linux_dsm_epyc7002/drivers/bus/fsl-mc/fsl-mc-bus.c
Ioana Ciornei 1ac210d128 bus: fsl-mc: add the fsl_mc_get_endpoint function
Using the newly added fsl_mc_get_endpoint function a fsl-mc driver can
find its associated endpoint (another object at the other link of a MC
firmware link).

The API will be used in the following patch in order to discover the
connected DPMAC object of a DPNI.

Also, the fsl_mc_device_lookup function is made available to the entire
fsl-mc bus driver and not just for the dprc driver.

Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-31 14:19:45 -07:00

1016 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Freescale Management Complex (MC) bus driver
*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
* Author: German Rivera <German.Rivera@freescale.com>
*
*/
#define pr_fmt(fmt) "fsl-mc: " fmt
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/limits.h>
#include <linux/bitops.h>
#include <linux/msi.h>
#include <linux/dma-mapping.h>
#include "fsl-mc-private.h"
/**
* Default DMA mask for devices on a fsl-mc bus
*/
#define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
/**
* struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
* @root_mc_bus_dev: fsl-mc device representing the root DPRC
* @num_translation_ranges: number of entries in addr_translation_ranges
* @translation_ranges: array of bus to system address translation ranges
*/
struct fsl_mc {
struct fsl_mc_device *root_mc_bus_dev;
u8 num_translation_ranges;
struct fsl_mc_addr_translation_range *translation_ranges;
};
/**
* struct fsl_mc_addr_translation_range - bus to system address translation
* range
* @mc_region_type: Type of MC region for the range being translated
* @start_mc_offset: Start MC offset of the range being translated
* @end_mc_offset: MC offset of the first byte after the range (last MC
* offset of the range is end_mc_offset - 1)
* @start_phys_addr: system physical address corresponding to start_mc_addr
*/
struct fsl_mc_addr_translation_range {
enum dprc_region_type mc_region_type;
u64 start_mc_offset;
u64 end_mc_offset;
phys_addr_t start_phys_addr;
};
/**
* struct mc_version
* @major: Major version number: incremented on API compatibility changes
* @minor: Minor version number: incremented on API additions (that are
* backward compatible); reset when major version is incremented
* @revision: Internal revision number: incremented on implementation changes
* and/or bug fixes that have no impact on API
*/
struct mc_version {
u32 major;
u32 minor;
u32 revision;
};
/**
* fsl_mc_bus_match - device to driver matching callback
* @dev: the fsl-mc device to match against
* @drv: the device driver to search for matching fsl-mc object type
* structures
*
* Returns 1 on success, 0 otherwise.
*/
static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
{
const struct fsl_mc_device_id *id;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
bool found = false;
if (!mc_drv->match_id_table)
goto out;
/*
* If the object is not 'plugged' don't match.
* Only exception is the root DPRC, which is a special case.
*/
if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
!fsl_mc_is_root_dprc(&mc_dev->dev))
goto out;
/*
* Traverse the match_id table of the given driver, trying to find
* a matching for the given device.
