mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-02 13:56:41 +07:00
57d5f66b86
This is my trivial patch to swat innumerable little bugs with a single blow. After some intensive review (my apologies for not having gotten to this sooner) what we have looks like a good base to build on with the current pid namespace code but it is not complete, and it is still much to simple to find issues where the kernel does the wrong thing outside of the initial pid namespace. Until the dust settles and we are certain we have the ABI and the implementation is as correct as humanly possible let's keep process ID namespaces behind CONFIG_EXPERIMENTAL. Allowing us the option of fixing any ABI or other bugs we find as long as they are minor. Allowing users of the kernel to avoid those bugs simply by ensuring their kernel does not have support for multiple pid namespaces. [akpm@linux-foundation.org: coding-style cleanups] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Adrian Bunk <bunk@kernel.org> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Kir Kolyshkin <kir@swsoft.com> Cc: Kirill Korotaev <dev@sw.ru> Cc: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
702 lines
17 KiB
C
702 lines
17 KiB
C
/*
|
|
* Generic pidhash and scalable, time-bounded PID allocator
|
|
*
|
|
* (C) 2002-2003 William Irwin, IBM
|
|
* (C) 2004 William Irwin, Oracle
|
|
* (C) 2002-2004 Ingo Molnar, Red Hat
|
|
*
|
|
* pid-structures are backing objects for tasks sharing a given ID to chain
|
|
* against. There is very little to them aside from hashing them and
|
|
* parking tasks using given ID's on a list.
|
|
*
|
|
* The hash is always changed with the tasklist_lock write-acquired,
|
|
* and the hash is only accessed with the tasklist_lock at least
|
|
* read-acquired, so there's no additional SMP locking needed here.
|
|
*
|
|
* We have a list of bitmap pages, which bitmaps represent the PID space.
|
|
* Allocating and freeing PIDs is completely lockless. The worst-case
|
|
* allocation scenario when all but one out of 1 million PIDs possible are
|
|
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
|
|
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
|
|
*
|
|
* Pid namespaces:
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
*
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#define pid_hashfn(nr, ns) \
|
|
hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
|
|
static struct hlist_head *pid_hash;
|
|
static int pidhash_shift;
|
|
struct pid init_struct_pid = INIT_STRUCT_PID;
|
|
static struct kmem_cache *pid_ns_cachep;
|
|
|
|
int pid_max = PID_MAX_DEFAULT;
|
|
|
|
#define RESERVED_PIDS 300
|
|
|
|
int pid_max_min = RESERVED_PIDS + 1;
|
|
int pid_max_max = PID_MAX_LIMIT;
|
|
|
|
#define BITS_PER_PAGE (PAGE_SIZE*8)
|
|
#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
|
|
|
|
static inline int mk_pid(struct pid_namespace *pid_ns,
|
|
struct pidmap *map, int off)
|
|
{
|
|
return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
|
|
}
|
|
|
|
#define find_next_offset(map, off) \
|
|
find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
|
|
|
|
/*
|
|
* PID-map pages start out as NULL, they get allocated upon
|
|
* first use and are never deallocated. This way a low pid_max
|
|
* value does not cause lots of bitmaps to be allocated, but
|
|
* the scheme scales to up to 4 million PIDs, runtime.
|
|
*/
|
|
struct pid_namespace init_pid_ns = {
|
|
.kref = {
|
|
.refcount = ATOMIC_INIT(2),
|
|
},
|
|
.pidmap = {
|
|
[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
|
|
},
|
|
.last_pid = 0,
|
|
.level = 0,
|
|
.child_reaper = &init_task,
|
|
};
|
|
EXPORT_SYMBOL_GPL(init_pid_ns);
|
|
|
|
int is_container_init(struct task_struct *tsk)
|
|
{
|
|
int ret = 0;
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = task_pid(tsk);
|
|
if (pid != NULL && pid->numbers[pid->level].nr == 1)
|
|
ret = 1;
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(is_container_init);
|
|
|
|
/*
|
|
* Note: disable interrupts while the pidmap_lock is held as an
|
|
* interrupt might come in and do read_lock(&tasklist_lock).
|
|
*
|
|
* If we don't disable interrupts there is a nasty deadlock between
|
|
* detach_pid()->free_pid() and another cpu that does
|
|
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
|
|
* read_lock(&tasklist_lock);
|
|
*
|
|
* After we clean up the tasklist_lock and know there are no
|
|
* irq handlers that take it we can leave the interrupts enabled.
