mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 14:36:46 +07:00
7e5930aaef
Add a sysfs cpu_capacity attribute with which it is possible to read and write (thus over-writing default values) CPUs capacity. This might be useful in situations where values needs changing after boot. The new attribute shows up as: /sys/devices/system/cpu/cpu*/cpu_capacity Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
535 lines
14 KiB
C
535 lines
14 KiB
C
/*
|
|
* arch/arm/kernel/topology.c
|
|
*
|
|
* Copyright (C) 2011 Linaro Limited.
|
|
* Written by: Vincent Guittot
|
|
*
|
|
* based on arch/sh/kernel/topology.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/node.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/of.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/topology.h>
|
|
|
|
/*
|
|
* cpu capacity scale management
|
|
*/
|
|
|
|
/*
|
|
* cpu capacity table
|
|
* This per cpu data structure describes the relative capacity of each core.
|
|
* On a heteregenous system, cores don't have the same computation capacity
|
|
* and we reflect that difference in the cpu_capacity field so the scheduler
|
|
* can take this difference into account during load balance. A per cpu
|
|
* structure is preferred because each CPU updates its own cpu_capacity field
|
|
* during the load balance except for idle cores. One idle core is selected
|
|
* to run the rebalance_domains for all idle cores and the cpu_capacity can be
|
|
* updated during this sequence.
|
|
*/
|
|
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
|
|
static DEFINE_MUTEX(cpu_scale_mutex);
|
|
|
|
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
|
{
|
|
return per_cpu(cpu_scale, cpu);
|
|
}
|
|
|
|
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
|
|
{
|
|
per_cpu(cpu_scale, cpu) = capacity;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
static ssize_t cpu_capacity_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
|
|
|
return sprintf(buf, "%lu\n",
|
|
arch_scale_cpu_capacity(NULL, cpu->dev.id));
|
|
}
|
|
|
|
static ssize_t cpu_capacity_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
|
int this_cpu = cpu->dev.id, i;
|
|
unsigned long new_capacity;
|
|
ssize_t ret;
|
|
|
|
if (count) {
|
|
ret = kstrtoul(buf, 0, &new_capacity);
|
|
if (ret)
|
|
return ret;
|
|
if (new_capacity > SCHED_CAPACITY_SCALE)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&cpu_scale_mutex);
|
|
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
|
|
set_capacity_scale(i, new_capacity);
|
|
mutex_unlock(&cpu_scale_mutex);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(cpu_capacity);
|
|
|
|
static int register_cpu_capacity_sysctl(void)
|
|
{
|
|
int i;
|
|
struct device *cpu;
|
|
|
|
for_each_possible_cpu(i) {
|
|
cpu = get_cpu_device(i);
|
|
if (!cpu) {
|
|
pr_err("%s: too early to get CPU%d device!\n",
|
|
__func__, i);
|
|
continue;
|
|
}
|
|
device_create_file(cpu, &dev_attr_cpu_capacity);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(register_cpu_capacity_sysctl);
|
|
#endif
|
|
|
|
#ifdef CONFIG_OF
|
|
struct cpu_efficiency {
|
|
const char *compatible;
|
|
unsigned long efficiency;
|
|
};
|
|
|
|
/*
|
|
* Table of relative efficiency of each processors
|
|
* The efficiency value must fit in 20bit and the final
|
|
* cpu_scale value must be in the range
|
|
* 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
|
|
* in order to return at most 1 when DIV_ROUND_CLOSEST
|
|
* is used to compute the capacity of a CPU.
|
|
* Processors that are not defined in the table,
|
|
* use the default SCHED_CAPACITY_SCALE value for cpu_scale.