*/
for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
if (id->vendor == mc_dev->obj_desc.vendor &&
strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
found = true;
break;
}
}
out:
dev_dbg(dev, "%smatched\n", found ? "" : "not ");
return found;
}
/**
* fsl_mc_bus_uevent - callback invoked when a device is added
*/
static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
mc_dev->obj_desc.vendor,
mc_dev->obj_desc.type))
return -ENOMEM;
return 0;
}
static int fsl_mc_dma_configure(struct device *dev)
{
struct device *dma_dev = dev;
while (dev_is_fsl_mc(dma_dev))
dma_dev = dma_dev->parent;
return of_dma_configure(dev, dma_dev->of_node, 0);
}
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
mc_dev->obj_desc.type);
}
static DEVICE_ATTR_RO(modalias);
static struct attribute *fsl_mc_dev_attrs[] = {
&dev_attr_modalias.attr,
NULL,
};
ATTRIBUTE_GROUPS(fsl_mc_dev);
struct bus_type fsl_mc_bus_type = {
.name = "fsl-mc",
.match = fsl_mc_bus_match,
.uevent = fsl_mc_bus_uevent,
.dma_configure = fsl_mc_dma_configure,
.dev_groups = fsl_mc_dev_groups,
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
struct device_type fsl_mc_bus_dprc_type = {
.name = "fsl_mc_bus_dprc"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
struct device_type fsl_mc_bus_dpni_type = {
.name = "fsl_mc_bus_dpni"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
struct device_type fsl_mc_bus_dpio_type = {
.name = "fsl_mc_bus_dpio"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
struct device_type fsl_mc_bus_dpsw_type = {
.name = "fsl_mc_bus_dpsw"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
struct device_type fsl_mc_bus_dpbp_type = {
.name = "fsl_mc_bus_dpbp"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
struct device_type fsl_mc_bus_dpcon_type = {
.name = "fsl_mc_bus_dpcon"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
struct device_type fsl_mc_bus_dpmcp_type = {
.name = "fsl_mc_bus_dpmcp"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
struct device_type fsl_mc_bus_dpmac_type = {
.name = "fsl_mc_bus_dpmac"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
struct device_type fsl_mc_bus_dprtc_type = {
.name = "fsl_mc_bus_dprtc"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
struct device_type fsl_mc_bus_dpseci_type = {
.name = "fsl_mc_bus_dpseci"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
static struct device_type *fsl_mc_get_device_type(const char *type)
{
static const struct {
struct device_type *dev_type;
const char *type;
} dev_types[] = {
{ &fsl_mc_bus_dprc_type, "dprc" },
{ &fsl_mc_bus_dpni_type, "dpni" },
{ &fsl_mc_bus_dpio_type, "dpio" },
{ &fsl_mc_bus_dpsw_type, "dpsw" },
{ &fsl_mc_bus_dpbp_type, "dpbp" },
{ &fsl_mc_bus_dpcon_type, "dpcon" },
{ &fsl_mc_bus_dpmcp_type, "dpmcp" },
{ &fsl_mc_bus_dpmac_type, "dpmac" },
{ &fsl_mc_bus_dprtc_type, "dprtc" },
{ &fsl_mc_bus_dpseci_type, "dpseci" },
{ NULL, NULL }
};
int i;
for (i = 0; dev_types[i].dev_type; i++)
if (!strcmp(dev_types[i].type, type))
return dev_types[i].dev_type;
return NULL;
}
static int fsl_mc_driver_probe(struct device *dev)
{
struct fsl_mc_driver *mc_drv;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
int error;
mc_drv = to_fsl_mc_driver(dev->driver);
error = mc_drv->probe(mc_dev);
if (error < 0) {
if (error != -EPROBE_DEFER)
dev_err(dev, "%s failed: %d\n", __func__, error);
return error;
}
return 0;
}
static int fsl_mc_driver_remove(struct device *dev)
{
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
int error;
error = mc_drv->remove(mc_dev);
if (error < 0) {
dev_err(dev, "%s failed: %d\n", __func__, error);
return error;
}
return 0;
}
static void fsl_mc_driver_shutdown(struct device *dev)
{
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
mc_drv->shutdown(mc_dev);
}
/**
* __fsl_mc_driver_register - registers a child device driver with the
* MC bus
*
* This function is implicitly invoked from the registration function of
* fsl_mc device drivers, which is generated by the
* module_fsl_mc_driver() macro.
*/
int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
struct module *owner)
{
int error;
mc_driver->driver.owner = owner;
mc_driver->driver.bus = &fsl_mc_bus_type;
if (mc_driver->probe)
mc_driver->driver.probe = fsl_mc_driver_probe;
if (mc_driver->remove)
mc_driver->driver.remove = fsl_mc_driver_remove;
if (mc_driver->shutdown)
mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
error = driver_register(&mc_driver->driver);
if (error < 0) {
pr_err("driver_register() failed for %s: %d\n",
mc_driver->driver.name, error);
return error;
}
return 0;
}
EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
/**
* fsl_mc_driver_unregister - unregisters a device driver from the
* MC bus
*/
void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
{
driver_unregister(&mc_driver->driver);
}
EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
/**
* mc_get_version() - Retrieves the Management Complex firmware
* version information
* @mc_io: Pointer to opaque I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @mc_ver_info: Returned version information structure
*
* Return: '0' on Success; Error code otherwise.