|
|
* For now it is easier to be safe than to prove it can't happen.
|
|
*/
|
|
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
|
|
|
|
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
|
|
{
|
|
struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
|
|
int offset = pid & BITS_PER_PAGE_MASK;
|
|
|
|
clear_bit(offset, map->page);
|
|
atomic_inc(&map->nr_free);
|
|
}
|
|
|
|
static int alloc_pidmap(struct pid_namespace *pid_ns)
|
|
{
|
|
int i, offset, max_scan, pid, last = pid_ns->last_pid;
|
|
struct pidmap *map;
|
|
|
|
pid = last + 1;
|
|
if (pid >= pid_max)
|
|
pid = RESERVED_PIDS;
|
|
offset = pid & BITS_PER_PAGE_MASK;
|
|
map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
|
|
max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
|
|
for (i = 0; i <= max_scan; ++i) {
|
|
if (unlikely(!map->page)) {
|
|
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
/*
|
|
* Free the page if someone raced with us
|
|
* installing it:
|
|
*/
|
|
spin_lock_irq(&pidmap_lock);
|
|
if (map->page)
|
|
kfree(page);
|
|
else
|
|
map->page = page;
|
|
spin_unlock_irq(&pidmap_lock);
|
|
if (unlikely(!map->page))
|
|
break;
|
|
}
|
|
if (likely(atomic_read(&map->nr_free))) {
|
|
do {
|
|
if (!test_and_set_bit(offset, map->page)) {
|
|
atomic_dec(&map->nr_free);
|
|
pid_ns->last_pid = pid;
|
|
return pid;
|
|
}
|
|
offset = find_next_offset(map, offset);
|
|
pid = mk_pid(pid_ns, map, offset);
|
|
/*
|
|
* find_next_offset() found a bit, the pid from it
|
|
* is in-bounds, and if we fell back to the last
|
|
* bitmap block and the final block was the same
|
|
* as the starting point, pid is before last_pid.
|
|
*/
|
|
} while (offset < BITS_PER_PAGE && pid < pid_max &&
|
|
(i != max_scan || pid < last ||
|
|
!((last+1) & BITS_PER_PAGE_MASK)));
|
|
}
|
|
if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
|
|
++map;
|
|
offset = 0;
|
|
} else {
|
|
map = &pid_ns->pidmap[0];
|
|
offset = RESERVED_PIDS;
|
|
if (unlikely(last == offset))
|
|
break;
|
|
}
|
|
pid = mk_pid(pid_ns, map, offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int next_pidmap(struct pid_namespace *pid_ns, int last)
|
|
{
|
|
int offset;
|
|
struct pidmap *map, *end;
|
|
|
|
offset = (last + 1) & BITS_PER_PAGE_MASK;
|
|
map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
|
|
end = &pid_ns->pidmap[PIDMAP_ENTRIES];
|
|
for (; map < end; map++, offset = 0) {
|
|
if (unlikely(!map->page))
|
|
continue;
|
|
offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
|
|
if (offset < BITS_PER_PAGE)
|
|
return mk_pid(pid_ns, map, offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
fastcall void put_pid(struct pid *pid)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
if (!pid)
|
|
return;
|
|
|
|
ns = pid->numbers[pid->level].ns;
|
|
if ((atomic_read(&pid->count) == 1) ||
|
|
atomic_dec_and_test(&pid->count)) {
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
put_pid_ns(ns);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid);
|
|
|
|
static void delayed_put_pid(struct rcu_head *rhp)
|
|
{
|
|
struct pid *pid = container_of(rhp, struct pid, rcu);
|
|
put_pid(pid);
|
|
}
|
|
|
|
fastcall void free_pid(struct pid *pid)
|
|
{
|
|
/* We can be called with write_lock_irq(&tasklist_lock) held */
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pidmap_lock, flags);
|
|
for (i = 0; i <= pid->level; i++)
|
|
hlist_del_rcu(&pid->numbers[i].pid_chain);
|
|
spin_unlock_irqrestore(&pidmap_lock, flags);
