linux_dsm_epyc7002/drivers/net/wireless/ath/ath6kl/sdio.c
Kalle Valo a5d8f9dfcf ath6kl: use braces on both arms of if statement
Fixes checkpatch warning:

CHECK: braces {} should be used on all arms of this statement

Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-03-13 07:46:56 +02:00

1461 lines
37 KiB
C

/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/sdio_ids.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sd.h>
#include "hif.h"
#include "hif-ops.h"
#include "target.h"
#include "debug.h"
#include "cfg80211.h"
#include "trace.h"
struct ath6kl_sdio {
struct sdio_func *func;
/* protects access to bus_req_freeq */
spinlock_t lock;
/* free list */
struct list_head bus_req_freeq;
/* available bus requests */
struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
struct ath6kl *ar;
u8 *dma_buffer;
/* protects access to dma_buffer */
struct mutex dma_buffer_mutex;
/* scatter request list head */
struct list_head scat_req;
atomic_t irq_handling;
wait_queue_head_t irq_wq;
/* protects access to scat_req */
spinlock_t scat_lock;
bool scatter_enabled;
bool is_disabled;
const struct sdio_device_id *id;
struct work_struct wr_async_work;
struct list_head wr_asyncq;
/* protects access to wr_asyncq */
spinlock_t wr_async_lock;
};
#define CMD53_ARG_READ 0
#define CMD53_ARG_WRITE 1
#define CMD53_ARG_BLOCK_BASIS 1
#define CMD53_ARG_FIXED_ADDRESS 0
#define CMD53_ARG_INCR_ADDRESS 1
static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
{
return ar->hif_priv;
}
/*
* Macro to check if DMA buffer is WORD-aligned and DMA-able.
* Most host controllers assume the buffer is DMA'able and will
* bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
* check fails on stack memory.
*/
static inline bool buf_needs_bounce(u8 *buf)
{
return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
}
static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
{
struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
/* EP1 has an extended range */
mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
}
static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
u8 mode, u8 opcode, u32 addr,
u16 blksz)
{
*arg = (((rw & 1) << 31) |
((func & 0x7) << 28) |
((mode & 1) << 27) |
((opcode & 1) << 26) |
((addr & 0x1FFFF) << 9) |
(blksz & 0x1FF));
}
static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
unsigned int address,
unsigned char val)
{
const u8 func = 0;
*arg = ((write & 1) << 31) |
((func & 0x7) << 28) |
((raw & 1) << 27) |
(1 << 26) |
((address & 0x1FFFF) << 9) |
(1 << 8) |
(val & 0xFF);
}
static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
unsigned int address,
unsigned char byte)
{
struct mmc_command io_cmd;
memset(&io_cmd, 0, sizeof(io_cmd));
ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
io_cmd.opcode = SD_IO_RW_DIRECT;
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &io_cmd, 0);
}
static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
u8 *buf, u32 len)
{
int ret = 0;
sdio_claim_host(func);
if (request & HIF_WRITE) {
/* FIXME: looks like ugly workaround for something */
if (addr >= HIF_MBOX_BASE_ADDR &&
addr <= HIF_MBOX_END_ADDR)
addr += (HIF_MBOX_WIDTH - len);
/* FIXME: this also looks like ugly workaround */
if (addr == HIF_MBOX0_EXT_BASE_ADDR)
addr += HIF_MBOX0_EXT_WIDTH - len;
if (request & HIF_FIXED_ADDRESS)
ret = sdio_writesb(func, addr, buf, len);
else
ret = sdio_memcpy_toio(func, addr, buf, len);
} else {
if (request & HIF_FIXED_ADDRESS)
ret = sdio_readsb(func, buf, addr, len);
else
ret = sdio_memcpy_fromio(func, buf, addr, len);
}
sdio_release_host(func);
ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
request & HIF_WRITE ? "wr" : "rd", addr,
request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
trace_ath6kl_sdio(addr, request, buf, len);