*/
static int mc_get_version(struct fsl_mc_io *mc_io,
u32 cmd_flags,
struct mc_version *mc_ver_info)
{
struct fsl_mc_command cmd = { 0 };
struct dpmng_rsp_get_version *rsp_params;
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
cmd_flags,
0);
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
return 0;
}
/**
* fsl_mc_get_root_dprc - function to traverse to the root dprc
*/
static void fsl_mc_get_root_dprc(struct device *dev,
struct device **root_dprc_dev)
{
if (!dev) {
*root_dprc_dev = NULL;
} else if (!dev_is_fsl_mc(dev)) {
*root_dprc_dev = NULL;
} else {
*root_dprc_dev = dev;
while (dev_is_fsl_mc((*root_dprc_dev)->parent))
*root_dprc_dev = (*root_dprc_dev)->parent;
}
}
static int get_dprc_attr(struct fsl_mc_io *mc_io,
int container_id, struct dprc_attributes *attr)
{
u16 dprc_handle;
int error;
error = dprc_open(mc_io, 0, container_id, &dprc_handle);
if (error < 0) {
dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
return error;
}
memset(attr, 0, sizeof(struct dprc_attributes));
error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
if (error < 0) {
dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
error);
goto common_cleanup;
}
error = 0;
common_cleanup:
(void)dprc_close(mc_io, 0, dprc_handle);
return error;
}
static int get_dprc_icid(struct fsl_mc_io *mc_io,
int container_id, u16 *icid)
{
struct dprc_attributes attr;
int error;
error = get_dprc_attr(mc_io, container_id, &attr);
if (error == 0)
*icid = attr.icid;
return error;
}
static int translate_mc_addr(struct fsl_mc_device *mc_dev,
enum dprc_region_type mc_region_type,
u64 mc_offset, phys_addr_t *phys_addr)
{
int i;
struct device *root_dprc_dev;
struct fsl_mc *mc;
fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
mc = dev_get_drvdata(root_dprc_dev->parent);
if (mc->num_translation_ranges == 0) {
/*
* Do identity mapping:
*/
*phys_addr = mc_offset;
return 0;
}
for (i = 0; i < mc->num_translation_ranges; i++) {
struct fsl_mc_addr_translation_range *range =
&mc->translation_ranges[i];
if (mc_region_type == range->mc_region_type &&
mc_offset >= range->start_mc_offset &&
mc_offset < range->end_mc_offset) {
*phys_addr = range->start_phys_addr +
(mc_offset - range->start_mc_offset);
return 0;
}
}
return -EFAULT;
}
static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
struct fsl_mc_device *mc_bus_dev)
{
int i;
int error;
struct resource *regions;
struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
struct device *parent_dev = mc_dev->dev.parent;
enum dprc_region_type mc_region_type;
if (is_fsl_mc_bus_dprc(mc_dev) ||
is_fsl_mc_bus_dpmcp(mc_dev)) {
mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
} else if (is_fsl_mc_bus_dpio(mc_dev)) {
mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
} else {
/*
* This function should not have been called for this MC object
* type, as this object type is not supposed to have MMIO
* regions
*/
return -EINVAL;
}
regions = kmalloc_array(obj_desc->region_count,
sizeof(regions[0]), GFP_KERNEL);
if (!regions)
return -ENOMEM;
for (i = 0; i < obj_desc->region_count; i++) {
struct dprc_region_desc region_desc;
error = dprc_get_obj_region(mc_bus_dev->mc_io,
0,
mc_bus_dev->mc_handle,
obj_desc->type,
obj_desc->id, i, &region_desc);
if (error < 0) {
dev_err(parent_dev,
"dprc_get_obj_region() failed: %d\n", error);
goto error_cleanup_regions;
}
/*
* Older MC only returned region offset and no base address
* If base address is in the region_desc use it otherwise
