0, 0, CSIO_NVI, CSIO_CMASK,
CSIO_PMASK, CSIO_NEXACTF, CSIO_R_CAPS, CSIO_WX_CAPS, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_PFVF_CMD failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PFVF_CMD returned 0x%x!\n", retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_enable_ports - Bring up all available ports.
* @hw: HW module.
*
*/
static int
csio_enable_ports(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
uint8_t portid;
int i;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
for (i = 0; i < hw->num_pports; i++) {
portid = hw->pport[i].portid;
/* Read PORT information */
csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
false, 0, 0, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
portid);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_port_rsp(hw, mbp, &retval,
&hw->pport[i].pcap);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
portid, retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
/* Write back PORT information */
csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
(PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
portid);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
portid, retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
} /* For all ports */
mempool_free(mbp, hw->mb_mempool);
return 0;
}
/*
* csio_get_fcoe_resinfo - Read fcoe fw resource info.
* @hw: HW module
* Issued with lock held.
*/
static int
csio_get_fcoe_resinfo(struct csio_hw *hw)
{
struct csio_fcoe_res_info *res_info = &hw->fres_info;
struct fw_fcoe_res_info_cmd *rsp;
struct csio_mb *mbp;
enum fw_retval retval;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/* Get FCoE FW resource information */
csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
res_info->e_d_tov = ntohs(rsp->e_d_tov);
res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
res_info->r_r_tov = ntohs(rsp->r_r_tov);
res_info->max_xchgs = ntohl(rsp->max_xchgs);
res_info->max_ssns = ntohl(rsp->max_ssns);
res_info->used_xchgs = ntohl(rsp->used_xchgs);
res_info->used_ssns = ntohl(rsp->used_ssns);
res_info->max_fcfs = ntohl(rsp->max_fcfs);
res_info->max_vnps = ntohl(rsp->max_vnps);
res_info->used_fcfs = ntohl(rsp->used_fcfs);
res_info->used_vnps = ntohl(rsp->used_vnps);
csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
res_info->max_xchgs);
mempool_free(mbp, hw->mb_mempool);
return 0;
}
static int
csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
{
struct csio_mb *mbp;
enum fw_retval retval;
u32 _param[1];
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
return -ENOMEM;
}
/*
* Find out whether we're dealing with a version of
* the firmware which has configuration file support.
*/
_param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
ARRAY_SIZE(_param), _param, NULL, false, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
csio_mb_process_read_params_rsp(hw, mbp, &retval,
ARRAY_SIZE(_param), _param);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
retval);
mempool_free(mbp, hw->mb_mempool);
return -EINVAL;
}
mempool_free(mbp, hw->mb_mempool);
*param = _param[0];
return 0;
}
static int
csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
{
int ret = 0;
const struct firmware *cf;
struct pci_dev *pci_dev = hw->pdev;
struct device *dev = &pci_dev->dev;
unsigned int mtype = 0, maddr = 0;
uint32_t *cfg_data;
int value_to_add = 0;
if (request_firmware(&cf, CSIO_CF_FNAME(hw), dev) < 0) {
csio_err(hw, "could not find config file %s, err: %d\n",
CSIO_CF_FNAME(hw), ret);
return -ENOENT;
}
if (cf->size%4 != 0)
value_to_add = 4 - (cf->size % 4);
cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
if (cfg_data == NULL) {
ret = -ENOMEM;
goto leave;
}
memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
ret = -EINVAL;
goto leave;
}
mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
ret = csio_memory_write(hw, mtype, maddr,
cf->size + value_to_add, cfg_data);
if ((ret == 0) && (value_to_add != 0)) {
union {
u32 word;
char buf[4];
} last;
size_t size = cf->size & ~0x3;
int i;
last.word = cfg_data[size >> 2];
for (i = value_to_add; i < 4; i++)
last.buf[i] = 0;
ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
}
if (ret == 0) {
csio_info(hw, "config file upgraded to %s\n",
CSIO_CF_FNAME(hw));
snprintf(path, 64, "%s%s", "/lib/firmware/", CSIO_CF_FNAME(hw));
}
leave:
kfree(cfg_data);
release_firmware(cf);
return ret;
}
/*
* HW initialization: contact FW, obtain config, perform basic init.
*
* If the firmware we're dealing with has Configuration File support, then
* we use that to perform all configuration -- either using the configuration
* file stored in flash on the adapter or using a filesystem-local file
* if available.
*
* If we don't have configuration file support in the firmware, then we'll
* have to set things up the old fashioned way with hard-coded register
* writes and firmware commands ...
*/
/*
* Attempt to initialize the HW via a Firmware Configuration File.
*/
static int
csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
{
unsigned int mtype, maddr;
int rv;
uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
int using_flash;
char path[64];
/*
* Reset device if necessary
*/
if (reset) {
rv = csio_do_reset(hw, true);
if (rv != 0)
goto bye;
}
/*
* If we have a configuration file in host ,
* then use that. Otherwise, use the configuration file stored
* in the HW flash ...
*/
spin_unlock_irq(&hw->lock);
rv = csio_hw_flash_config(hw, fw_cfg_param, path);
spin_lock_irq(&hw->lock);
if (rv != 0) {
if (rv == -ENOENT) {
/*
* config file was not found. Use default
* config file from flash.
*/
mtype = FW_MEMTYPE_CF_FLASH;
maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
using_flash = 1;
} else {
/*
* we revert back to the hardwired config if
* flashing failed.
*/
goto bye;
}
} else {
mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
using_flash = 0;
}
hw->cfg_store = (uint8_t)mtype;
/*
* Issue a Capability Configuration command to the firmware to get it
* to parse the Configuration File.
*/
rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
&finicsum, &cfcsum);
if (rv != 0)
goto bye;
hw->cfg_finiver = finiver;
hw->cfg_finicsum = finicsum;
hw->cfg_cfcsum = cfcsum;
hw->cfg_csum_status = true;
if (finicsum != cfcsum) {
csio_warn(hw,
"Config File checksum mismatch: csum=%#x, computed=%#x\n",
finicsum, cfcsum);
hw->cfg_csum_status = false;
}
/*
* Note that we're operating with parameters
* not supplied by the driver, rather than from hard-wired
* initialization constants buried in the driver.