|
|
*/
|
|
static const struct cpu_efficiency table_efficiency[] = {
|
|
{"arm,cortex-a15", 3891},
|
|
{"arm,cortex-a7", 2048},
|
|
{NULL, },
|
|
};
|
|
|
|
static unsigned long *__cpu_capacity;
|
|
#define cpu_capacity(cpu) __cpu_capacity[cpu]
|
|
|
|
static unsigned long middle_capacity = 1;
|
|
static bool cap_from_dt = true;
|
|
static u32 *raw_capacity;
|
|
static bool cap_parsing_failed;
|
|
static u32 capacity_scale;
|
|
|
|
static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
|
|
{
|
|
int ret = 1;
|
|
u32 cpu_capacity;
|
|
|
|
if (cap_parsing_failed)
|
|
return !ret;
|
|
|
|
ret = of_property_read_u32(cpu_node,
|
|
"capacity-dmips-mhz",
|
|
&cpu_capacity);
|
|
if (!ret) {
|
|
if (!raw_capacity) {
|
|
raw_capacity = kcalloc(num_possible_cpus(),
|
|
sizeof(*raw_capacity),
|
|
GFP_KERNEL);
|
|
if (!raw_capacity) {
|
|
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
|
|
cap_parsing_failed = true;
|
|
return !ret;
|
|
}
|
|
}
|
|
capacity_scale = max(cpu_capacity, capacity_scale);
|
|
raw_capacity[cpu] = cpu_capacity;
|
|
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
|
|
cpu_node->full_name, raw_capacity[cpu]);
|
|
} else {
|
|
if (raw_capacity) {
|
|
pr_err("cpu_capacity: missing %s raw capacity\n",
|
|
cpu_node->full_name);
|
|
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
|
|
}
|
|
cap_parsing_failed = true;
|
|
kfree(raw_capacity);
|
|
}
|
|
|
|
return !ret;
|
|
}
|
|
|
|
static void normalize_cpu_capacity(void)
|
|
{
|
|
u64 capacity;
|
|
int cpu;
|
|
|
|
if (!raw_capacity || cap_parsing_failed)
|
|
return;
|
|
|
|
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
|
|
mutex_lock(&cpu_scale_mutex);
|
|
for_each_possible_cpu(cpu) {
|
|
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
|
|
/ capacity_scale;
|
|
set_capacity_scale(cpu, capacity);
|
|
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
|
|
cpu, arch_scale_cpu_capacity(NULL, cpu));
|
|
}
|
|
mutex_unlock(&cpu_scale_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
static cpumask_var_t cpus_to_visit;
|
|
static bool cap_parsing_done;
|
|
static void parsing_done_workfn(struct work_struct *work);
|
|
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
|
|
|
static int
|
|
init_cpu_capacity_callback(struct notifier_block *nb,
|
|
unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_policy *policy = data;
|
|
int cpu;
|
|
|
|
if (cap_parsing_failed || cap_parsing_done)
|
|
return 0;
|
|
|
|
switch (val) {
|
|
case CPUFREQ_NOTIFY:
|
|
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
|
|
cpumask_pr_args(policy->related_cpus),
|
|
cpumask_pr_args(cpus_to_visit));
|
|
cpumask_andnot(cpus_to_visit,
|
|
cpus_to_visit,
|
|
policy->related_cpus);
|
|
for_each_cpu(cpu, policy->related_cpus) {
|
|
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
|
|
policy->cpuinfo.max_freq / 1000UL;
|
|
capacity_scale = max(raw_capacity[cpu], capacity_scale);
|
|
}
|
|
if (cpumask_empty(cpus_to_visit)) {
|
|
normalize_cpu_capacity();
|
|
kfree(raw_capacity);
|
|
pr_debug("cpu_capacity: parsing done\n");
|
|
cap_parsing_done = true;
|
|
schedule_work(&parsing_done_work);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block init_cpu_capacity_notifier = {
|
|
.notifier_call = init_cpu_capacity_callback,
|
|
};
|
|
|
|
static int __init register_cpufreq_notifier(void)
|
|
{
|
|
if (cap_parsing_failed)
|
|
return -EINVAL;
|
|
|
|
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
|
|
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
|
|
return -ENOMEM;
|
|
}
|
|
cpumask_copy(cpus_to_visit, cpu_possible_mask);
|
|
|
|
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
}
|
|
core_initcall(register_cpufreq_notifier);
|
|
|
|
static void parsing_done_workfn(struct work_struct *work)
|
|
{
|
|
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
}
|
|
|
|
#else
|
|
static int __init free_raw_capacity(void)
|
|
{
|
|
kfree(raw_capacity);
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(free_raw_capacity);
|
|
#endif
|
|
|
|
/*
|
|
* Iterate all CPUs' descriptor in DT and compute the efficiency
|
|
* (as per table_efficiency). Also calculate a middle efficiency
|
|
* as close as possible to (max{eff_i} - min{eff_i}) / 2
|
|
* This is later used to scale the cpu_capacity field such that an
|
|
* 'average' CPU is of middle capacity. Also see the comments near
|
|
* table_efficiency[] and update_cpu_capacity().