* revert to old mechanism
*/
if (region_desc.base_address)
regions[i].start = region_desc.base_address +
region_desc.base_offset;
else
error = translate_mc_addr(mc_dev, mc_region_type,
region_desc.base_offset,
&regions[i].start);
if (error < 0) {
dev_err(parent_dev,
"Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
region_desc.base_offset,
obj_desc->type, obj_desc->id, i);
goto error_cleanup_regions;
}
regions[i].end = regions[i].start + region_desc.size - 1;
regions[i].name = "fsl-mc object MMIO region";
regions[i].flags = IORESOURCE_IO;
if (region_desc.flags & DPRC_REGION_CACHEABLE)
regions[i].flags |= IORESOURCE_CACHEABLE;
if (region_desc.flags & DPRC_REGION_SHAREABLE)
regions[i].flags |= IORESOURCE_MEM;
}
mc_dev->regions = regions;
return 0;
error_cleanup_regions:
kfree(regions);
return error;
}
/**
* fsl_mc_is_root_dprc - function to check if a given device is a root dprc
*/
bool fsl_mc_is_root_dprc(struct device *dev)
{
struct device *root_dprc_dev;
fsl_mc_get_root_dprc(dev, &root_dprc_dev);
if (!root_dprc_dev)
return false;
return dev == root_dprc_dev;
}
static void fsl_mc_device_release(struct device *dev)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
kfree(mc_dev->regions);
if (is_fsl_mc_bus_dprc(mc_dev))
kfree(to_fsl_mc_bus(mc_dev));
else
kfree(mc_dev);
}
/**
* Add a newly discovered fsl-mc device to be visible in Linux
*/
int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
struct fsl_mc_io *mc_io,
struct device *parent_dev,
struct fsl_mc_device **new_mc_dev)
{
int error;
struct fsl_mc_device *mc_dev = NULL;
struct fsl_mc_bus *mc_bus = NULL;
struct fsl_mc_device *parent_mc_dev;
if (dev_is_fsl_mc(parent_dev))
parent_mc_dev = to_fsl_mc_device(parent_dev);
else
parent_mc_dev = NULL;
if (strcmp(obj_desc->type, "dprc") == 0) {
/*
* Allocate an MC bus device object:
*/
mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
if (!mc_bus)
return -ENOMEM;
mc_dev = &mc_bus->mc_dev;
} else {
/*
* Allocate a regular fsl_mc_device object:
*/
mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
if (!mc_dev)
return -ENOMEM;
}
mc_dev->obj_desc = *obj_desc;
mc_dev->mc_io = mc_io;
device_initialize(&mc_dev->dev);
mc_dev->dev.parent = parent_dev;
mc_dev->dev.bus = &fsl_mc_bus_type;
mc_dev->dev.release = fsl_mc_device_release;
mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
if (!mc_dev->dev.type) {
error = -ENODEV;
dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
goto error_cleanup_dev;
}
dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
if (strcmp(obj_desc->type, "dprc") == 0) {
struct fsl_mc_io *mc_io2;
mc_dev->flags |= FSL_MC_IS_DPRC;
/*
* To get the DPRC's ICID, we need to open the DPRC
* in get_dprc_icid(). For child DPRCs, we do so using the
* parent DPRC's MC portal instead of the child DPRC's MC
* portal, in case the child DPRC is already opened with
* its own portal (e.g., the DPRC used by AIOP).
*
* NOTE: There cannot be more than one active open for a
* given MC object, using the same MC portal.
*/
if (parent_mc_dev) {
/*
* device being added is a child DPRC device
*/
mc_io2 = parent_mc_dev->mc_io;
} else {
/*
* device being added is the root DPRC device
*/
if (!mc_io) {
error = -EINVAL;
goto error_cleanup_dev;
}
mc_io2 = mc_io;
}
error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
if (error < 0)
goto error_cleanup_dev;
} else {
/*
* A non-DPRC object has to be a child of a DPRC, use the
* parent's ICID and interrupt domain.