*/
hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
/* device parameters */
rv = csio_get_device_params(hw);
if (rv != 0)
goto bye;
/* Configure SGE */
csio_wr_sge_init(hw);
/*
* And finally tell the firmware to initialize itself using the
* parameters from the Configuration File.
*/
/* Post event to notify completion of configuration */
csio_post_event(&hw->sm, CSIO_HWE_INIT);
csio_info(hw,
"Firmware Configuration File %s, version %#x, computed checksum %#x\n",
(using_flash ? "in device FLASH" : path), finiver, cfcsum);
return 0;
/*
* Something bad happened. Return the error ...
*/
bye:
hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
csio_dbg(hw, "Configuration file error %d\n", rv);
return rv;
}
/*
* Attempt to initialize the adapter via hard-coded, driver supplied
* parameters ...
*/
static int
csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
{
int rv;
/*
* Reset device if necessary
*/
if (reset) {
rv = csio_do_reset(hw, true);
if (rv != 0)
goto out;
}
/* Get and set device capabilities */
rv = csio_config_device_caps(hw);
if (rv != 0)
goto out;
/* Config Global RSS command */
rv = csio_config_global_rss(hw);
if (rv != 0)
goto out;
/* Configure PF/VF capabilities of device */
rv = csio_config_pfvf(hw);
if (rv != 0)
goto out;
/* device parameters */
rv = csio_get_device_params(hw);
if (rv != 0)
goto out;
/* Configure SGE */
csio_wr_sge_init(hw);
/* Post event to notify completion of configuration */
csio_post_event(&hw->sm, CSIO_HWE_INIT);
out:
return rv;
}
/*
* Returns -EINVAL if attempts to flash the firmware failed
* else returns 0,
* if flashing was not attempted because the card had the
* latest firmware ECANCELED is returned
*/
static int
csio_hw_flash_fw(struct csio_hw *hw)
{
int ret = -ECANCELED;
const struct firmware *fw;
const struct fw_hdr *hdr;
u32 fw_ver;
struct pci_dev *pci_dev = hw->pdev;
struct device *dev = &pci_dev->dev ;
if (request_firmware(&fw, CSIO_FW_FNAME(hw), dev) < 0) {
csio_err(hw, "could not find firmware image %s, err: %d\n",
CSIO_FW_FNAME(hw), ret);
return -EINVAL;
}
hdr = (const struct fw_hdr *)fw->data;
fw_ver = ntohl(hdr->fw_ver);
if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR(hw))
return -EINVAL; /* wrong major version, won't do */
/*
* If the flash FW is unusable or we found something newer, load it.
*/
if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR(hw) ||
fw_ver > hw->fwrev) {
ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
/*force=*/false);
if (!ret)
csio_info(hw,
"firmware upgraded to version %pI4 from %s\n",
&hdr->fw_ver, CSIO_FW_FNAME(hw));
else
csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
} else
ret = -EINVAL;
release_firmware(fw);
return ret;
}
/*
* csio_hw_configure - Configure HW
* @hw - HW module
*
*/
static void
csio_hw_configure(struct csio_hw *hw)
{
int reset = 1;
int rv;
u32 param[1];
rv = csio_hw_dev_ready(hw);
if (rv != 0) {
CSIO_INC_STATS(hw, n_err_fatal);
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
goto out;
}
/* HW version */
hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
/* Needed for FW download */
rv = csio_hw_get_flash_params(hw);
if (rv != 0) {
csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
goto out;
}
/* Set pci completion timeout value to 4 seconds. */
csio_set_pcie_completion_timeout(hw, 0xd);
hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
rv = csio_hw_get_fw_version(hw, &hw->fwrev);
if (rv != 0)
goto out;
csio_hw_print_fw_version(hw, "Firmware revision");
rv = csio_do_hello(hw, &hw->fw_state);
if (rv != 0) {
CSIO_INC_STATS(hw, n_err_fatal);
csio_post_event(&hw->sm, CSIO_HWE_FATAL);
goto out;
}
/* Read vpd */
rv = csio_hw_get_vpd_params(hw, &hw->vpd);
if (rv != 0)
goto out;
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
rv = csio_hw_check_fw_version(hw);
if (rv == -EINVAL) {
/* Do firmware update */
spin_unlock_irq(&hw->lock);
rv = csio_hw_flash_fw(hw);
spin_lock_irq(&hw->lock);
if (rv == 0) {
reset = 0;
/*
* Note that the chip was reset as part of the
* firmware upgrade so we don't reset it again
* below and grab the new firmware version.
*/
rv = csio_hw_check_fw_version(hw);
}
}
/*
* If the firmware doesn't support Configuration
* Files, use the old Driver-based, hard-wired
* initialization. Otherwise, try using the
* Configuration File support and fall back to the
* Driver-based initialization if there's no
* Configuration File found.
*/
if (csio_hw_check_fwconfig(hw, param) == 0) {
rv = csio_hw_use_fwconfig(hw, reset, param);
if (rv == -ENOENT)
goto out;
if (rv != 0) {
csio_info(hw,
"No Configuration File present "
"on adapter. Using hard-wired "
"configuration parameters.\n");
rv = csio_hw_no_fwconfig(hw, reset);
}
} else {
rv = csio_hw_no_fwconfig(hw, reset);
}
if (rv != 0)
goto out;
} else {
if (hw->fw_state == CSIO_DEV_STATE_INIT) {
hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
/* device parameters */
rv = csio_get_device_params(hw);
if (rv != 0)
goto out;
/* Get device capabilities */
rv = csio_config_device_caps(hw);
if (rv != 0)
goto out;
/* Configure SGE */
csio_wr_sge_init(hw);
/* Post event to notify completion of configuration */
csio_post_event(&hw->sm, CSIO_HWE_INIT);
goto out;
}
} /* if not master */
out:
return;
}
/*
* csio_hw_initialize - Initialize HW
* @hw - HW module
*
*/
static void
csio_hw_initialize(struct csio_hw *hw)
{
struct csio_mb *mbp;
enum fw_retval retval;
int rv;
int i;
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp)
goto out;
csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
if (csio_mb_issue(hw, mbp)) {
csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
goto free_and_out;
}
retval = csio_mb_fw_retval(mbp);
if (retval != FW_SUCCESS) {
csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
retval);
goto free_and_out;
}
mempool_free(mbp, hw->mb_mempool);
}
rv = csio_get_fcoe_resinfo(hw);
if (rv != 0) {
csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
goto out;
}
spin_unlock_irq(&hw->lock);
rv = csio_config_queues(hw);
spin_lock_irq(&hw->lock);
if (rv != 0) {
csio_err(hw, "Config of queues failed!: %d\n", rv);
goto out;
}
for (i = 0; i < hw->num_pports; i++)
hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
rv = csio_enable_ports(hw);
if (rv != 0) {
csio_err(hw, "Failed to enable ports: %d\n", rv);
goto out;
}
}
csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
return;
free_and_out:
mempool_free(mbp, hw->mb_mempool);
out:
return;
}
#define PF_INTR_MASK (PFSW | PFCIM)
/*
* csio_hw_intr_enable - Enable HW interrupts
* @hw: Pointer to HW module.