return ret;
}
static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
{
struct bus_request *bus_req;
spin_lock_bh(&ar_sdio->lock);
if (list_empty(&ar_sdio->bus_req_freeq)) {
spin_unlock_bh(&ar_sdio->lock);
return NULL;
}
bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
struct bus_request, list);
list_del(&bus_req->list);
spin_unlock_bh(&ar_sdio->lock);
ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
__func__, bus_req);
return bus_req;
}
static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
struct bus_request *bus_req)
{
ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
__func__, bus_req);
spin_lock_bh(&ar_sdio->lock);
list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
spin_unlock_bh(&ar_sdio->lock);
}
static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
struct mmc_data *data)
{
struct scatterlist *sg;
int i;
data->blksz = HIF_MBOX_BLOCK_SIZE;
data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
ath6kl_dbg(ATH6KL_DBG_SCATTER,
"hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
(scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
data->blksz, data->blocks, scat_req->len,
scat_req->scat_entries);
data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
MMC_DATA_READ;
/* fill SG entries */
sg = scat_req->sgentries;
sg_init_table(sg, scat_req->scat_entries);
/* assemble SG list */
for (i = 0; i < scat_req->scat_entries; i++, sg++) {
ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
i, scat_req->scat_list[i].buf,
scat_req->scat_list[i].len);
sg_set_buf(sg, scat_req->scat_list[i].buf,
scat_req->scat_list[i].len);
}
/* set scatter-gather table for request */
data->sg = scat_req->sgentries;
data->sg_len = scat_req->scat_entries;
}
static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
struct bus_request *req)
{
struct mmc_request mmc_req;
struct mmc_command cmd;
struct mmc_data data;
struct hif_scatter_req *scat_req;
u8 opcode, rw;
int status, len;
scat_req = req->scat_req;
if (scat_req->virt_scat) {
len = scat_req->len;
if (scat_req->req & HIF_BLOCK_BASIS)
len = round_down(len, HIF_MBOX_BLOCK_SIZE);
status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
scat_req->addr, scat_req->virt_dma_buf,
len);
goto scat_complete;
}
memset(&mmc_req, 0, sizeof(struct mmc_request));
memset(&cmd, 0, sizeof(struct mmc_command));
memset(&data, 0, sizeof(struct mmc_data));
ath6kl_sdio_setup_scat_data(scat_req, &data);
opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
/* Fixup the address so that the last byte will fall on MBOX EOM */
if (scat_req->req & HIF_WRITE) {
if (scat_req->addr == HIF_MBOX_BASE_ADDR)
scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
else
/* Uses extended address range */
scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
}
/* set command argument */
ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
data.blocks);
cmd.opcode = SD_IO_RW_EXTENDED;
cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
mmc_req.cmd = &cmd;
mmc_req.data = &data;
sdio_claim_host(ar_sdio->func);
mmc_set_data_timeout(&data, ar_sdio->func->card);
trace_ath6kl_sdio_scat(scat_req->addr,
scat_req->req,
scat_req->len,
scat_req->scat_entries,
scat_req->scat_list);
/* synchronous call to process request */
mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
sdio_release_host(ar_sdio->func);
status = cmd.error ? cmd.error : data.error;
scat_complete:
scat_req->status = status;
if (scat_req->status)
ath6kl_err("Scatter write request failed:%d\n",
scat_req->status);
if (scat_req->req & HIF_ASYNCHRONOUS)
scat_req->complete(ar_sdio->ar->htc_target, scat_req);
return status;
}
static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
int n_scat_entry, int n_scat_req,
bool virt_scat)
{
struct hif_scatter_req *s_req;
struct bus_request *bus_req;