*/
mc_dev->icid = parent_mc_dev->icid;
mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
mc_dev->dev.dma_mask = &mc_dev->dma_mask;
mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
dev_set_msi_domain(&mc_dev->dev,
dev_get_msi_domain(&parent_mc_dev->dev));
}
/*
* Get MMIO regions for the device from the MC:
*
* NOTE: the root DPRC is a special case as its MMIO region is
* obtained from the device tree
*/
if (parent_mc_dev && obj_desc->region_count != 0) {
error = fsl_mc_device_get_mmio_regions(mc_dev,
parent_mc_dev);
if (error < 0)
goto error_cleanup_dev;
}
/*
* The device-specific probe callback will get invoked by device_add()
*/
error = device_add(&mc_dev->dev);
if (error < 0) {
dev_err(parent_dev,
"device_add() failed for device %s: %d\n",
dev_name(&mc_dev->dev), error);
goto error_cleanup_dev;
}
dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
*new_mc_dev = mc_dev;
return 0;
error_cleanup_dev:
kfree(mc_dev->regions);
kfree(mc_bus);
kfree(mc_dev);
return error;
}
EXPORT_SYMBOL_GPL(fsl_mc_device_add);
/**
* fsl_mc_device_remove - Remove an fsl-mc device from being visible to
* Linux
*
* @mc_dev: Pointer to an fsl-mc device
*/
void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
{
/*
* The device-specific remove callback will get invoked by device_del()
*/
device_del(&mc_dev->dev);
put_device(&mc_dev->dev);
}
EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev)
{
struct fsl_mc_device *mc_bus_dev, *endpoint;
struct fsl_mc_obj_desc endpoint_desc = { 0 };
struct dprc_endpoint endpoint1 = { 0 };
struct dprc_endpoint endpoint2 = { 0 };
int state, err;
mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
strcpy(endpoint1.type, mc_dev->obj_desc.type);
endpoint1.id = mc_dev->obj_desc.id;
err = dprc_get_connection(mc_bus_dev->mc_io, 0,
mc_bus_dev->mc_handle,
&endpoint1, &endpoint2,
&state);
if (err == -ENOTCONN || state == -1)
return ERR_PTR(-ENOTCONN);
if (err < 0) {
dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
return ERR_PTR(err);
}
strcpy(endpoint_desc.type, endpoint2.type);
endpoint_desc.id = endpoint2.id;
endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
return endpoint;
}
EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
static int parse_mc_ranges(struct device *dev,
int *paddr_cells,
int *mc_addr_cells,
int *mc_size_cells,
const __be32 **ranges_start)
{
const __be32 *prop;
int range_tuple_cell_count;
int ranges_len;
int tuple_len;
struct device_node *mc_node = dev->of_node;
*ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
if (!(*ranges_start) || !ranges_len) {
dev_warn(dev,
"missing or empty ranges property for device tree node '%pOFn'\n",
mc_node);
return 0;
}
*paddr_cells = of_n_addr_cells(mc_node);
prop = of_get_property(mc_node, "#address-cells", NULL);
if (prop)
*mc_addr_cells = be32_to_cpup(prop);
else
*mc_addr_cells = *paddr_cells;
prop = of_get_property(mc_node, "#size-cells", NULL);
if (prop)
*mc_size_cells = be32_to_cpup(prop);
else
*mc_size_cells = of_n_size_cells(mc_node);
range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
*mc_size_cells;
tuple_len = range_tuple_cell_count * sizeof(__be32);
if (ranges_len % tuple_len != 0) {
dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node);
return -EINVAL;
}
return ranges_len / tuple_len;
}
static int get_mc_addr_translation_ranges(struct device *dev,
struct fsl_mc_addr_translation_range
**ranges,
u8 *num_ranges)
{
int ret;
int paddr_cells;
int mc_addr_cells;
int mc_size_cells;
int i;
const __be32 *ranges_start;
const __be32 *cell;
ret = parse_mc_ranges(dev,
&paddr_cells,
&mc_addr_cells,
&mc_size_cells,
&ranges_start);
if (ret < 0)
return ret;
*num_ranges = ret;
if (!ret) {
/*
* Missing or empty ranges property ("ranges;") for the
* 'fsl,qoriq-mc' node. In this case, identity mapping
* will be used.