*
* Enable interrupts in HW registers.
*/
static void
csio_hw_intr_enable(struct csio_hw *hw)
{
uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
/*
* Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
* by FW, so do nothing for INTX.
*/
if (hw->intr_mode == CSIO_IM_MSIX)
csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
AIVEC(AIVEC_MASK), vec);
else if (hw->intr_mode == CSIO_IM_MSI)
csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
AIVEC(AIVEC_MASK), 0);
csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
/* Turn on MB interrupts - this will internally flush PIO as well */
csio_mb_intr_enable(hw);
/* These are common registers - only a master can modify them */
if (csio_is_hw_master(hw)) {
/*
* Disable the Serial FLASH interrupt, if enabled!
*/
pl &= (~SF);
csio_wr_reg32(hw, pl, PL_INT_ENABLE);
csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
ERR_DATA_CPL_ON_HIGH_QID1 |
ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
SGE_INT_ENABLE3);
csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
}
hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
}
/*
* csio_hw_intr_disable - Disable HW interrupts
* @hw: Pointer to HW module.
*
* Turn off Mailbox and PCI_PF_CFG interrupts.
*/
void
csio_hw_intr_disable(struct csio_hw *hw)
{
uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
return;
hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
if (csio_is_hw_master(hw))
csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
/* Turn off MB interrupts */
csio_mb_intr_disable(hw);
}
void
csio_hw_fatal_err(struct csio_hw *hw)
{
csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
csio_hw_intr_disable(hw);
/* Do not reset HW, we may need FW state for debugging */
csio_fatal(hw, "HW Fatal error encountered!\n");
}
/*****************************************************************************/
/* START: HW SM */
/*****************************************************************************/
/*
* csio_hws_uninit - Uninit state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_CFG:
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_configuring - Configuring state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_INIT:
csio_set_state(&hw->sm, csio_hws_initializing);
csio_hw_initialize(hw);
break;
case CSIO_HWE_INIT_DONE:
csio_set_state(&hw->sm, csio_hws_ready);
/* Fan out event to all lnode SMs */
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
break;
case CSIO_HWE_FATAL:
csio_set_state(&hw->sm, csio_hws_uninit);
break;
case CSIO_HWE_PCI_REMOVE:
csio_do_bye(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_initializing - Initialiazing state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_INIT_DONE:
csio_set_state(&hw->sm, csio_hws_ready);
/* Fan out event to all lnode SMs */
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
/* Enable interrupts */
csio_hw_intr_enable(hw);
break;
case CSIO_HWE_FATAL:
csio_set_state(&hw->sm, csio_hws_uninit);
break;
case CSIO_HWE_PCI_REMOVE:
csio_do_bye(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_ready - Ready state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
{
/* Remember the event */
hw->evtflag = evt;
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_HBA_RESET:
case CSIO_HWE_FW_DLOAD:
case CSIO_HWE_SUSPEND:
case CSIO_HWE_PCI_REMOVE:
case CSIO_HWE_PCIERR_DETECTED:
csio_set_state(&hw->sm, csio_hws_quiescing);
/* cleanup all outstanding cmds */
if (evt == CSIO_HWE_HBA_RESET ||
evt == CSIO_HWE_PCIERR_DETECTED)
csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
else
csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
csio_hw_intr_disable(hw);
csio_hw_mbm_cleanup(hw);
csio_evtq_stop(hw);
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
csio_evtq_flush(hw);
csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
break;
case CSIO_HWE_FATAL:
csio_set_state(&hw->sm, csio_hws_uninit);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_quiescing - Quiescing state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_QUIESCED:
switch (hw->evtflag) {
case CSIO_HWE_FW_DLOAD:
csio_set_state(&hw->sm, csio_hws_resetting);
/* Download firmware */
/* Fall through */
case CSIO_HWE_HBA_RESET:
csio_set_state(&hw->sm, csio_hws_resetting);
/* Start reset of the HBA */
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
csio_wr_destroy_queues(hw, false);
csio_do_reset(hw, false);
csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
break;
case CSIO_HWE_PCI_REMOVE:
csio_set_state(&hw->sm, csio_hws_removing);
csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
csio_wr_destroy_queues(hw, true);
/* Now send the bye command */
csio_do_bye(hw);
break;
case CSIO_HWE_SUSPEND:
csio_set_state(&hw->sm, csio_hws_quiesced);
break;
case CSIO_HWE_PCIERR_DETECTED:
csio_set_state(&hw->sm, csio_hws_pcierr);
csio_wr_destroy_queues(hw, false);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_quiesced - Quiesced state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_RESUME:
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_resetting - HW Resetting state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_HBA_RESET_DONE:
csio_evtq_start(hw);
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_removing - PCI Hotplug removing state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_HBA_RESET:
if (!csio_is_hw_master(hw))
break;
/*
* The BYE should have alerady been issued, so we cant
* use the mailbox interface. Hence we use the PL_RST
* register directly.