|
|
|
|
for (i = 0; i <= pid->level; i++)
|
|
free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
|
|
|
|
call_rcu(&pid->rcu, delayed_put_pid);
|
|
}
|
|
|
|
struct pid *alloc_pid(struct pid_namespace *ns)
|
|
{
|
|
struct pid *pid;
|
|
enum pid_type type;
|
|
int i, nr;
|
|
struct pid_namespace *tmp;
|
|
struct upid *upid;
|
|
|
|
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
|
|
if (!pid)
|
|
goto out;
|
|
|
|
tmp = ns;
|
|
for (i = ns->level; i >= 0; i--) {
|
|
nr = alloc_pidmap(tmp);
|
|
if (nr < 0)
|
|
goto out_free;
|
|
|
|
pid->numbers[i].nr = nr;
|
|
pid->numbers[i].ns = tmp;
|
|
tmp = tmp->parent;
|
|
}
|
|
|
|
get_pid_ns(ns);
|
|
pid->level = ns->level;
|
|
atomic_set(&pid->count, 1);
|
|
for (type = 0; type < PIDTYPE_MAX; ++type)
|
|
INIT_HLIST_HEAD(&pid->tasks[type]);
|
|
|
|
spin_lock_irq(&pidmap_lock);
|
|
for (i = ns->level; i >= 0; i--) {
|
|
upid = &pid->numbers[i];
|
|
hlist_add_head_rcu(&upid->pid_chain,
|
|
&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
|
|
}
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
out:
|
|
return pid;
|
|
|
|
out_free:
|
|
for (i++; i <= ns->level; i++)
|
|
free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
|
|
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
pid = NULL;
|
|
goto out;
|
|
}
|
|
|
|
struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
|
|
{
|
|
struct hlist_node *elem;
|
|
struct upid *pnr;
|
|
|
|
hlist_for_each_entry_rcu(pnr, elem,
|
|
&pid_hash[pid_hashfn(nr, ns)], pid_chain)
|
|
if (pnr->nr == nr && pnr->ns == ns)
|
|
return container_of(pnr, struct pid,
|
|
numbers[ns->level]);
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_pid_ns);
|
|
|
|
struct pid *find_vpid(int nr)
|
|
{
|
|
return find_pid_ns(nr, current->nsproxy->pid_ns);
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_vpid);
|
|
|
|
struct pid *find_pid(int nr)
|
|
{
|
|
return find_pid_ns(nr, &init_pid_ns);
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_pid);
|
|
|
|
/*
|
|
* attach_pid() must be called with the tasklist_lock write-held.
|
|
*/
|
|
int fastcall attach_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *pid)
|
|
{
|
|
struct pid_link *link;
|
|
|
|
link = &task->pids[type];
|
|
link->pid = pid;
|
|
hlist_add_head_rcu(&link->node, &pid->tasks[type]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void fastcall detach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid_link *link;
|
|
struct pid *pid;
|
|
int tmp;
|
|
|
|
link = &task->pids[type];
|
|
pid = link->pid;
|
|
|
|
hlist_del_rcu(&link->node);
|
|
link->pid = NULL;
|
|
|
|
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
|
|
if (!hlist_empty(&pid->tasks[tmp]))
|
|
return;
|
|
|
|
free_pid(pid);
|
|
}
|
|
|
|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
|
|
void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
|
|
enum pid_type type)
|
|
{
|
|
new->pids[type].pid = old->pids[type].pid;
|
|
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
|
|
old->pids[type].pid = NULL;
|
|
}
|
|
|
|
struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result = NULL;
|
|
if (pid) {
|
|
struct hlist_node *first;
|
|
first = rcu_dereference(pid->tasks[type].first);
|
|
if (first)
|
|
result = hlist_entry(first, struct task_struct, pids[(type)].node);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Must be called under rcu_read_lock() or with tasklist_lock read-held.