*/
*ranges = NULL;
return 0;
}
*ranges = devm_kcalloc(dev, *num_ranges,
sizeof(struct fsl_mc_addr_translation_range),
GFP_KERNEL);
if (!(*ranges))
return -ENOMEM;
cell = ranges_start;
for (i = 0; i < *num_ranges; ++i) {
struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
range->mc_region_type = of_read_number(cell, 1);
range->start_mc_offset = of_read_number(cell + 1,
mc_addr_cells - 1);
cell += mc_addr_cells;
range->start_phys_addr = of_read_number(cell, paddr_cells);
cell += paddr_cells;
range->end_mc_offset = range->start_mc_offset +
of_read_number(cell, mc_size_cells);
cell += mc_size_cells;
}
return 0;
}
/**
* fsl_mc_bus_probe - callback invoked when the root MC bus is being
* added
*/
static int fsl_mc_bus_probe(struct platform_device *pdev)
{
struct fsl_mc_obj_desc obj_desc;
int error;
struct fsl_mc *mc;
struct fsl_mc_device *mc_bus_dev = NULL;
struct fsl_mc_io *mc_io = NULL;
int container_id;
phys_addr_t mc_portal_phys_addr;
u32 mc_portal_size;
struct mc_version mc_version;
struct resource res;
mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
if (!mc)
return -ENOMEM;
platform_set_drvdata(pdev, mc);
/*
* Get physical address of MC portal for the root DPRC:
*/
error = of_address_to_resource(pdev->dev.of_node, 0, &res);
if (error < 0) {
dev_err(&pdev->dev,
"of_address_to_resource() failed for %pOF\n",
pdev->dev.of_node);
return error;
}
mc_portal_phys_addr = res.start;
mc_portal_size = resource_size(&res);
error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
mc_portal_size, NULL,
FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
if (error < 0)
return error;
error = mc_get_version(mc_io, 0, &mc_version);
if (error != 0) {
dev_err(&pdev->dev,
"mc_get_version() failed with error %d\n", error);
goto error_cleanup_mc_io;
}
dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
mc_version.major, mc_version.minor, mc_version.revision);
error = get_mc_addr_translation_ranges(&pdev->dev,
&mc->translation_ranges,
&mc->num_translation_ranges);
if (error < 0)
goto error_cleanup_mc_io;
error = dprc_get_container_id(mc_io, 0, &container_id);
if (error < 0) {
dev_err(&pdev->dev,
"dprc_get_container_id() failed: %d\n", error);
goto error_cleanup_mc_io;
}
memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
error = dprc_get_api_version(mc_io, 0,
&obj_desc.ver_major,
&obj_desc.ver_minor);
if (error < 0)
goto error_cleanup_mc_io;
obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
strcpy(obj_desc.type, "dprc");
obj_desc.id = container_id;
obj_desc.irq_count = 1;
obj_desc.region_count = 0;
error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
if (error < 0)
goto error_cleanup_mc_io;
mc->root_mc_bus_dev = mc_bus_dev;
return 0;
error_cleanup_mc_io:
fsl_destroy_mc_io(mc_io);
return error;
}
/**
* fsl_mc_bus_remove - callback invoked when the root MC bus is being
* removed
*/
static int fsl_mc_bus_remove(struct platform_device *pdev)
{
struct fsl_mc *mc = platform_get_drvdata(pdev);
if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
return -EINVAL;
fsl_mc_device_remove(mc->root_mc_bus_dev);
fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io);
mc->root_mc_bus_dev->mc_io = NULL;
return 0;
}
static const struct of_device_id fsl_mc_bus_match_table[] = {
{.compatible = "fsl,qoriq-mc",},
{},
};
MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
static struct platform_driver fsl_mc_bus_driver = {
.driver = {
.name = "fsl_mc_bus",
.pm = NULL,
.of_match_table = fsl_mc_bus_match_table,
},
.probe = fsl_mc_bus_probe,
.remove = fsl_mc_bus_remove,
};
static int __init fsl_mc_bus_driver_init(void)
{
int error;
error = bus_register(&fsl_mc_bus_type);
if (error < 0) {
pr_err("bus type registration failed: %d\n", error);
goto error_cleanup_cache;
}
error = platform_driver_register(&fsl_mc_bus_driver);
if (error < 0) {
pr_err("platform_driver_register() failed: %d\n", error);
goto error_cleanup_bus;
}
error = dprc_driver_init();
if (error < 0)
goto error_cleanup_driver;
error = fsl_mc_allocator_driver_init();
if (error < 0)
goto error_cleanup_dprc_driver;
return 0;
error_cleanup_dprc_driver:
dprc_driver_exit();
error_cleanup_driver:
platform_driver_unregister(&fsl_mc_bus_driver);
error_cleanup_bus:
bus_unregister(&fsl_mc_bus_type);
error_cleanup_cache:
return error;
}
postcore_initcall(fsl_mc_bus_driver_init);