*/
csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
mdelay(2000);
break;
/* Should never receive any new events */
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*
* csio_hws_pcierr - PCI Error state
* @hw - HW module
* @evt - Event
*
*/
static void
csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
{
hw->prev_evt = hw->cur_evt;
hw->cur_evt = evt;
CSIO_INC_STATS(hw, n_evt_sm[evt]);
switch (evt) {
case CSIO_HWE_PCIERR_SLOT_RESET:
csio_evtq_start(hw);
csio_set_state(&hw->sm, csio_hws_configuring);
csio_hw_configure(hw);
break;
default:
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
}
/*****************************************************************************/
/* END: HW SM */
/*****************************************************************************/
/*
* csio_handle_intr_status - table driven interrupt handler
* @hw: HW instance
* @reg: the interrupt status register to process
* @acts: table of interrupt actions
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occured. The actions include
* optionally emitting a warning or alert message. The table is terminated
* by an entry specifying mask 0. Returns the number of fatal interrupt
* conditions.
*/
int
csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
const struct intr_info *acts)
{
int fatal = 0;
unsigned int mask = 0;
unsigned int status = csio_rd_reg32(hw, reg);
for ( ; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
csio_fatal(hw, "Fatal %s (0x%x)\n",
acts->msg, status & acts->mask);
} else if (acts->msg)
csio_info(hw, "%s (0x%x)\n",
acts->msg, status & acts->mask);
mask |= acts->mask;
}
status &= mask;
if (status) /* clear processed interrupts */
csio_wr_reg32(hw, status, reg);
return fatal;
}
/*
* TP interrupt handler.
*/
static void csio_tp_intr_handler(struct csio_hw *hw)
{
static struct intr_info tp_intr_info[] = {
{ 0x3fffffff, "TP parity error", -1, 1 },
{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
csio_hw_fatal_err(hw);
}
/*
* SGE interrupt handler.
*/
static void csio_sge_intr_handler(struct csio_hw *hw)
{
uint64_t v;
static struct intr_info sge_intr_info[] = {
{ ERR_CPL_EXCEED_IQE_SIZE,
"SGE received CPL exceeding IQE size", -1, 1 },
{ ERR_INVALID_CIDX_INC,
"SGE GTS CIDX increment too large", -1, 0 },
{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
{ ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
"SGE IQID > 1023 received CPL for FL", -1, 0 },
{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
0 },
{ ERR_ING_CTXT_PRIO,
"SGE too many priority ingress contexts", -1, 0 },
{ ERR_EGR_CTXT_PRIO,
"SGE too many priority egress contexts", -1, 0 },
{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
{ 0, NULL, 0, 0 }
};
v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
if (v) {
csio_fatal(hw, "SGE parity error (%#llx)\n",
(unsigned long long)v);
csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
SGE_INT_CAUSE1);
csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
}
v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
v != 0)
csio_hw_fatal_err(hw);
}
#define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
#define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
/*
* CIM interrupt handler.
*/
static void csio_cim_intr_handler(struct csio_hw *hw)
{
static struct intr_info cim_intr_info[] = {
{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info cim_upintr_info[] = {
{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
{ ILLWRINT, "CIM illegal write", -1, 1 },
{ ILLRDINT, "CIM illegal read", -1, 1 },
{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
{ 0, NULL, 0, 0 }
};
int fat;
fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
cim_intr_info) +
csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
cim_upintr_info);
if (fat)
csio_hw_fatal_err(hw);
}
/*
* ULP RX interrupt handler.
*/
static void csio_ulprx_intr_handler(struct csio_hw *hw)
{
static struct intr_info ulprx_intr_info[] = {
{ 0x1800000, "ULPRX context error", -1, 1 },
{ 0x7fffff, "ULPRX parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* ULP TX interrupt handler.
*/
static void csio_ulptx_intr_handler(struct csio_hw *hw)
{
static struct intr_info ulptx_intr_info[] = {
{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
0 },
{ 0xfffffff, "ULPTX parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* PM TX interrupt handler.
*/
static void csio_pmtx_intr_handler(struct csio_hw *hw)
{
static struct intr_info pmtx_intr_info[] = {
{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
{ 0xffffff0, "PMTX framing error", -1, 1 },
{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
1 },
{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* PM RX interrupt handler.
*/
static void csio_pmrx_intr_handler(struct csio_hw *hw)
{
static struct intr_info pmrx_intr_info[] = {
{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
{ 0x3ffff0, "PMRX framing error", -1, 1 },
{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
1 },
{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
csio_hw_fatal_err(hw);
}
/*
* CPL switch interrupt handler.
*/
static void csio_cplsw_intr_handler(struct csio_hw *hw)
{
static struct intr_info cplsw_intr_info[] = {
{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
csio_hw_fatal_err(hw);
}
/*
* LE interrupt handler.
*/
static void csio_le_intr_handler(struct csio_hw *hw)
{
static struct intr_info le_intr_info[] = {
{ LIPMISS, "LE LIP miss", -1, 0 },
{ LIP0, "LE 0 LIP error", -1, 0 },
{ PARITYERR, "LE parity error", -1, 1 },
{ UNKNOWNCMD, "LE unknown command", -1, 1 },
{ REQQPARERR, "LE request queue parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
csio_hw_fatal_err(hw);
}
/*
* MPS interrupt handler.
*/
static void csio_mps_intr_handler(struct csio_hw *hw)
{
static struct intr_info mps_rx_intr_info[] = {
{ 0xffffff, "MPS Rx parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_tx_intr_info[] = {
{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
{ BUBBLE, "MPS Tx underflow", -1, 1 },
{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
{ FRMERR, "MPS Tx framing error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_trc_intr_info[] = {
{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_stat_sram_intr_info[] = {
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_stat_tx_intr_info[] = {
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_stat_rx_intr_info[] = {
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info mps_cls_intr_info[] = {
{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
int fat;
fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
mps_rx_intr_info) +
csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
mps_tx_intr_info) +
csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
mps_trc_intr_info) +
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
mps_stat_sram_intr_info) +
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
mps_stat_tx_intr_info) +
csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
mps_stat_rx_intr_info) +
csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
mps_cls_intr_info);
csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
csio_rd_reg32(hw, MPS_INT_CAUSE); /* flush */
if (fat)
csio_hw_fatal_err(hw);
}
#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
/*
* EDC/MC interrupt handler.