|
|
*/
|
|
static void __init parse_dt_topology(void)
|
|
{
|
|
const struct cpu_efficiency *cpu_eff;
|
|
struct device_node *cn = NULL;
|
|
unsigned long min_capacity = ULONG_MAX;
|
|
unsigned long max_capacity = 0;
|
|
unsigned long capacity = 0;
|
|
int cpu = 0;
|
|
|
|
__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
|
|
GFP_NOWAIT);
|
|
|
|
cn = of_find_node_by_path("/cpus");
|
|
if (!cn) {
|
|
pr_err("No CPU information found in DT\n");
|
|
return;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
const u32 *rate;
|
|
int len;
|
|
|
|
/* too early to use cpu->of_node */
|
|
cn = of_get_cpu_node(cpu, NULL);
|
|
if (!cn) {
|
|
pr_err("missing device node for CPU %d\n", cpu);
|
|
continue;
|
|
}
|
|
|
|
if (parse_cpu_capacity(cn, cpu)) {
|
|
of_node_put(cn);
|
|
continue;
|
|
}
|
|
|
|
cap_from_dt = false;
|
|
|
|
for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
|
|
if (of_device_is_compatible(cn, cpu_eff->compatible))
|
|
break;
|
|
|
|
if (cpu_eff->compatible == NULL)
|
|
continue;
|
|
|
|
rate = of_get_property(cn, "clock-frequency", &len);
|
|
if (!rate || len != 4) {
|
|
pr_err("%s missing clock-frequency property\n",
|
|
cn->full_name);
|
|
continue;
|
|
}
|
|
|
|
capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
|
|
|
|
/* Save min capacity of the system */
|
|
if (capacity < min_capacity)
|
|
min_capacity = capacity;
|
|
|
|
/* Save max capacity of the system */
|
|
if (capacity > max_capacity)
|
|
max_capacity = capacity;
|
|
|
|
cpu_capacity(cpu) = capacity;
|
|
}
|
|
|
|
/* If min and max capacities are equals, we bypass the update of the
|
|
* cpu_scale because all CPUs have the same capacity. Otherwise, we
|
|
* compute a middle_capacity factor that will ensure that the capacity
|
|
* of an 'average' CPU of the system will be as close as possible to
|
|
* SCHED_CAPACITY_SCALE, which is the default value, but with the
|
|
* constraint explained near table_efficiency[].
|
|
*/
|
|
if (4*max_capacity < (3*(max_capacity + min_capacity)))
|
|
middle_capacity = (min_capacity + max_capacity)
|
|
>> (SCHED_CAPACITY_SHIFT+1);
|
|
else
|
|
middle_capacity = ((max_capacity / 3)
|
|
>> (SCHED_CAPACITY_SHIFT-1)) + 1;
|
|
|
|
if (cap_from_dt && !cap_parsing_failed)
|
|
normalize_cpu_capacity();
|
|
}
|
|
|
|
/*
|
|
* Look for a customed capacity of a CPU in the cpu_capacity table during the
|
|
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
|
|
* function returns directly for SMP system.
