mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 18:19:49 +07:00
63fb0a9516
Patch7f1d642fbb
("drivers/perf: arm-pmu: Fix handling of SPI lacking interrupt-affinity property") unintended also fixes perf_event support for bcm2835 which doesn't have PMU interrupts. Unfortunately this change introduce a NULL pointer dereference on bcm2835, because irq_is_percpu always expected to be called with a valid IRQ. So fix this regression by validating the IRQ before. Tested-by: Kevin Hilman <khilman@baylibre.com> Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com> Fixes:7f1d642fbb
("drivers/perf: arm-pmu: Fix handling of SPI lacking "interrupt-affinity" property") Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
1081 lines
26 KiB
C
1081 lines
26 KiB
C
#undef DEBUG
|
|
|
|
/*
|
|
* ARM performance counter support.
|
|
*
|
|
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
|
|
* Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
|
|
*
|
|
* This code is based on the sparc64 perf event code, which is in turn based
|
|
* on the x86 code.
|
|
*/
|
|
#define pr_fmt(fmt) "hw perfevents: " fmt
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/perf/arm_pmu.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdesc.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
static int
|
|
armpmu_map_cache_event(const unsigned (*cache_map)
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX],
|
|
u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result, ret;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return -EINVAL;
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return -EINVAL;
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
|
|
|
|
if (ret == CACHE_OP_UNSUPPORTED)
|
|
return -ENOENT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
|
|
{
|
|
int mapping;
|
|
|
|
if (config >= PERF_COUNT_HW_MAX)
|
|
return -EINVAL;
|
|
|
|
mapping = (*event_map)[config];
|
|
return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
|
|
}
|
|
|
|
static int
|
|
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
|
|
{
|
|
return (int)(config & raw_event_mask);
|
|
}
|
|
|
|
int
|
|
armpmu_map_event(struct perf_event *event,
|
|
const unsigned (*event_map)[PERF_COUNT_HW_MAX],
|
|
const unsigned (*cache_map)
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX],
|
|
u32 raw_event_mask)
|
|
{
|
|
u64 config = event->attr.config;
|
|
int type = event->attr.type;
|
|
|
|
if (type == event->pmu->type)
|
|
return armpmu_map_raw_event(raw_event_mask, config);
|
|
|
|
switch (type) {
|
|
case PERF_TYPE_HARDWARE:
|
|
return armpmu_map_hw_event(event_map, config);
|
|
case PERF_TYPE_HW_CACHE:
|
|
return armpmu_map_cache_event(cache_map, config);
|
|
case PERF_TYPE_RAW:
|
|
return armpmu_map_raw_event(raw_event_mask, config);
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
int armpmu_event_set_period(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int ret = 0;
|
|
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
/*
|
|
* Limit the maximum period to prevent the counter value
|
|
* from overtaking the one we are about to program. In
|
|
* effect we are reducing max_period to account for
|
|
* interrupt latency (and we are being very conservative).
|
|
*/
|
|
if (left > (armpmu->max_period >> 1))
|
|
left = armpmu->max_period >> 1;
|
|
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
u64 armpmu_event_update(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u64 delta, prev_raw_count, new_raw_count;
|
|
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = armpmu->read_counter(event);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
static void
|
|
armpmu_read(struct perf_event *event)
|
|
{
|
|
armpmu_event_update(event);
|
|
}
|
|
|
|
static void
|
|
armpmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/*
|
|
* ARM pmu always has to update the counter, so ignore
|
|
* PERF_EF_UPDATE, see comments in armpmu_start().
|
|
*/
|
|
if (!(hwc->state & PERF_HES_STOPPED)) {
|
|
armpmu->disable(event);
|
|
armpmu_event_update(event);
|
|
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void armpmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/*
|
|
* ARM pmu always has to reprogram the period, so ignore
|
|
* PERF_EF_RELOAD, see the comment below.
|
|
*/
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
|
|
|
|
hwc->state = 0;
|
|
/*
|
|
* Set the period again. Some counters can't be stopped, so when we
|
|
* were stopped we simply disabled the IRQ source and the counter
|
|
* may have been left counting. If we don't do this step then we may
|
|
* get an interrupt too soon or *way* too late if the overflow has
|
|
* happened since disabling.