*/
static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
{
static const char name[3][5] = { "EDC0", "EDC1", "MC" };
unsigned int addr, cnt_addr, v;
if (idx <= MEM_EDC1) {
addr = EDC_REG(EDC_INT_CAUSE, idx);
cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
} else {
addr = MC_INT_CAUSE;
cnt_addr = MC_ECC_STATUS;
}
v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
if (v & PERR_INT_CAUSE)
csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
if (v & ECC_CE_INT_CAUSE) {
uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
csio_warn(hw, "%u %s correctable ECC data error%s\n",
cnt, name[idx], cnt > 1 ? "s" : "");
}
if (v & ECC_UE_INT_CAUSE)
csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
csio_wr_reg32(hw, v, addr);
if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
csio_hw_fatal_err(hw);
}
/*
* MA interrupt handler.
*/
static void csio_ma_intr_handler(struct csio_hw *hw)
{
uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
if (status & MEM_PERR_INT_CAUSE)
csio_fatal(hw, "MA parity error, parity status %#x\n",
csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
if (status & MEM_WRAP_INT_CAUSE) {
v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
csio_fatal(hw,
"MA address wrap-around error by client %u to address %#x\n",
MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
}
csio_wr_reg32(hw, status, MA_INT_CAUSE);
csio_hw_fatal_err(hw);
}
/*
* SMB interrupt handler.
*/
static void csio_smb_intr_handler(struct csio_hw *hw)
{
static struct intr_info smb_intr_info[] = {
{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
csio_hw_fatal_err(hw);
}
/*
* NC-SI interrupt handler.
*/
static void csio_ncsi_intr_handler(struct csio_hw *hw)
{
static struct intr_info ncsi_intr_info[] = {
{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
csio_hw_fatal_err(hw);
}
/*
* XGMAC interrupt handler.
*/
static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
{
uint32_t v = csio_rd_reg32(hw, CSIO_MAC_INT_CAUSE_REG(hw, port));
v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
if (!v)
return;
if (v & TXFIFO_PRTY_ERR)
csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
if (v & RXFIFO_PRTY_ERR)
csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
csio_wr_reg32(hw, v, CSIO_MAC_INT_CAUSE_REG(hw, port));
csio_hw_fatal_err(hw);
}
/*
* PL interrupt handler.
*/
static void csio_pl_intr_handler(struct csio_hw *hw)
{
static struct intr_info pl_intr_info[] = {
{ FATALPERR, "T4 fatal parity error", -1, 1 },
{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
csio_hw_fatal_err(hw);
}
/*
* csio_hw_slow_intr_handler - control path interrupt handler
* @hw: HW module
*
* Interrupt handler for non-data global interrupt events, e.g., errors.
* The designation 'slow' is because it involves register reads, while
* data interrupts typically don't involve any MMIOs.
*/
int
csio_hw_slow_intr_handler(struct csio_hw *hw)
{
uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
if (!(cause & CSIO_GLBL_INTR_MASK)) {
CSIO_INC_STATS(hw, n_plint_unexp);
return 0;
}
csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
CSIO_INC_STATS(hw, n_plint_cnt);
if (cause & CIM)
csio_cim_intr_handler(hw);
if (cause & MPS)
csio_mps_intr_handler(hw);
if (cause & NCSI)
csio_ncsi_intr_handler(hw);
if (cause & PL)
csio_pl_intr_handler(hw);
if (cause & SMB)
csio_smb_intr_handler(hw);
if (cause & XGMAC0)
csio_xgmac_intr_handler(hw, 0);
if (cause & XGMAC1)
csio_xgmac_intr_handler(hw, 1);
if (cause & XGMAC_KR0)
csio_xgmac_intr_handler(hw, 2);
if (cause & XGMAC_KR1)
csio_xgmac_intr_handler(hw, 3);
if (cause & PCIE)
hw->chip_ops->chip_pcie_intr_handler(hw);
if (cause & MC)
csio_mem_intr_handler(hw, MEM_MC);
if (cause & EDC0)
csio_mem_intr_handler(hw, MEM_EDC0);
if (cause & EDC1)
csio_mem_intr_handler(hw, MEM_EDC1);
if (cause & LE)
csio_le_intr_handler(hw);
if (cause & TP)
csio_tp_intr_handler(hw);
if (cause & MA)
csio_ma_intr_handler(hw);
if (cause & PM_TX)
csio_pmtx_intr_handler(hw);
if (cause & PM_RX)
csio_pmrx_intr_handler(hw);
if (cause & ULP_RX)
csio_ulprx_intr_handler(hw);
if (cause & CPL_SWITCH)
csio_cplsw_intr_handler(hw);
if (cause & SGE)
csio_sge_intr_handler(hw);
if (cause & ULP_TX)
csio_ulptx_intr_handler(hw);
/* Clear the interrupts just processed for which we are the master. */
csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
return 1;
}
/*****************************************************************************
* HW <--> mailbox interfacing routines.
****************************************************************************/
/*
* csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
*
* @data: Private data pointer.
*
* Called from worker thread context.
*/
static void
csio_mberr_worker(void *data)
{
struct csio_hw *hw = (struct csio_hw *)data;
struct csio_mbm *mbm = &hw->mbm;
LIST_HEAD(cbfn_q);
struct csio_mb *mbp_next;
int rv;
del_timer_sync(&mbm->timer);
spin_lock_irq(&hw->lock);
if (list_empty(&mbm->cbfn_q)) {
spin_unlock_irq(&hw->lock);
return;
}
list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
mbm->stats.n_cbfnq = 0;
/* Try to start waiting mailboxes */
if (!list_empty(&mbm->req_q)) {
mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
list_del_init(&mbp_next->list);
rv = csio_mb_issue(hw, mbp_next);
if (rv != 0)
list_add_tail(&mbp_next->list, &mbm->req_q);
else
CSIO_DEC_STATS(mbm, n_activeq);
}
spin_unlock_irq(&hw->lock);
/* Now callback completions */
csio_mb_completions(hw, &cbfn_q);
}
/*
* csio_hw_mb_timer - Top-level Mailbox timeout handler.