|
|
*/
|
|
struct task_struct *find_task_by_pid_type_ns(int type, int nr,
|
|
struct pid_namespace *ns)
|
|
{
|
|
return pid_task(find_pid_ns(nr, ns), type);
|
|
}
|
|
|
|
EXPORT_SYMBOL(find_task_by_pid_type_ns);
|
|
|
|
struct task_struct *find_task_by_pid(pid_t nr)
|
|
{
|
|
return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
|
|
}
|
|
EXPORT_SYMBOL(find_task_by_pid);
|
|
|
|
struct task_struct *find_task_by_vpid(pid_t vnr)
|
|
{
|
|
return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
|
|
current->nsproxy->pid_ns);
|
|
}
|
|
EXPORT_SYMBOL(find_task_by_vpid);
|
|
|
|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
|
|
{
|
|
return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
|
|
}
|
|
EXPORT_SYMBOL(find_task_by_pid_ns);
|
|
|
|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid;
|
|
rcu_read_lock();
|
|
pid = get_pid(task->pids[type].pid);
|
|
rcu_read_unlock();
|
|
return pid;
|
|
}
|
|
|
|
struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result;
|
|
rcu_read_lock();
|
|
result = pid_task(pid, type);
|
|
if (result)
|
|
get_task_struct(result);
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
|
|
struct pid *find_get_pid(pid_t nr)
|
|
{
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = get_pid(find_vpid(nr));
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
|
|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
|
|
{
|
|
struct upid *upid;
|
|
pid_t nr = 0;
|
|
|
|
if (pid && ns->level <= pid->level) {
|
|
upid = &pid->numbers[ns->level];
|
|
if (upid->ns == ns)
|
|
nr = upid->nr;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return pid_nr_ns(task_pid(tsk), ns);
|
|
}
|
|
EXPORT_SYMBOL(task_pid_nr_ns);
|
|
|
|
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return pid_nr_ns(task_tgid(tsk), ns);
|
|
}
|
|
EXPORT_SYMBOL(task_tgid_nr_ns);
|
|
|
|
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return pid_nr_ns(task_pgrp(tsk), ns);
|
|
}
|
|
EXPORT_SYMBOL(task_pgrp_nr_ns);
|
|
|
|
pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
|
|
{
|
|
return pid_nr_ns(task_session(tsk), ns);
|
|
}
|
|
EXPORT_SYMBOL(task_session_nr_ns);
|
|
|
|
/*
|
|
* Used by proc to find the first pid that is greater then or equal to nr.
|
|
*
|
|
* If there is a pid at nr this function is exactly the same as find_pid.
|
|
*/
|
|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
|
|
{
|
|
struct pid *pid;
|
|
|
|
do {
|
|
pid = find_pid_ns(nr, ns);
|
|
if (pid)
|
|
break;
|
|
nr = next_pidmap(ns, nr);
|
|
} while (nr > 0);
|
|
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_get_pid);
|
|
|
|
struct pid_cache {
|
|
int nr_ids;
|
|
char name[16];
|
|
struct kmem_cache *cachep;
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(pid_caches_lh);
|
|
static DEFINE_MUTEX(pid_caches_mutex);
|
|
|
|
/*
|
|
* creates the kmem cache to allocate pids from.
|
|
* @nr_ids: the number of numerical ids this pid will have to carry
|
|
*/
|
|
|
|
static struct kmem_cache *create_pid_cachep(int nr_ids)
|
|
{
|
|
struct pid_cache *pcache;
|
|
struct kmem_cache *cachep;
|
|
|
|
mutex_lock(&pid_caches_mutex);
|
|
list_for_each_entry (pcache, &pid_caches_lh, list)
|
|
if (pcache->nr_ids == nr_ids)
|
|
goto out;
|
|
|
|
pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
|
|
if (pcache == NULL)
|
|
goto err_alloc;
|
|
|
|
snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
|
|
cachep = kmem_cache_create(pcache->name,
|
|
sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
if (cachep == NULL)
|
|
goto err_cachep;
|
|
|
|
pcache->nr_ids = nr_ids;
|
|
pcache->cachep = cachep;
|
|
list_add(&pcache->list, &pid_caches_lh);
|
|
out:
|
|
mutex_unlock(&pid_caches_mutex);
|
|
return pcache->cachep;
|
|
|
|
err_cachep:
|
|
kfree(pcache);
|
|
err_alloc:
|
|
mutex_unlock(&pid_caches_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_PID_NS
|
|
static struct pid_namespace *create_pid_namespace(int level)
|
|
{
|
|
struct pid_namespace *ns;
|
|
int i;
|
|
|
|
ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
|
|
if (ns == NULL)
|
|
goto out;
|
|
|
|
ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!ns->pidmap[0].page)