|
|
*/
|
|
armpmu_event_set_period(event);
|
|
armpmu->enable(event);
|
|
}
|
|
|
|
static void
|
|
armpmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
armpmu_stop(event, PERF_EF_UPDATE);
|
|
hw_events->events[idx] = NULL;
|
|
clear_bit(idx, hw_events->used_mask);
|
|
if (armpmu->clear_event_idx)
|
|
armpmu->clear_event_idx(hw_events, event);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static int
|
|
armpmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
int err = 0;
|
|
|
|
/* An event following a process won't be stopped earlier */
|
|
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
|
|
return -ENOENT;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
/* If we don't have a space for the counter then finish early. */
|
|
idx = armpmu->get_event_idx(hw_events, event);
|
|
if (idx < 0) {
|
|
err = idx;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there is an event in the counter we are going to use then make
|
|
* sure it is disabled.
|
|
*/
|
|
event->hw.idx = idx;
|
|
armpmu->disable(event);
|
|
hw_events->events[idx] = event;
|
|
|
|
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
if (flags & PERF_EF_START)
|
|
armpmu_start(event, PERF_EF_RELOAD);
|
|
|
|
/* Propagate our changes to the userspace mapping. */
|
|
perf_event_update_userpage(event);
|
|
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
|
|
struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu;
|
|
|
|
if (is_software_event(event))
|
|
return 1;
|
|
|
|
/*
|
|
* Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
|
|
* core perf code won't check that the pmu->ctx == leader->ctx
|
|
* until after pmu->event_init(event).
|
|
*/
|
|
if (event->pmu != pmu)
|
|
return 0;
|
|
|
|
if (event->state < PERF_EVENT_STATE_OFF)
|
|
return 1;
|
|
|
|
if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
|
|
return 1;
|
|
|
|
armpmu = to_arm_pmu(event->pmu);
|
|
return armpmu->get_event_idx(hw_events, event) >= 0;
|
|
}
|
|
|
|
static int
|
|
validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *sibling, *leader = event->group_leader;
|
|
struct pmu_hw_events fake_pmu;
|
|
|
|
/*
|
|
* Initialise the fake PMU. We only need to populate the
|
|
* used_mask for the purposes of validation.
|
|
*/
|
|
memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
|
|
|
|
if (!validate_event(event->pmu, &fake_pmu, leader))
|
|
return -EINVAL;
|
|
|
|
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
|
|
if (!validate_event(event->pmu, &fake_pmu, sibling))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!validate_event(event->pmu, &fake_pmu, event))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
|
|
{
|
|
struct arm_pmu *armpmu;
|
|
struct platform_device *plat_device;
|
|
struct arm_pmu_platdata *plat;
|
|
int ret;
|
|
u64 start_clock, finish_clock;
|
|
|
|
/*
|
|
* we request the IRQ with a (possibly percpu) struct arm_pmu**, but
|
|
* the handlers expect a struct arm_pmu*. The percpu_irq framework will
|
|
* do any necessary shifting, we just need to perform the first
|
|
* dereference.
|
|
*/
|
|
armpmu = *(void **)dev;
|
|
plat_device = armpmu->plat_device;
|
|
plat = dev_get_platdata(&plat_device->dev);
|
|
|
|
start_clock = sched_clock();
|
|
if (plat && plat->handle_irq)
|
|
ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
|
|
else
|
|
ret = armpmu->handle_irq(irq, armpmu);
|
|
finish_clock = sched_clock();
|
|
|
|
perf_sample_event_took(finish_clock - start_clock);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
armpmu_release_hardware(struct arm_pmu *armpmu)
|
|
{
|
|
armpmu->free_irq(armpmu);
|
|
}
|
|
|
|
static int
|
|
armpmu_reserve_hardware(struct arm_pmu *armpmu)
|
|
{
|
|
int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
|
|
if (err) {
|
|
armpmu_release_hardware(armpmu);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
atomic_t *active_events = &armpmu->active_events;
|
|
struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
|
|
|
|
if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
|
|
armpmu_release_hardware(armpmu);
|
|
mutex_unlock(pmu_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
static int
|
|
event_requires_mode_exclusion(struct perf_event_attr *attr)
|
|
{
|
|
return attr->exclude_idle || attr->exclude_user ||
|
|
attr->exclude_kernel || attr->exclude_hv;
|
|
}
|
|
|
|
static int
|
|
__hw_perf_event_init(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int mapping;
|
|
|
|
mapping = armpmu->map_event(event);
|
|
|
|
if (mapping < 0) {
|
|
pr_debug("event %x:%llx not supported\n", event->attr.type,
|
|
event->attr.config);
|
|
return mapping;
|
|
}
|
|
|
|
/*
|
|
* We don't assign an index until we actually place the event onto
|
|
* hardware. Use -1 to signify that we haven't decided where to put it
|
|
* yet. For SMP systems, each core has it's own PMU so we can't do any
|
|
* clever allocation or constraints checking at this point.