*
* @data: private data pointer
*
**/
static void
csio_hw_mb_timer(uintptr_t data)
{
struct csio_hw *hw = (struct csio_hw *)data;
struct csio_mb *mbp = NULL;
spin_lock_irq(&hw->lock);
mbp = csio_mb_tmo_handler(hw);
spin_unlock_irq(&hw->lock);
/* Call back the function for the timed-out Mailbox */
if (mbp)
mbp->mb_cbfn(hw, mbp);
}
/*
* csio_hw_mbm_cleanup - Cleanup Mailbox module.
* @hw: HW module
*
* Called with lock held, should exit with lock held.
* Cancels outstanding mailboxes (waiting, in-flight) and gathers them
* into a local queue. Drops lock and calls the completions. Holds
* lock and returns.
*/
static void
csio_hw_mbm_cleanup(struct csio_hw *hw)
{
LIST_HEAD(cbfn_q);
csio_mb_cancel_all(hw, &cbfn_q);
spin_unlock_irq(&hw->lock);
csio_mb_completions(hw, &cbfn_q);
spin_lock_irq(&hw->lock);
}
/*****************************************************************************
* Event handling
****************************************************************************/
int
csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
uint16_t len)
{
struct csio_evt_msg *evt_entry = NULL;
if (type >= CSIO_EVT_MAX)
return -EINVAL;
if (len > CSIO_EVT_MSG_SIZE)
return -EINVAL;
if (hw->flags & CSIO_HWF_FWEVT_STOP)
return -EINVAL;
if (list_empty(&hw->evt_free_q)) {
csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
type, len);
return -ENOMEM;
}
evt_entry = list_first_entry(&hw->evt_free_q,
struct csio_evt_msg, list);
list_del_init(&evt_entry->list);
/* copy event msg and queue the event */
evt_entry->type = type;
memcpy((void *)evt_entry->data, evt_msg, len);
list_add_tail(&evt_entry->list, &hw->evt_active_q);
CSIO_DEC_STATS(hw, n_evt_freeq);
CSIO_INC_STATS(hw, n_evt_activeq);
return 0;
}
static int
csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
uint16_t len, bool msg_sg)
{
struct csio_evt_msg *evt_entry = NULL;
struct csio_fl_dma_buf *fl_sg;
uint32_t off = 0;
unsigned long flags;
int n, ret = 0;
if (type >= CSIO_EVT_MAX)
return -EINVAL;
if (len > CSIO_EVT_MSG_SIZE)
return -EINVAL;
spin_lock_irqsave(&hw->lock, flags);
if (hw->flags & CSIO_HWF_FWEVT_STOP) {
ret = -EINVAL;
goto out;
}
if (list_empty(&hw->evt_free_q)) {
csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
type, len);
ret = -ENOMEM;
goto out;
}
evt_entry = list_first_entry(&hw->evt_free_q,
struct csio_evt_msg, list);
list_del_init(&evt_entry->list);
/* copy event msg and queue the event */
evt_entry->type = type;
/* If Payload in SG list*/
if (msg_sg) {
fl_sg = (struct csio_fl_dma_buf *) evt_msg;
for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
memcpy((void *)((uintptr_t)evt_entry->data + off),
fl_sg->flbufs[n].vaddr,
fl_sg->flbufs[n].len);
off += fl_sg->flbufs[n].len;
}
} else
memcpy((void *)evt_entry->data, evt_msg, len);
list_add_tail(&evt_entry->list, &hw->evt_active_q);
CSIO_DEC_STATS(hw, n_evt_freeq);
CSIO_INC_STATS(hw, n_evt_activeq);
out:
spin_unlock_irqrestore(&hw->lock, flags);
return ret;
}
static void
csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
{
if (evt_entry) {
spin_lock_irq(&hw->lock);
list_del_init(&evt_entry->list);
list_add_tail(&evt_entry->list, &hw->evt_free_q);
CSIO_DEC_STATS(hw, n_evt_activeq);
CSIO_INC_STATS(hw, n_evt_freeq);
spin_unlock_irq(&hw->lock);
}
}
void
csio_evtq_flush(struct csio_hw *hw)
{
uint32_t count;
count = 30;
while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
spin_unlock_irq(&hw->lock);
msleep(2000);
spin_lock_irq(&hw->lock);
}
CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
}
static void
csio_evtq_stop(struct csio_hw *hw)
{
hw->flags |= CSIO_HWF_FWEVT_STOP;
}
static void
csio_evtq_start(struct csio_hw *hw)
{
hw->flags &= ~CSIO_HWF_FWEVT_STOP;
}
static void
csio_evtq_cleanup(struct csio_hw *hw)
{
struct list_head *evt_entry, *next_entry;
/* Release outstanding events from activeq to freeq*/
if (!list_empty(&hw->evt_active_q))
list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
hw->stats.n_evt_activeq = 0;
hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
/* Freeup event entry */
list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
kfree(evt_entry);
CSIO_DEC_STATS(hw, n_evt_freeq);
}
hw->stats.n_evt_freeq = 0;
}
static void
csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
struct csio_fl_dma_buf *flb, void *priv)
{
__u8 op;
void *msg = NULL;
uint32_t msg_len = 0;
bool msg_sg = 0;
op = ((struct rss_header *) wr)->opcode;
if (op == CPL_FW6_PLD) {
CSIO_INC_STATS(hw, n_cpl_fw6_pld);
if (!flb || !flb->totlen) {
CSIO_INC_STATS(hw, n_cpl_unexp);
return;
}
msg = (void *) flb;
msg_len = flb->totlen;
msg_sg = 1;
} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
CSIO_INC_STATS(hw, n_cpl_fw6_msg);
/* skip RSS header */
msg = (void *)((uintptr_t)wr + sizeof(__be64));
msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
sizeof(struct cpl_fw4_msg);
} else {
csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
CSIO_INC_STATS(hw, n_cpl_unexp);
return;
}
/*
* Enqueue event to EventQ. Events processing happens
* in Event worker thread context