|
|
*/
|
|
static void update_cpu_capacity(unsigned int cpu)
|
|
{
|
|
if (!cpu_capacity(cpu) || cap_from_dt)
|
|
return;
|
|
|
|
set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
|
|
|
|
pr_info("CPU%u: update cpu_capacity %lu\n",
|
|
cpu, arch_scale_cpu_capacity(NULL, cpu));
|
|
}
|
|
|
|
#else
|
|
static inline void parse_dt_topology(void) {}
|
|
static inline void update_cpu_capacity(unsigned int cpuid) {}
|
|
#endif
|
|
|
|
/*
|
|
* cpu topology table
|
|
*/
|
|
struct cputopo_arm cpu_topology[NR_CPUS];
|
|
EXPORT_SYMBOL_GPL(cpu_topology);
|
|
|
|
const struct cpumask *cpu_coregroup_mask(int cpu)
|
|
{
|
|
return &cpu_topology[cpu].core_sibling;
|
|
}
|
|
|
|
/*
|
|
* The current assumption is that we can power gate each core independently.
|
|
* This will be superseded by DT binding once available.
|
|
*/
|
|
const struct cpumask *cpu_corepower_mask(int cpu)
|
|
{
|
|
return &cpu_topology[cpu].thread_sibling;
|
|
}
|
|
|
|
static void update_siblings_masks(unsigned int cpuid)
|
|
{
|
|
struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
|
|
int cpu;
|
|
|
|
/* update core and thread sibling masks */
|
|
for_each_possible_cpu(cpu) {
|
|
cpu_topo = &cpu_topology[cpu];
|
|
|
|
if (cpuid_topo->socket_id != cpu_topo->socket_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
|
|
|
|
if (cpuid_topo->core_id != cpu_topo->core_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
|
|
}
|
|
smp_wmb();
|
|
}
|
|
|
|
/*
|
|
* store_cpu_topology is called at boot when only one cpu is running
|
|
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
|
|
* which prevents simultaneous write access to cpu_topology array
|
|
*/
|
|
void store_cpu_topology(unsigned int cpuid)
|
|
{
|
|
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
|
|
unsigned int mpidr;
|
|
|
|
/* If the cpu topology has been already set, just return */
|
|
if (cpuid_topo->core_id != -1)
|
|
return;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
|
|
/* create cpu topology mapping */
|
|
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
|
|
/*
|
|
* This is a multiprocessor system
|
|
* multiprocessor format & multiprocessor mode field are set
|
|
*/
|
|
|
|
if (mpidr & MPIDR_MT_BITMASK) {
|
|
/* core performance interdependency */
|
|
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
|
|
} else {
|
|
/* largely independent cores */
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* This is an uniprocessor system
|
|
* we are in multiprocessor format but uniprocessor system
|
|
* or in the old uniprocessor format
|
|
*/
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = 0;
|
|
cpuid_topo->socket_id = -1;
|
|
}
|
|
|
|
update_siblings_masks(cpuid);
|
|
|
|
update_cpu_capacity(cpuid);
|
|
|
|
pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
|
|
cpuid, cpu_topology[cpuid].thread_id,
|
|
cpu_topology[cpuid].core_id,
|
|
cpu_topology[cpuid].socket_id, mpidr);
|
|
}
|
|
|
|
static inline int cpu_corepower_flags(void)
|
|
{
|
|
return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
|
|
}
|
|
|
|
static struct sched_domain_topology_level arm_topology[] = {
|
|
#ifdef CONFIG_SCHED_MC
|
|
{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
|
|
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
|
|
#endif
|
|
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
|
|
{ NULL, },
|
|
};
|
|
|
|
/*
|
|
* init_cpu_topology is called at boot when only one cpu is running
|
|
* which prevent simultaneous write access to cpu_topology array
|
|
*/
|
|
void __init init_cpu_topology(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/* init core mask and capacity */
|
|
for_each_possible_cpu(cpu) {
|
|
struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
|
|
|
|
cpu_topo->thread_id = -1;
|
|
cpu_topo->core_id = -1;
|
|
cpu_topo->socket_id = -1;
|
|
cpumask_clear(&cpu_topo->core_sibling);
|
|
cpumask_clear(&cpu_topo->thread_sibling);
|
|
}
|
|
smp_wmb();
|
|
|
|
parse_dt_topology();
|
|
|
|
/* Set scheduler topology descriptor */
|
|
set_sched_topology(arm_topology);
|
|
}
|