|
|
*/
|
|
hwc->idx = -1;
|
|
hwc->config_base = 0;
|
|
hwc->config = 0;
|
|
hwc->event_base = 0;
|
|
|
|
/*
|
|
* Check whether we need to exclude the counter from certain modes.
|
|
*/
|
|
if ((!armpmu->set_event_filter ||
|
|
armpmu->set_event_filter(hwc, &event->attr)) &&
|
|
event_requires_mode_exclusion(&event->attr)) {
|
|
pr_debug("ARM performance counters do not support "
|
|
"mode exclusion\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* Store the event encoding into the config_base field.
|
|
*/
|
|
hwc->config_base |= (unsigned long)mapping;
|
|
|
|
if (!is_sampling_event(event)) {
|
|
/*
|
|
* For non-sampling runs, limit the sample_period to half
|
|
* of the counter width. That way, the new counter value
|
|
* is far less likely to overtake the previous one unless
|
|
* you have some serious IRQ latency issues.
|
|
*/
|
|
hwc->sample_period = armpmu->max_period >> 1;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
if (event->group_leader != event) {
|
|
if (validate_group(event) != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int armpmu_event_init(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
int err = 0;
|
|
atomic_t *active_events = &armpmu->active_events;
|
|
|
|
/*
|
|
* Reject CPU-affine events for CPUs that are of a different class to
|
|
* that which this PMU handles. Process-following events (where
|
|
* event->cpu == -1) can be migrated between CPUs, and thus we have to
|
|
* reject them later (in armpmu_add) if they're scheduled on a
|
|
* different class of CPU.
|
|
*/
|
|
if (event->cpu != -1 &&
|
|
!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
|
|
return -ENOENT;
|
|
|
|
/* does not support taken branch sampling */
|
|
if (has_branch_stack(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (armpmu->map_event(event) == -ENOENT)
|
|
return -ENOENT;
|
|
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
if (!atomic_inc_not_zero(active_events)) {
|
|
mutex_lock(&armpmu->reserve_mutex);
|
|
if (atomic_read(active_events) == 0)
|
|
err = armpmu_reserve_hardware(armpmu);
|
|
|
|
if (!err)
|
|
atomic_inc(active_events);
|
|
mutex_unlock(&armpmu->reserve_mutex);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
err = __hw_perf_event_init(event);
|
|
if (err)
|
|
hw_perf_event_destroy(event);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void armpmu_enable(struct pmu *pmu)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(pmu);
|
|
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
|
|
int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
|
|
|
|
/* For task-bound events we may be called on other CPUs */
|
|
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
|
|
return;
|
|
|
|
if (enabled)
|
|
armpmu->start(armpmu);
|
|
}
|
|
|
|
static void armpmu_disable(struct pmu *pmu)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(pmu);
|
|
|
|
/* For task-bound events we may be called on other CPUs */
|
|
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
|
|
return;
|
|
|
|
armpmu->stop(armpmu);
|
|
}
|
|
|
|
/*
|
|
* In heterogeneous systems, events are specific to a particular
|
|
* microarchitecture, and aren't suitable for another. Thus, only match CPUs of
|
|
* the same microarchitecture.