*/
if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
(uint16_t)msg_len, msg_sg))
CSIO_INC_STATS(hw, n_evt_drop);
}
void
csio_evtq_worker(struct work_struct *work)
{
struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
struct list_head *evt_entry, *next_entry;
LIST_HEAD(evt_q);
struct csio_evt_msg *evt_msg;
struct cpl_fw6_msg *msg;
struct csio_rnode *rn;
int rv = 0;
uint8_t evtq_stop = 0;
csio_dbg(hw, "event worker thread active evts#%d\n",
hw->stats.n_evt_activeq);
spin_lock_irq(&hw->lock);
while (!list_empty(&hw->evt_active_q)) {
list_splice_tail_init(&hw->evt_active_q, &evt_q);
spin_unlock_irq(&hw->lock);
list_for_each_safe(evt_entry, next_entry, &evt_q) {
evt_msg = (struct csio_evt_msg *) evt_entry;
/* Drop events if queue is STOPPED */
spin_lock_irq(&hw->lock);
if (hw->flags & CSIO_HWF_FWEVT_STOP)
evtq_stop = 1;
spin_unlock_irq(&hw->lock);
if (evtq_stop) {
CSIO_INC_STATS(hw, n_evt_drop);
goto free_evt;
}
switch (evt_msg->type) {
case CSIO_EVT_FW:
msg = (struct cpl_fw6_msg *)(evt_msg->data);
if ((msg->opcode == CPL_FW6_MSG ||
msg->opcode == CPL_FW4_MSG) &&
!msg->type) {
rv = csio_mb_fwevt_handler(hw,
msg->data);
if (!rv)
break;
/* Handle any remaining fw events */
csio_fcoe_fwevt_handler(hw,
msg->opcode, msg->data);
} else if (msg->opcode == CPL_FW6_PLD) {
csio_fcoe_fwevt_handler(hw,
msg->opcode, msg->data);
} else {
csio_warn(hw,
"Unhandled FW msg op %x type %x\n",
msg->opcode, msg->type);
CSIO_INC_STATS(hw, n_evt_drop);
}
break;
case CSIO_EVT_MBX:
csio_mberr_worker(hw);
break;
case CSIO_EVT_DEV_LOSS:
memcpy(&rn, evt_msg->data, sizeof(rn));
csio_rnode_devloss_handler(rn);
break;
default:
csio_warn(hw, "Unhandled event %x on evtq\n",
evt_msg->type);
CSIO_INC_STATS(hw, n_evt_unexp);
break;
}
free_evt:
csio_free_evt(hw, evt_msg);
}
spin_lock_irq(&hw->lock);
}
hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
spin_unlock_irq(&hw->lock);
}
int
csio_fwevtq_handler(struct csio_hw *hw)
{
int rv;
if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
CSIO_INC_STATS(hw, n_int_stray);
return -EINVAL;
}
rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
csio_process_fwevtq_entry, NULL);
return rv;
}
/****************************************************************************
* Entry points
****************************************************************************/
/* Management module */
/*
* csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
* mgmt - mgmt module
* @io_req - io request
*
* Return - 0:if given IO Req exists in active Q.
* -EINVAL :if lookup fails.
*/
int
csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
{
struct list_head *tmp;
/* Lookup ioreq in the ACTIVEQ */
list_for_each(tmp, &mgmtm->active_q) {
if (io_req == (struct csio_ioreq *)tmp)
return 0;
}
return -EINVAL;
}
#define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
/*
* csio_mgmts_tmo_handler - MGMT IO Timeout handler.
* @data - Event data.
*
* Return - none.
*/
static void
csio_mgmt_tmo_handler(uintptr_t data)
{
struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
struct list_head *tmp;
struct csio_ioreq *io_req;
csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
spin_lock_irq(&mgmtm->hw->lock);
list_for_each(tmp, &mgmtm->active_q) {
io_req = (struct csio_ioreq *) tmp;
io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
if (!io_req->tmo) {
/* Dequeue the request from retry Q. */
tmp = csio_list_prev(tmp);
list_del_init(&io_req->sm.sm_list);
if (io_req->io_cbfn) {
/* io_req will be freed by completion handler */
io_req->wr_status = -ETIMEDOUT;
io_req->io_cbfn(mgmtm->hw, io_req);
} else {
CSIO_DB_ASSERT(0);
}
}
}
/* If retry queue is not empty, re-arm timer */
if (!list_empty(&mgmtm->active_q))
mod_timer(&mgmtm->mgmt_timer,
jiffies + msecs_to_jiffies(ECM_MIN_TMO));
spin_unlock_irq(&mgmtm->hw->lock);
}
static void
csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
{
struct csio_hw *hw = mgmtm->hw;
struct csio_ioreq *io_req;
struct list_head *tmp;
uint32_t count;
count = 30;
/* Wait for all outstanding req to complete gracefully */
while ((!list_empty(&mgmtm->active_q)) && count--) {
spin_unlock_irq(&hw->lock);
msleep(2000);
spin_lock_irq(&hw->lock);
}
/* release outstanding req from ACTIVEQ */
list_for_each(tmp, &mgmtm->active_q) {
io_req = (struct csio_ioreq *) tmp;
tmp = csio_list_prev(tmp);
list_del_init(&io_req->sm.sm_list);
mgmtm->stats.n_active--;
if (io_req->io_cbfn) {
/* io_req will be freed by completion handler */
io_req->wr_status = -ETIMEDOUT;
io_req->io_cbfn(mgmtm->hw, io_req);
}
}
}
/*
* csio_mgmt_init - Mgmt module init entry point
* @mgmtsm - mgmt module
* @hw - HW module
*
* Initialize mgmt timer, resource wait queue, active queue,
* completion q. Allocate Egress and Ingress
* WR queues and save off the queue index returned by the WR
* module for future use. Allocate and save off mgmt reqs in the
* mgmt_req_freelist for future use. Make sure their SM is initialized
* to uninit state.
* Returns: 0 - on success
* -ENOMEM - on error.