int i, scat_req_sz, scat_list_sz, size;
u8 *virt_buf;
scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
scat_req_sz = sizeof(*s_req) + scat_list_sz;
if (!virt_scat)
size = sizeof(struct scatterlist) * n_scat_entry;
else
size = 2 * L1_CACHE_BYTES +
ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
for (i = 0; i < n_scat_req; i++) {
/* allocate the scatter request */
s_req = kzalloc(scat_req_sz, GFP_KERNEL);
if (!s_req)
return -ENOMEM;
if (virt_scat) {
virt_buf = kzalloc(size, GFP_KERNEL);
if (!virt_buf) {
kfree(s_req);
return -ENOMEM;
}
s_req->virt_dma_buf =
(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
} else {
/* allocate sglist */
s_req->sgentries = kzalloc(size, GFP_KERNEL);
if (!s_req->sgentries) {
kfree(s_req);
return -ENOMEM;
}
}
/* allocate a bus request for this scatter request */
bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
if (!bus_req) {
kfree(s_req->sgentries);
kfree(s_req->virt_dma_buf);
kfree(s_req);
return -ENOMEM;
}
/* assign the scatter request to this bus request */
bus_req->scat_req = s_req;
s_req->busrequest = bus_req;
s_req->virt_scat = virt_scat;
/* add it to the scatter pool */
hif_scatter_req_add(ar_sdio->ar, s_req);
}
return 0;
}
static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
u32 len, u32 request)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
u8 *tbuf = NULL;
int ret;
bool bounced = false;
if (request & HIF_BLOCK_BASIS)
len = round_down(len, HIF_MBOX_BLOCK_SIZE);
if (buf_needs_bounce(buf)) {
if (!ar_sdio->dma_buffer)
return -ENOMEM;
mutex_lock(&ar_sdio->dma_buffer_mutex);
tbuf = ar_sdio->dma_buffer;
if (request & HIF_WRITE)
memcpy(tbuf, buf, len);
bounced = true;
} else {
tbuf = buf;
}
ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
if ((request & HIF_READ) && bounced)
memcpy(buf, tbuf, len);
if (bounced)
mutex_unlock(&ar_sdio->dma_buffer_mutex);
return ret;
}
static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
struct bus_request *req)
{
if (req->scat_req) {
ath6kl_sdio_scat_rw(ar_sdio, req);
} else {
void *context;
int status;
status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
req->buffer, req->length,
req->request);
context = req->packet;
ath6kl_sdio_free_bus_req(ar_sdio, req);
ath6kl_hif_rw_comp_handler(context, status);
}
}
static void ath6kl_sdio_write_async_work(struct work_struct *work)
{
struct ath6kl_sdio *ar_sdio;
struct bus_request *req, *tmp_req;
ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
spin_lock_bh(&ar_sdio->wr_async_lock);
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
list_del(&req->list);
spin_unlock_bh(&ar_sdio->wr_async_lock);
__ath6kl_sdio_write_async(ar_sdio, req);
spin_lock_bh(&ar_sdio->wr_async_lock);
}
spin_unlock_bh(&ar_sdio->wr_async_lock);
}
static void ath6kl_sdio_irq_handler(struct sdio_func *func)
{
int status;
struct ath6kl_sdio *ar_sdio;
ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
ar_sdio = sdio_get_drvdata(func);
atomic_set(&ar_sdio->irq_handling, 1);
/*
* Release the host during interrups so we can pick it back up when
* we process commands.
*/
sdio_release_host(ar_sdio->func);
status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
sdio_claim_host(ar_sdio->func);
atomic_set(&ar_sdio->irq_handling, 0);
wake_up(&ar_sdio->irq_wq);
WARN_ON(status && status != -ECANCELED);
}
static int ath6kl_sdio_power_on(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret = 0;
if (!ar_sdio->is_disabled)
return 0;
ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
sdio_claim_host(func);
ret = sdio_enable_func(func);
if (ret) {
ath6kl_err("Unable to enable sdio func: %d)\n", ret);
sdio_release_host(func);
return ret;
}
sdio_release_host(func);
/*
* Wait for hardware to initialise. It should take a lot less than
* 10 ms but let's be conservative here.