|
|
*/
|
|
static int armpmu_filter_match(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
|
|
unsigned int cpu = smp_processor_id();
|
|
return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
|
|
}
|
|
|
|
static void armpmu_init(struct arm_pmu *armpmu)
|
|
{
|
|
atomic_set(&armpmu->active_events, 0);
|
|
mutex_init(&armpmu->reserve_mutex);
|
|
|
|
armpmu->pmu = (struct pmu) {
|
|
.pmu_enable = armpmu_enable,
|
|
.pmu_disable = armpmu_disable,
|
|
.event_init = armpmu_event_init,
|
|
.add = armpmu_add,
|
|
.del = armpmu_del,
|
|
.start = armpmu_start,
|
|
.stop = armpmu_stop,
|
|
.read = armpmu_read,
|
|
.filter_match = armpmu_filter_match,
|
|
};
|
|
}
|
|
|
|
/* Set at runtime when we know what CPU type we are. */
|
|
static struct arm_pmu *__oprofile_cpu_pmu;
|
|
|
|
/*
|
|
* Despite the names, these two functions are CPU-specific and are used
|
|
* by the OProfile/perf code.
|
|
*/
|
|
const char *perf_pmu_name(void)
|
|
{
|
|
if (!__oprofile_cpu_pmu)
|
|
return NULL;
|
|
|
|
return __oprofile_cpu_pmu->name;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_pmu_name);
|
|
|
|
int perf_num_counters(void)
|
|
{
|
|
int max_events = 0;
|
|
|
|
if (__oprofile_cpu_pmu != NULL)
|
|
max_events = __oprofile_cpu_pmu->num_events;
|
|
|
|
return max_events;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_num_counters);
|
|
|
|
static void cpu_pmu_enable_percpu_irq(void *data)
|
|
{
|
|
int irq = *(int *)data;
|
|
|
|
enable_percpu_irq(irq, IRQ_TYPE_NONE);
|
|
}
|
|
|
|
static void cpu_pmu_disable_percpu_irq(void *data)
|
|
{
|
|
int irq = *(int *)data;
|
|
|
|
disable_percpu_irq(irq);
|
|
}
|
|
|
|
static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
|
|
{
|
|
int i, irq, irqs;
|
|
struct platform_device *pmu_device = cpu_pmu->plat_device;
|
|
struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
|
|
|
|
irqs = min(pmu_device->num_resources, num_possible_cpus());
|
|
|
|
irq = platform_get_irq(pmu_device, 0);
|
|
if (irq >= 0 && irq_is_percpu(irq)) {
|
|
on_each_cpu_mask(&cpu_pmu->supported_cpus,
|
|
cpu_pmu_disable_percpu_irq, &irq, 1);
|
|
free_percpu_irq(irq, &hw_events->percpu_pmu);
|
|
} else {
|
|
for (i = 0; i < irqs; ++i) {
|
|
int cpu = i;
|
|
|
|
if (cpu_pmu->irq_affinity)
|
|
cpu = cpu_pmu->irq_affinity[i];
|
|
|
|
if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
|
|
continue;
|
|
irq = platform_get_irq(pmu_device, i);
|
|
if (irq >= 0)
|
|
free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
|
|
{
|
|
int i, err, irq, irqs;
|
|
struct platform_device *pmu_device = cpu_pmu->plat_device;
|
|
struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
|
|
|
|
if (!pmu_device)
|
|
return -ENODEV;
|
|
|
|
irqs = min(pmu_device->num_resources, num_possible_cpus());
|
|
if (irqs < 1) {
|
|
pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
|
|
return 0;
|
|
}
|
|
|
|
irq = platform_get_irq(pmu_device, 0);
|
|
if (irq >= 0 && irq_is_percpu(irq)) {
|
|
err = request_percpu_irq(irq, handler, "arm-pmu",
|
|
&hw_events->percpu_pmu);
|
|
if (err) {
|
|
pr_err("unable to request IRQ%d for ARM PMU counters\n",
|
|
irq);
|
|
return err;
|
|
}
|
|
|
|
on_each_cpu_mask(&cpu_pmu->supported_cpus,
|
|
cpu_pmu_enable_percpu_irq, &irq, 1);
|
|
} else {
|
|
for (i = 0; i < irqs; ++i) {
|
|
int cpu = i;
|
|
|
|
err = 0;
|
|
irq = platform_get_irq(pmu_device, i);
|
|
if (irq < 0)
|
|
continue;
|
|
|
|
if (cpu_pmu->irq_affinity)
|
|
cpu = cpu_pmu->irq_affinity[i];
|
|
|
|
/*
|
|
* If we have a single PMU interrupt that we can't shift,
|
|
* assume that we're running on a uniprocessor machine and
|
|
* continue. Otherwise, continue without this interrupt.