|
|
goto out_free;
|
|
|
|
ns->pid_cachep = create_pid_cachep(level + 1);
|
|
if (ns->pid_cachep == NULL)
|
|
goto out_free_map;
|
|
|
|
kref_init(&ns->kref);
|
|
ns->last_pid = 0;
|
|
ns->child_reaper = NULL;
|
|
ns->level = level;
|
|
|
|
set_bit(0, ns->pidmap[0].page);
|
|
atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
|
|
|
|
for (i = 1; i < PIDMAP_ENTRIES; i++) {
|
|
ns->pidmap[i].page = 0;
|
|
atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
|
|
}
|
|
|
|
return ns;
|
|
|
|
out_free_map:
|
|
kfree(ns->pidmap[0].page);
|
|
out_free:
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
out:
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static void destroy_pid_namespace(struct pid_namespace *ns)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PIDMAP_ENTRIES; i++)
|
|
kfree(ns->pidmap[i].page);
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
}
|
|
|
|
struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
|
|
{
|
|
struct pid_namespace *new_ns;
|
|
|
|
BUG_ON(!old_ns);
|
|
new_ns = get_pid_ns(old_ns);
|
|
if (!(flags & CLONE_NEWPID))
|
|
goto out;
|
|
|
|
new_ns = ERR_PTR(-EINVAL);
|
|
if (flags & CLONE_THREAD)
|
|
goto out_put;
|
|
|
|
new_ns = create_pid_namespace(old_ns->level + 1);
|
|
if (!IS_ERR(new_ns))
|
|
new_ns->parent = get_pid_ns(old_ns);
|
|
|
|
out_put:
|
|
put_pid_ns(old_ns);
|
|
out:
|
|
return new_ns;
|
|
}
|
|
|
|
void free_pid_ns(struct kref *kref)
|
|
{
|
|
struct pid_namespace *ns, *parent;
|
|
|
|
ns = container_of(kref, struct pid_namespace, kref);
|
|
|
|
parent = ns->parent;
|
|
destroy_pid_namespace(ns);
|
|
|
|
if (parent != NULL)
|
|
put_pid_ns(parent);
|
|
}
|
|
#endif /* CONFIG_PID_NS */
|
|
|
|
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
|
{
|
|
int nr;
|
|
int rc;
|
|
|
|
/*
|
|
* The last thread in the cgroup-init thread group is terminating.
|
|
* Find remaining pid_ts in the namespace, signal and wait for them
|
|
* to exit.
|
|
*
|
|
* Note: This signals each threads in the namespace - even those that
|
|
* belong to the same thread group, To avoid this, we would have
|
|
* to walk the entire tasklist looking a processes in this
|
|
* namespace, but that could be unnecessarily expensive if the
|
|
* pid namespace has just a few processes. Or we need to
|
|
* maintain a tasklist for each pid namespace.
|
|
*
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
nr = next_pidmap(pid_ns, 1);
|
|
while (nr > 0) {
|
|
kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
|
|
nr = next_pidmap(pid_ns, nr);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
do {
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
rc = sys_wait4(-1, NULL, __WALL, NULL);
|
|
} while (rc != -ECHILD);
|
|
|
|
|
|
/* Child reaper for the pid namespace is going away */
|
|
pid_ns->child_reaper = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The pid hash table is scaled according to the amount of memory in the
|
|
* machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
|
|
* more.
|
|
*/
|
|
void __init pidhash_init(void)
|
|
{
|
|
int i, pidhash_size;
|
|
unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
|
|
|
|
pidhash_shift = max(4, fls(megabytes * 4));
|
|
pidhash_shift = min(12, pidhash_shift);
|
|
pidhash_size = 1 << pidhash_shift;
|
|
|
|
printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
|
|
pidhash_size, pidhash_shift,
|
|
pidhash_size * sizeof(struct hlist_head));
|
|
|
|
pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
|
|
if (!pid_hash)
|
|
panic("Could not alloc pidhash!\n");
|
|
for (i = 0; i < pidhash_size; i++)
|
|
INIT_HLIST_HEAD(&pid_hash[i]);
|
|
}
|
|
|
|
void __init pidmap_init(void)
|
|
{
|
|
init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
/* Reserve PID 0. We never call free_pidmap(0) */
|
|
set_bit(0, init_pid_ns.pidmap[0].page);
|
|
atomic_dec(&init_pid_ns.pidmap[0].nr_free);
|
|
|
|
init_pid_ns.pid_cachep = create_pid_cachep(1);
|
|
if (init_pid_ns.pid_cachep == NULL)
|
|
panic("Can't create pid_1 cachep\n");
|
|
|
|
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
|
|
}
|