*/
msleep(10);
ar_sdio->is_disabled = false;
return ret;
}
static int ath6kl_sdio_power_off(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
int ret;
if (ar_sdio->is_disabled)
return 0;
ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
/* Disable the card */
sdio_claim_host(ar_sdio->func);
ret = sdio_disable_func(ar_sdio->func);
sdio_release_host(ar_sdio->func);
if (ret)
return ret;
ar_sdio->is_disabled = true;
return ret;
}
static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
u32 length, u32 request,
struct htc_packet *packet)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct bus_request *bus_req;
bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
if (WARN_ON_ONCE(!bus_req))
return -ENOMEM;
bus_req->address = address;
bus_req->buffer = buffer;
bus_req->length = length;
bus_req->request = request;
bus_req->packet = packet;
spin_lock_bh(&ar_sdio->wr_async_lock);
list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
spin_unlock_bh(&ar_sdio->wr_async_lock);
queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
return 0;
}
static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
int ret;
sdio_claim_host(ar_sdio->func);
/* Register the isr */
ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
if (ret)
ath6kl_err("Failed to claim sdio irq: %d\n", ret);
sdio_release_host(ar_sdio->func);
}
static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
return !atomic_read(&ar_sdio->irq_handling);
}
static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
int ret;
sdio_claim_host(ar_sdio->func);
if (atomic_read(&ar_sdio->irq_handling)) {
sdio_release_host(ar_sdio->func);
ret = wait_event_interruptible(ar_sdio->irq_wq,
ath6kl_sdio_is_on_irq(ar));
if (ret)
return;
sdio_claim_host(ar_sdio->func);
}
ret = sdio_release_irq(ar_sdio->func);
if (ret)
ath6kl_err("Failed to release sdio irq: %d\n", ret);
sdio_release_host(ar_sdio->func);
}
static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct hif_scatter_req *node = NULL;
spin_lock_bh(&ar_sdio->scat_lock);
if (!list_empty(&ar_sdio->scat_req)) {
node = list_first_entry(&ar_sdio->scat_req,
struct hif_scatter_req, list);
list_del(&node->list);
node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
}
spin_unlock_bh(&ar_sdio->scat_lock);
return node;
}
static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
struct hif_scatter_req *s_req)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
spin_lock_bh(&ar_sdio->scat_lock);
list_add_tail(&s_req->list, &ar_sdio->scat_req);
spin_unlock_bh(&ar_sdio->scat_lock);
}
/* scatter gather read write request */
static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
struct hif_scatter_req *scat_req)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
u32 request = scat_req->req;
int status = 0;
if (!scat_req->len)
return -EINVAL;
ath6kl_dbg(ATH6KL_DBG_SCATTER,
"hif-scatter: total len: %d scatter entries: %d\n",
scat_req->len, scat_req->scat_entries);
if (request & HIF_SYNCHRONOUS) {
status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
} else {
spin_lock_bh(&ar_sdio->wr_async_lock);
list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
spin_unlock_bh(&ar_sdio->wr_async_lock);
queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
}
return status;
}
/* clean up scatter support */
static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct hif_scatter_req *s_req, *tmp_req;
/* empty the free list */
spin_lock_bh(&ar_sdio->scat_lock);
list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
list_del(&s_req->list);
spin_unlock_bh(&ar_sdio->scat_lock);
/*
* FIXME: should we also call completion handler with
* ath6kl_hif_rw_comp_handler() with status -ECANCELED so
* that the packet is properly freed?