|
|
*/
|
|
if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
|
|
pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
|
|
irq, cpu);
|
|
continue;
|
|
}
|
|
|
|
err = request_irq(irq, handler,
|
|
IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
|
|
per_cpu_ptr(&hw_events->percpu_pmu, cpu));
|
|
if (err) {
|
|
pr_err("unable to request IRQ%d for ARM PMU counters\n",
|
|
irq);
|
|
return err;
|
|
}
|
|
|
|
cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(arm_pmu_lock);
|
|
static LIST_HEAD(arm_pmu_list);
|
|
|
|
/*
|
|
* PMU hardware loses all context when a CPU goes offline.
|
|
* When a CPU is hotplugged back in, since some hardware registers are
|
|
* UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
|
|
* junk values out of them.
|
|
*/
|
|
static int arm_perf_starting_cpu(unsigned int cpu)
|
|
{
|
|
struct arm_pmu *pmu;
|
|
|
|
spin_lock(&arm_pmu_lock);
|
|
list_for_each_entry(pmu, &arm_pmu_list, entry) {
|
|
|
|
if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
|
|
continue;
|
|
if (pmu->reset)
|
|
pmu->reset(pmu);
|
|
}
|
|
spin_unlock(&arm_pmu_lock);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
|
|
{
|
|
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
|
|
struct perf_event *event;
|
|
int idx;
|
|
|
|
for (idx = 0; idx < armpmu->num_events; idx++) {
|
|
/*
|
|
* If the counter is not used skip it, there is no
|
|
* need of stopping/restarting it.
|
|
*/
|
|
if (!test_bit(idx, hw_events->used_mask))
|
|
continue;
|
|
|
|
event = hw_events->events[idx];
|
|
|
|
switch (cmd) {
|
|
case CPU_PM_ENTER:
|
|
/*
|
|
* Stop and update the counter
|
|
*/
|
|
armpmu_stop(event, PERF_EF_UPDATE);
|
|
break;
|
|
case CPU_PM_EXIT:
|
|
case CPU_PM_ENTER_FAILED:
|
|
/*
|
|
* Restore and enable the counter.
|
|
* armpmu_start() indirectly calls
|
|
*
|
|
* perf_event_update_userpage()
|
|
*
|
|
* that requires RCU read locking to be functional,
|
|
* wrap the call within RCU_NONIDLE to make the
|
|
* RCU subsystem aware this cpu is not idle from
|
|
* an RCU perspective for the armpmu_start() call
|
|
* duration.
|
|
*/
|
|
RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
|
|
void *v)
|
|
{
|
|
struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
|
|
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
|
|
int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
|
|
|
|
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
|
|
return NOTIFY_DONE;
|
|
|
|
/*
|
|
* Always reset the PMU registers on power-up even if
|
|
* there are no events running.