*/
static int
csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
{
struct timer_list *timer = &mgmtm->mgmt_timer;
init_timer(timer);
timer->function = csio_mgmt_tmo_handler;
timer->data = (unsigned long)mgmtm;
INIT_LIST_HEAD(&mgmtm->active_q);
INIT_LIST_HEAD(&mgmtm->cbfn_q);
mgmtm->hw = hw;
/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
return 0;
}
/*
* csio_mgmtm_exit - MGMT module exit entry point
* @mgmtsm - mgmt module
*
* This function called during MGMT module uninit.
* Stop timers, free ioreqs allocated.
* Returns: None
*
*/
static void
csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
{
del_timer_sync(&mgmtm->mgmt_timer);
}
/**
* csio_hw_start - Kicks off the HW State machine
* @hw: Pointer to HW module.
*
* It is assumed that the initialization is a synchronous operation.
* So when we return afer posting the event, the HW SM should be in
* the ready state, if there were no errors during init.
*/
int
csio_hw_start(struct csio_hw *hw)
{
spin_lock_irq(&hw->lock);
csio_post_event(&hw->sm, CSIO_HWE_CFG);
spin_unlock_irq(&hw->lock);
if (csio_is_hw_ready(hw))
return 0;
else
return -EINVAL;
}
int
csio_hw_stop(struct csio_hw *hw)
{
csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
if (csio_is_hw_removing(hw))
return 0;
else
return -EINVAL;
}
/* Max reset retries */
#define CSIO_MAX_RESET_RETRIES 3
/**
* csio_hw_reset - Reset the hardware
* @hw: HW module.
*
* Caller should hold lock across this function.
*/
int
csio_hw_reset(struct csio_hw *hw)
{
if (!csio_is_hw_master(hw))
return -EPERM;
if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
csio_dbg(hw, "Max hw reset attempts reached..");
return -EINVAL;
}
hw->rst_retries++;
csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
if (csio_is_hw_ready(hw)) {
hw->rst_retries = 0;
hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
return 0;
} else
return -EINVAL;
}
/*
* csio_hw_get_device_id - Caches the Adapter's vendor & device id.
* @hw: HW module.
*/
static void
csio_hw_get_device_id(struct csio_hw *hw)
{
/* Is the adapter device id cached already ?*/
if (csio_is_dev_id_cached(hw))
return;
/* Get the PCI vendor & device id */
pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
&hw->params.pci.vendor_id);
pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
&hw->params.pci.device_id);
csio_dev_id_cached(hw);
hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
} /* csio_hw_get_device_id */
/*
* csio_hw_set_description - Set the model, description of the hw.
* @hw: HW module.
* @ven_id: PCI Vendor ID
* @dev_id: PCI Device ID
*/
static void
csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
{
uint32_t adap_type, prot_type;
if (ven_id == CSIO_VENDOR_ID) {
prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
if (prot_type == CSIO_T4_FCOE_ASIC) {
memcpy(hw->hw_ver,
csio_t4_fcoe_adapters[adap_type].model_no, 16);
memcpy(hw->model_desc,
csio_t4_fcoe_adapters[adap_type].description,
32);
} else if (prot_type == CSIO_T5_FCOE_ASIC) {
memcpy(hw->hw_ver,
csio_t5_fcoe_adapters[adap_type].model_no, 16);
memcpy(hw->model_desc,
csio_t5_fcoe_adapters[adap_type].description,
32);
} else {
char tempName[32] = "Chelsio FCoE Controller";
memcpy(hw->model_desc, tempName, 32);
}
}
} /* csio_hw_set_description */
/**
* csio_hw_init - Initialize HW module.
* @hw: Pointer to HW module.
*
* Initialize the members of the HW module.
*/
int
csio_hw_init(struct csio_hw *hw)
{
int rv = -EINVAL;
uint32_t i;
uint16_t ven_id, dev_id;
struct csio_evt_msg *evt_entry;
INIT_LIST_HEAD(&hw->sm.sm_list);
csio_init_state(&hw->sm, csio_hws_uninit);
spin_lock_init(&hw->lock);
INIT_LIST_HEAD(&hw->sln_head);
/* Get the PCI vendor & device id */
csio_hw_get_device_id(hw);
strcpy(hw->name, CSIO_HW_NAME);
/* Initialize the HW chip ops with T4/T5 specific ops */
hw->chip_ops = csio_is_t4(hw->chip_id) ? &t4_ops : &t5_ops;
/* Set the model & its description */
ven_id = hw->params.pci.vendor_id;
dev_id = hw->params.pci.device_id;
csio_hw_set_description(hw, ven_id, dev_id);
/* Initialize default log level */
hw->params.log_level = (uint32_t) csio_dbg_level;
csio_set_fwevt_intr_idx(hw, -1);
csio_set_nondata_intr_idx(hw, -1);
/* Init all the modules: Mailbox, WorkRequest and Transport */
if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
goto err;
rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
if (rv)
goto err_mbm_exit;
rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
if (rv)
goto err_wrm_exit;
rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
if (rv)
goto err_scsim_exit;
/* Pre-allocate evtq and initialize them */
INIT_LIST_HEAD(&hw->evt_active_q);
INIT_LIST_HEAD(&hw->evt_free_q);
for (i = 0; i < csio_evtq_sz; i++) {
evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
if (!evt_entry) {
csio_err(hw, "Failed to initialize eventq");
goto err_evtq_cleanup;
}
list_add_tail(&evt_entry->list, &hw->evt_free_q);
CSIO_INC_STATS(hw, n_evt_freeq);
}
hw->dev_num = dev_num;
dev_num++;
return 0;
err_evtq_cleanup:
csio_evtq_cleanup(hw);
csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
err_scsim_exit:
csio_scsim_exit(csio_hw_to_scsim(hw));
err_wrm_exit:
csio_wrm_exit(csio_hw_to_wrm(hw), hw);
err_mbm_exit:
csio_mbm_exit(csio_hw_to_mbm(hw));
err:
return rv;
}
/**
* csio_hw_exit - Un-initialize HW module.
* @hw: Pointer to HW module.
*
*/
void
csio_hw_exit(struct csio_hw *hw)
{
csio_evtq_cleanup(hw);
csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
csio_scsim_exit(csio_hw_to_scsim(hw));
csio_wrm_exit(csio_hw_to_wrm(hw), hw);
csio_mbm_exit(csio_hw_to_mbm(hw));
}