*/
if (s_req->busrequest)
ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
kfree(s_req->virt_dma_buf);
kfree(s_req->sgentries);
kfree(s_req);
spin_lock_bh(&ar_sdio->scat_lock);
}
spin_unlock_bh(&ar_sdio->scat_lock);
}
/* setup of HIF scatter resources */
static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct htc_target *target = ar->htc_target;
int ret = 0;
bool virt_scat = false;
if (ar_sdio->scatter_enabled)
return 0;
ar_sdio->scatter_enabled = true;
/* check if host supports scatter and it meets our requirements */
if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
ar_sdio->func->card->host->max_segs,
MAX_SCATTER_ENTRIES_PER_REQ);
virt_scat = true;
}
if (!virt_scat) {
ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
MAX_SCATTER_ENTRIES_PER_REQ,
MAX_SCATTER_REQUESTS, virt_scat);
if (!ret) {
ath6kl_dbg(ATH6KL_DBG_BOOT,
"hif-scatter enabled requests %d entries %d\n",
MAX_SCATTER_REQUESTS,
MAX_SCATTER_ENTRIES_PER_REQ);
target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
target->max_xfer_szper_scatreq =
MAX_SCATTER_REQ_TRANSFER_SIZE;
} else {
ath6kl_sdio_cleanup_scatter(ar);
ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
}
}
if (virt_scat || ret) {
ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
ATH6KL_SCATTER_ENTRIES_PER_REQ,
ATH6KL_SCATTER_REQS, virt_scat);
if (ret) {
ath6kl_err("failed to alloc virtual scatter resources !\n");
ath6kl_sdio_cleanup_scatter(ar);
return ret;
}
ath6kl_dbg(ATH6KL_DBG_BOOT,
"virtual scatter enabled requests %d entries %d\n",
ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
target->max_xfer_szper_scatreq =
ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
}
return 0;
}
static int ath6kl_sdio_config(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
sdio_claim_host(func);
if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
MANUFACTURER_ID_AR6003_BASE) {
/* enable 4-bit ASYNC interrupt on AR6003 or later */
ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
CCCR_SDIO_IRQ_MODE_REG,
SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
if (ret) {
ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
ret);
goto out;
}
ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
}
/* give us some time to enable, in ms */
func->enable_timeout = 100;
ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
if (ret) {
ath6kl_err("Set sdio block size %d failed: %d)\n",
HIF_MBOX_BLOCK_SIZE, ret);
goto out;
}
out:
sdio_release_host(func);
return ret;
}
static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
mmc_pm_flag_t flags;
int ret;
flags = sdio_get_host_pm_caps(func);
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
!(flags & MMC_PM_KEEP_POWER))
return -EINVAL;
ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
if (ret) {
ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
return ret;
}
/* sdio irq wakes up host */
ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
if (ret)
ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
return ret;
}
static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
mmc_pm_flag_t flags;
bool try_deepsleep = false;
int ret;
if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
(!ar->suspend_mode && wow)) {
ret = ath6kl_set_sdio_pm_caps(ar);
if (ret)
goto cut_pwr;
ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
if (ret && ret != -ENOTCONN)
ath6kl_err("wow suspend failed: %d\n", ret);
if (ret &&
(!ar->wow_suspend_mode ||
ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
try_deepsleep = true;
else if (ret &&
ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
goto cut_pwr;
if (!ret)
return 0;
}
if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
!ar->suspend_mode || try_deepsleep) {
flags = sdio_get_host_pm_caps(func);
if (!(flags & MMC_PM_KEEP_POWER))
goto cut_pwr;
ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
if (ret)
goto cut_pwr;
/*
* Workaround to support Deep Sleep with MSM, set the host pm
* flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
* the sdc2_clock and internally allows MSM to enter
* TCXO shutdown properly.
*/
if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
ret = sdio_set_host_pm_flags(func,
MMC_PM_WAKE_SDIO_IRQ);
if (ret)
goto cut_pwr;
}
ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
NULL);
if (ret)
goto cut_pwr;
return 0;
}
cut_pwr:
if (func->card && func->card->host)
func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
}
static int ath6kl_sdio_resume(struct ath6kl *ar)
{
switch (ar->state) {
case ATH6KL_STATE_OFF:
case ATH6KL_STATE_CUTPOWER:
ath6kl_dbg(ATH6KL_DBG_SUSPEND,
"sdio resume configuring sdio\n");
/* need to set sdio settings after power is cut from sdio */
ath6kl_sdio_config(ar);
break;
case ATH6KL_STATE_ON:
break;
case ATH6KL_STATE_DEEPSLEEP:
break;
case ATH6KL_STATE_WOW:
break;
case ATH6KL_STATE_SUSPENDING:
break;
case ATH6KL_STATE_RESUMING:
break;
case ATH6KL_STATE_RECOVERY:
break;
}
ath6kl_cfg80211_resume(ar);
return 0;
}
/* set the window address register (using 4-byte register access ). */
static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
{
int status;
u8 addr_val[4];
s32 i;
/*
* Write bytes 1,2,3 of the register to set the upper address bytes,
* the LSB is written last to initiate the access cycle
*/
for (i = 1; i <= 3; i++) {
/*
* Fill the buffer with the address byte value we want to
* hit 4 times.