|
|
*/
|
|
if (cmd == CPU_PM_EXIT && armpmu->reset)
|
|
armpmu->reset(armpmu);
|
|
|
|
if (!enabled)
|
|
return NOTIFY_OK;
|
|
|
|
switch (cmd) {
|
|
case CPU_PM_ENTER:
|
|
armpmu->stop(armpmu);
|
|
cpu_pm_pmu_setup(armpmu, cmd);
|
|
break;
|
|
case CPU_PM_EXIT:
|
|
cpu_pm_pmu_setup(armpmu, cmd);
|
|
case CPU_PM_ENTER_FAILED:
|
|
armpmu->start(armpmu);
|
|
break;
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
|
|
{
|
|
cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
|
|
return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
|
|
}
|
|
|
|
static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
|
|
{
|
|
cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
|
|
}
|
|
#else
|
|
static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
|
|
static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
|
|
#endif
|
|
|
|
static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
|
|
{
|
|
int err;
|
|
int cpu;
|
|
struct pmu_hw_events __percpu *cpu_hw_events;
|
|
|
|
cpu_hw_events = alloc_percpu(struct pmu_hw_events);
|
|
if (!cpu_hw_events)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&arm_pmu_lock);
|
|
list_add_tail(&cpu_pmu->entry, &arm_pmu_list);
|
|
spin_unlock(&arm_pmu_lock);
|
|
|
|
err = cpu_pm_pmu_register(cpu_pmu);
|
|
if (err)
|
|
goto out_unregister;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
|
|
raw_spin_lock_init(&events->pmu_lock);
|
|
events->percpu_pmu = cpu_pmu;
|
|
}
|
|
|
|
cpu_pmu->hw_events = cpu_hw_events;
|
|
cpu_pmu->request_irq = cpu_pmu_request_irq;
|
|
cpu_pmu->free_irq = cpu_pmu_free_irq;
|
|
|
|
/* Ensure the PMU has sane values out of reset. */
|
|
if (cpu_pmu->reset)
|
|
on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
|
|
cpu_pmu, 1);
|
|
|
|
/* If no interrupts available, set the corresponding capability flag */
|
|
if (!platform_get_irq(cpu_pmu->plat_device, 0))
|
|
cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
|
|
|
|
/*
|
|
* This is a CPU PMU potentially in a heterogeneous configuration (e.g.
|
|
* big.LITTLE). This is not an uncore PMU, and we have taken ctx
|
|
* sharing into account (e.g. with our pmu::filter_match callback and
|
|
* pmu::event_init group validation).
|
|
*/
|
|
cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
|
|
|
|
return 0;
|
|
|
|
out_unregister:
|
|
spin_lock(&arm_pmu_lock);
|
|
list_del(&cpu_pmu->entry);
|
|
spin_unlock(&arm_pmu_lock);
|
|
free_percpu(cpu_hw_events);
|
|
return err;
|
|
}
|
|
|
|
static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
|
|
{
|
|
cpu_pm_pmu_unregister(cpu_pmu);
|
|
spin_lock(&arm_pmu_lock);
|
|
list_del(&cpu_pmu->entry);
|
|
spin_unlock(&arm_pmu_lock);
|
|
free_percpu(cpu_pmu->hw_events);
|
|
}
|
|
|
|
/*
|
|
* CPU PMU identification and probing.
|
|
*/
|
|
static int probe_current_pmu(struct arm_pmu *pmu,
|
|
const struct pmu_probe_info *info)
|
|
{
|
|
int cpu = get_cpu();
|
|
unsigned int cpuid = read_cpuid_id();
|
|
int ret = -ENODEV;
|
|
|
|
pr_info("probing PMU on CPU %d\n", cpu);
|
|
|
|
for (; info->init != NULL; info++) {
|
|
if ((cpuid & info->mask) != info->cpuid)
|
|
continue;
|
|
ret = info->init(pmu);
|
|
break;
|
|
}
|
|
|
|
put_cpu();
|
|
return ret;
|
|
}
|
|
|
|
static int of_pmu_irq_cfg(struct arm_pmu *pmu)
|
|
{
|
|
int *irqs, i = 0;
|
|
bool using_spi = false;
|
|
struct platform_device *pdev = pmu->plat_device;
|
|
|
|
irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
|
|
if (!irqs)
|
|
return -ENOMEM;
|
|
|
|
do {
|
|
struct device_node *dn;
|
|
int cpu, irq;
|
|
|
|
/* See if we have an affinity entry */
|
|
dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
|
|
if (!dn)
|
|
break;
|
|
|
|
/* Check the IRQ type and prohibit a mix of PPIs and SPIs */
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq >= 0) {
|
|
bool spi = !irq_is_percpu(irq);
|
|
|
|
if (i > 0 && spi != using_spi) {
|
|
pr_err("PPI/SPI IRQ type mismatch for %s!\n",
|
|
dn->name);
|
|
of_node_put(dn);
|
|
kfree(irqs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
using_spi = spi;
|
|
}
|
|
|
|
/* Now look up the logical CPU number */
|
|
for_each_possible_cpu(cpu) {
|
|
struct device_node *cpu_dn;
|
|
|
|
cpu_dn = of_cpu_device_node_get(cpu);
|
|
of_node_put(cpu_dn);
|
|
|
|
if (dn == cpu_dn)
|
|
break;
|
|
}
|
|
|
|
if (cpu >= nr_cpu_ids) {
|
|
pr_warn("Failed to find logical CPU for %s\n",
|
|
dn->name);
|
|
of_node_put(dn);
|
|
cpumask_setall(&pmu->supported_cpus);
|
|
break;
|
|
}
|
|
of_node_put(dn);
|
|
|
|
/* For SPIs, we need to track the affinity per IRQ */
|
|
if (using_spi) {
|
|
if (i >= pdev->num_resources)
|
|
break;
|
|
|
|
irqs[i] = cpu;
|
|
}
|
|
|
|
/* Keep track of the CPUs containing this PMU type */
|
|
cpumask_set_cpu(cpu, &pmu->supported_cpus);
|
|
i++;
|
|
} while (1);
|
|
|
|
/* If we didn't manage to parse anything, try the interrupt affinity */
|
|
if (cpumask_weight(&pmu->supported_cpus) == 0) {
|
|
int irq = platform_get_irq(pdev, 0);
|
|
|
|
if (irq >= 0 && irq_is_percpu(irq)) {
|
|
/* If using PPIs, check the affinity of the partition */
|
|
int ret;
|
|
|
|
ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
|
|
if (ret) {
|
|
kfree(irqs);
|
|
return ret;
|
|
}
|
|
} else {
|
|
/* Otherwise default to all CPUs */
|
|
cpumask_setall(&pmu->supported_cpus);
|
|
}
|
|
}
|
|
|
|
/* If we matched up the IRQ affinities, use them to route the SPIs */
|
|
if (using_spi && i == pdev->num_resources)
|
|
pmu->irq_affinity = irqs;
|
|
else
|
|
kfree(irqs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arm_pmu_device_probe(struct platform_device *pdev,
|
|
const struct of_device_id *of_table,
|
|
const struct pmu_probe_info *probe_table)
|
|
{
|
|
const struct of_device_id *of_id;
|
|
const int (*init_fn)(struct arm_pmu *);
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct arm_pmu *pmu;
|
|
int ret = -ENODEV;
|
|
|
|
pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
|
|
if (!pmu) {
|
|
pr_info("failed to allocate PMU device!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
armpmu_init(pmu);
|
|
|
|
pmu->plat_device = pdev;
|
|
|
|
if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
|
|
init_fn = of_id->data;
|
|
|
|
pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
|
|
"secure-reg-access");
|
|
|
|
/* arm64 systems boot only as non-secure */
|
|
if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
|
|
pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
|
|
pmu->secure_access = false;
|
|
}
|
|
|
|
ret = of_pmu_irq_cfg(pmu);
|
|
if (!ret)
|
|
ret = init_fn(pmu);
|
|
} else {
|
|
cpumask_setall(&pmu->supported_cpus);
|
|
ret = probe_current_pmu(pmu, probe_table);
|
|
}
|
|
|
|
if (ret) {
|
|
pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
|
|
goto out_free;
|
|
}
|
|
|
|
ret = cpu_pmu_init(pmu);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
if (!__oprofile_cpu_pmu)
|
|
__oprofile_cpu_pmu = pmu;
|
|
|
|
pr_info("enabled with %s PMU driver, %d counters available\n",
|
|
pmu->name, pmu->num_events);
|
|
|
|
return 0;
|
|
|
|
out_destroy:
|
|
cpu_pmu_destroy(pmu);
|
|
out_free:
|
|
pr_info("%s: failed to register PMU devices!\n",
|
|
of_node_full_name(node));
|
|
kfree(pmu->irq_affinity);
|
|
kfree(pmu);
|
|
return ret;
|
|
}
|
|
|
|
static int arm_pmu_hp_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_STARTING,
|
|
"AP_PERF_ARM_STARTING",
|
|
arm_perf_starting_cpu, NULL);
|
|
if (ret)
|
|
pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
subsys_initcall(arm_pmu_hp_init);
|