*/
memset(addr_val, ((u8 *)&addr)[i], 4);
/*
* Hit each byte of the register address with a 4-byte
* write operation to the same address, this is a harmless
* operation.
*/
status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
4, HIF_WR_SYNC_BYTE_FIX);
if (status)
break;
}
if (status) {
ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
__func__, addr, reg_addr);
return status;
}
/*
* Write the address register again, this time write the whole
* 4-byte value. The effect here is that the LSB write causes the
* cycle to start, the extra 3 byte write to bytes 1,2,3 has no
* effect since we are writing the same values again
*/
status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
4, HIF_WR_SYNC_BYTE_INC);
if (status) {
ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
__func__, addr, reg_addr);
return status;
}
return 0;
}
static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
{
int status;
/* set window register to start read cycle */
status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
address);
if (status)
return status;
/* read the data */
status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
if (status) {
ath6kl_err("%s: failed to read from window data addr\n",
__func__);
return status;
}
return status;
}
static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
__le32 data)
{
int status;
u32 val = (__force u32) data;
/* set write data */
status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
if (status) {
ath6kl_err("%s: failed to write 0x%x to window data addr\n",
__func__, data);
return status;
}
/* set window register, which starts the write cycle */
return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
address);
}
static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
{
u32 addr;
unsigned long timeout;
int ret;
ar->bmi.cmd_credits = 0;
/* Read the counter register to get the command credits */
addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
/*
* Hit the credit counter with a 4-byte access, the first byte
* read will hit the counter and cause a decrement, while the
* remaining 3 bytes has no effect. The rationale behind this
* is to make all HIF accesses 4-byte aligned.
*/
ret = ath6kl_sdio_read_write_sync(ar, addr,
(u8 *)&ar->bmi.cmd_credits, 4,
HIF_RD_SYNC_BYTE_INC);
if (ret) {
ath6kl_err("Unable to decrement the command credit count register: %d\n",
ret);
return ret;
}
/* The counter is only 8 bits.
* Ignore anything in the upper 3 bytes
*/
ar->bmi.cmd_credits &= 0xFF;
}
if (!ar->bmi.cmd_credits) {
ath6kl_err("bmi communication timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
{
unsigned long timeout;
u32 rx_word = 0;
int ret = 0;
timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
while ((time_before(jiffies, timeout)) && !rx_word) {
ret = ath6kl_sdio_read_write_sync(ar,
RX_LOOKAHEAD_VALID_ADDRESS,
(u8 *)&rx_word, sizeof(rx_word),
HIF_RD_SYNC_BYTE_INC);
if (ret) {
ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
return ret;
}
/* all we really want is one bit */
rx_word &= (1 << ENDPOINT1);
}
if (!rx_word) {
ath6kl_err("bmi_recv_buf FIFO empty\n");
return -EINVAL;
}
return ret;
}
static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
{
int ret;
u32 addr;
ret = ath6kl_sdio_bmi_credits(ar);
if (ret)
return ret;
addr = ar->mbox_info.htc_addr;
ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
HIF_WR_SYNC_BYTE_INC);
if (ret) {
ath6kl_err("unable to send the bmi data to the device\n");
return ret;
}
return 0;
}
static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
{
int ret;
u32 addr;
/*
* During normal bootup, small reads may be required.
* Rather than issue an HIF Read and then wait as the Target
* adds successive bytes to the FIFO, we wait here until
* we know that response data is available.
*
* This allows us to cleanly timeout on an unexpected
* Target failure rather than risk problems at the HIF level.
* In particular, this avoids SDIO timeouts and possibly garbage
* data on some host controllers. And on an interconnect
* such as Compact Flash (as well as some SDIO masters) which
* does not provide any indication on data timeout, it avoids
* a potential hang or garbage response.
*
* Synchronization is more difficult for reads larger than the
* size of the MBOX FIFO (128B), because the Target is unable
* to push the 129th byte of data until AFTER the Host posts an
* HIF Read and removes some FIFO data. So for large reads the
* Host proceeds to post an HIF Read BEFORE all the data is
* actually available to read. Fortunately, large BMI reads do
* not occur in practice -- they're supported for debug/development.
*
* So Host/Target BMI synchronization is divided into these cases:
* CASE 1: length < 4
* Should not happen
*
* CASE 2: 4 <= length <= 128
* Wait for first 4 bytes to be in FIFO
* If CONSERVATIVE_BMI_READ is enabled, also wait for
* a BMI command credit, which indicates that the ENTIRE
* response is available in the the FIFO
*
* CASE 3: length > 128
* Wait for the first 4 bytes to be in FIFO
*
* For most uses, a small timeout should be sufficient and we will
* usually see a response quickly; but there may be some unusual
* (debug) cases of BMI_EXECUTE where we want an larger timeout.
* For now, we use an unbounded busy loop while waiting for
* BMI_EXECUTE.
*
* If BMI_EXECUTE ever needs to support longer-latency execution,
* especially in production, this code needs to be enhanced to sleep
* and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
* a function of Host processor speed.
*/
if (len >= 4) { /* NB: Currently, always true */
ret = ath6kl_bmi_get_rx_lkahd(ar);
if (ret)
return ret;
}
addr = ar->mbox_info.htc_addr;
ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
HIF_RD_SYNC_BYTE_INC);
if (ret) {
ath6kl_err("Unable to read the bmi data from the device: %d\n",
ret);
return ret;
}
return 0;
}
static void ath6kl_sdio_stop(struct ath6kl *ar)
{
struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
struct bus_request *req, *tmp_req;
void *context;
/* FIXME: make sure that wq is not queued again */
cancel_work_sync(&ar_sdio->wr_async_work);
spin_lock_bh(&ar_sdio->wr_async_lock);
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
list_del(&req->list);
if (req->scat_req) {
/* this is a scatter gather request */
req->scat_req->status = -ECANCELED;
req->scat_req->complete(ar_sdio->ar->htc_target,
req->scat_req);
} else {
context = req->packet;
ath6kl_sdio_free_bus_req(ar_sdio, req);
ath6kl_hif_rw_comp_handler(context, -ECANCELED);
}
}
spin_unlock_bh(&ar_sdio->wr_async_lock);
WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
}
static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
.read_write_sync = ath6kl_sdio_read_write_sync,
.write_async = ath6kl_sdio_write_async,
.irq_enable = ath6kl_sdio_irq_enable,
.irq_disable = ath6kl_sdio_irq_disable,
.scatter_req_get = ath6kl_sdio_scatter_req_get,
.scatter_req_add = ath6kl_sdio_scatter_req_add,
.enable_scatter = ath6kl_sdio_enable_scatter,
.scat_req_rw = ath6kl_sdio_async_rw_scatter,
.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
.suspend = ath6kl_sdio_suspend,
.resume = ath6kl_sdio_resume,
.diag_read32 = ath6kl_sdio_diag_read32,
.diag_write32 = ath6kl_sdio_diag_write32,
.bmi_read = ath6kl_sdio_bmi_read,
.bmi_write = ath6kl_sdio_bmi_write,
.power_on = ath6kl_sdio_power_on,
.power_off = ath6kl_sdio_power_off,
.stop = ath6kl_sdio_stop,
};
#ifdef CONFIG_PM_SLEEP
/*
* Empty handlers so that mmc subsystem doesn't remove us entirely during
* suspend. We instead follow cfg80211 suspend/resume handlers.
*/
static int ath6kl_sdio_pm_suspend(struct device *device)
{
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
return 0;
}
static int ath6kl_sdio_pm_resume(struct device *device)
{
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
return 0;
}
static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
ath6kl_sdio_pm_resume);
#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
#else
#define ATH6KL_SDIO_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static int ath6kl_sdio_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
int ret;
struct ath6kl_sdio *ar_sdio;
struct ath6kl *ar;
int count;
ath6kl_dbg(ATH6KL_DBG_BOOT,
"sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
func->num, func->vendor, func->device,
func->max_blksize, func->cur_blksize);
ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
if (!ar_sdio)
return -ENOMEM;
ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
if (!ar_sdio->dma_buffer) {
ret = -ENOMEM;
goto err_hif;
}
ar_sdio->func = func;
sdio_set_drvdata(func, ar_sdio);
ar_sdio->id = id;
ar_sdio->is_disabled = true;
spin_lock_init(&ar_sdio->lock);
spin_lock_init(&ar_sdio->scat_lock);
spin_lock_init(&ar_sdio->wr_async_lock);
mutex_init(&ar_sdio->dma_buffer_mutex);
INIT_LIST_HEAD(&ar_sdio->scat_req);
INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
init_waitqueue_head(&ar_sdio->irq_wq);
for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
ar = ath6kl_core_create(&ar_sdio->func->dev);
if (!ar) {
ath6kl_err("Failed to alloc ath6kl core\n");
ret = -ENOMEM;
goto err_dma;
}
ar_sdio->ar = ar;
ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
ar->hif_priv = ar_sdio;
ar->hif_ops = &ath6kl_sdio_ops;
ar->bmi.max_data_size = 256;
ath6kl_sdio_set_mbox_info(ar);
ret = ath6kl_sdio_config(ar);
if (ret) {
ath6kl_err("Failed to config sdio: %d\n", ret);
goto err_core_alloc;
}
ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
if (ret) {
ath6kl_err("Failed to init ath6kl core\n");
goto err_core_alloc;
}
return ret;
err_core_alloc:
ath6kl_core_destroy(ar_sdio->ar);
err_dma:
kfree(ar_sdio->dma_buffer);
err_hif:
kfree(ar_sdio);
return ret;
}
static void ath6kl_sdio_remove(struct sdio_func *func)
{
struct ath6kl_sdio *ar_sdio;
ath6kl_dbg(ATH6KL_DBG_BOOT,
"sdio removed func %d vendor 0x%x device 0x%x\n",
func->num, func->vendor, func->device);
ar_sdio = sdio_get_drvdata(func);
ath6kl_stop_txrx(ar_sdio->ar);
cancel_work_sync(&ar_sdio->wr_async_work);
ath6kl_core_cleanup(ar_sdio->ar);
ath6kl_core_destroy(ar_sdio->ar);
kfree(ar_sdio->dma_buffer);
kfree(ar_sdio);
}
static const struct sdio_device_id ath6kl_sdio_devices[] = {
{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
{},
};
MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
static struct sdio_driver ath6kl_sdio_driver = {
.name = "ath6kl_sdio",
.id_table = ath6kl_sdio_devices,
.probe = ath6kl_sdio_probe,
.remove = ath6kl_sdio_remove,
.drv.pm = ATH6KL_SDIO_PM_OPS,
};
static int __init ath6kl_sdio_init(void)
{
int ret;
ret = sdio_register_driver(&ath6kl_sdio_driver);
if (ret)
ath6kl_err("sdio driver registration failed: %d\n", ret);
return ret;
}
static void __exit ath6kl_sdio_exit(void)
{
sdio_unregister_driver(&ath6kl_sdio_driver);
}
module_init(ath6kl_sdio_init);
module_exit(ath6kl_sdio_exit);
MODULE_AUTHOR("Atheros Communications, Inc.");
MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);