mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 11:06:22 +07:00
e9eaf82d97
Latency is in the eye of the beholder. In the case where a client stops and waits for the gpu, give that request chain a small priority boost (not so that it overtakes higher priority clients, to preserve the external ordering) so that ideally the wait completes earlier. v2: Tvrtko recommends to keep the boost-from-user-stall as small as possible and to allow new client flows to be preferred for interactivity over stalls. Testcase: igt/gem_sync/switch-default Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181001144755.7978-3-chris@chris-wilson.co.uk
400 lines
11 KiB
C
400 lines
11 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_request.h"
|
|
#include "i915_scheduler.h"
|
|
|
|
static DEFINE_SPINLOCK(schedule_lock);
|
|
|
|
static const struct i915_request *
|
|
node_to_request(const struct i915_sched_node *node)
|
|
{
|
|
return container_of(node, const struct i915_request, sched);
|
|
}
|
|
|
|
static inline bool node_signaled(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_completed(node_to_request(node));
|
|
}
|
|
|
|
void i915_sched_node_init(struct i915_sched_node *node)
|
|
{
|
|
INIT_LIST_HEAD(&node->signalers_list);
|
|
INIT_LIST_HEAD(&node->waiters_list);
|
|
INIT_LIST_HEAD(&node->link);
|
|
node->attr.priority = I915_PRIORITY_INVALID;
|
|
}
|
|
|
|
static struct i915_dependency *
|
|
i915_dependency_alloc(struct drm_i915_private *i915)
|
|
{
|
|
return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
|
|
}
|
|
|
|
static void
|
|
i915_dependency_free(struct drm_i915_private *i915,
|
|
struct i915_dependency *dep)
|
|
{
|
|
kmem_cache_free(i915->dependencies, dep);
|
|
}
|
|
|
|
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal,
|
|
struct i915_dependency *dep,
|
|
unsigned long flags)
|
|
{
|
|
bool ret = false;
|
|
|
|
spin_lock(&schedule_lock);
|
|
|
|
if (!node_signaled(signal)) {
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
list_add(&dep->wait_link, &signal->waiters_list);
|
|
list_add(&dep->signal_link, &node->signalers_list);
|
|
dep->signaler = signal;
|
|
dep->flags = flags;
|
|
|
|
ret = true;
|
|
}
|
|
|
|
spin_unlock(&schedule_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_sched_node_add_dependency(struct drm_i915_private *i915,
|
|
struct i915_sched_node *node,
|
|
struct i915_sched_node *signal)
|
|
{
|
|
struct i915_dependency *dep;
|
|
|
|
dep = i915_dependency_alloc(i915);
|
|
if (!dep)
|
|
return -ENOMEM;
|
|
|
|
if (!__i915_sched_node_add_dependency(node, signal, dep,
|
|
I915_DEPENDENCY_ALLOC))
|
|
i915_dependency_free(i915, dep);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_sched_node_fini(struct drm_i915_private *i915,
|
|
struct i915_sched_node *node)
|
|
{
|
|
struct i915_dependency *dep, *tmp;
|
|
|
|
GEM_BUG_ON(!list_empty(&node->link));
|
|
|
|
spin_lock(&schedule_lock);
|
|
|
|
/*
|
|
* Everyone we depended upon (the fences we wait to be signaled)
|
|
* should retire before us and remove themselves from our list.
|
|
* However, retirement is run independently on each timeline and
|
|
* so we may be called out-of-order.
|
|
*/
|
|
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(!node_signaled(dep->signaler));
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del(&dep->wait_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(i915, dep);
|
|
}
|
|
|
|
/* Remove ourselves from everyone who depends upon us */
|
|
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
|
|
GEM_BUG_ON(dep->signaler != node);
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del(&dep->signal_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(i915, dep);
|
|
}
|
|
|
|
spin_unlock(&schedule_lock);
|
|
}
|
|
|
|
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
|
|
{
|
|
return rb_entry(rb, struct i915_priolist, node);
|
|
}
|
|
|
|
static void assert_priolists(struct intel_engine_execlists * const execlists,
|
|
long queue_priority)
|
|
{
|
|
struct rb_node *rb;
|
|
long last_prio, i;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return;
|
|
|
|
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
|
|
rb_first(&execlists->queue.rb_root));
|
|
|
|
last_prio = (queue_priority >> I915_USER_PRIORITY_SHIFT) + 1;
|
|
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
|
|
const struct i915_priolist *p = to_priolist(rb);
|
|
|
|
GEM_BUG_ON(p->priority >= last_prio);
|
|
last_prio = p->priority;
|
|
|
|
GEM_BUG_ON(!p->used);
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
|
|
if (list_empty(&p->requests[i]))
|
|
continue;
|
|
|
|
GEM_BUG_ON(!(p->used & BIT(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct list_head *
|
|
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct i915_priolist *p;
|
|
struct rb_node **parent, *rb;
|
|
bool first = true;
|
|
int idx, i;
|
|
|
|
lockdep_assert_held(&engine->timeline.lock);
|
|
assert_priolists(execlists, INT_MAX);
|
|
|
|
/* buckets sorted from highest [in slot 0] to lowest priority */
|
|
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
|
|
prio >>= I915_USER_PRIORITY_SHIFT;
|
|
if (unlikely(execlists->no_priolist))
|
|
prio = I915_PRIORITY_NORMAL;
|
|
|
|
find_priolist:
|
|
/* most positive priority is scheduled first, equal priorities fifo */
|
|
rb = NULL;
|
|
parent = &execlists->queue.rb_root.rb_node;
|
|
while (*parent) {
|
|
rb = *parent;
|
|
p = to_priolist(rb);
|
|
if (prio > p->priority) {
|
|
parent = &rb->rb_left;
|
|
} else if (prio < p->priority) {
|
|
parent = &rb->rb_right;
|
|
first = false;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (prio == I915_PRIORITY_NORMAL) {
|
|
p = &execlists->default_priolist;
|
|
} else {
|
|
p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
|
|
/* Convert an allocation failure to a priority bump */
|
|
if (unlikely(!p)) {
|
|
prio = I915_PRIORITY_NORMAL; /* recurses just once */
|
|
|
|
/* To maintain ordering with all rendering, after an
|
|
* allocation failure we have to disable all scheduling.
|
|
* Requests will then be executed in fifo, and schedule
|
|
* will ensure that dependencies are emitted in fifo.
|
|
* There will be still some reordering with existing
|
|
* requests, so if userspace lied about their
|
|
* dependencies that reordering may be visible.
|
|
*/
|
|
execlists->no_priolist = true;
|
|
goto find_priolist;
|
|
}
|
|
}
|
|
|
|
p->priority = prio;
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
|
|
INIT_LIST_HEAD(&p->requests[i]);
|
|
rb_link_node(&p->node, rb, parent);
|
|
rb_insert_color_cached(&p->node, &execlists->queue, first);
|
|
p->used = 0;
|
|
|
|
out:
|
|
p->used |= BIT(idx);
|
|
return &p->requests[idx];
|
|
}
|
|
|
|
static struct intel_engine_cs *
|
|
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
|
|
{
|
|
struct intel_engine_cs *engine = node_to_request(node)->engine;
|
|
|
|
GEM_BUG_ON(!locked);
|
|
|
|
if (engine != locked) {
|
|
spin_unlock(&locked->timeline.lock);
|
|
spin_lock(&engine->timeline.lock);
|
|
}
|
|
|
|
return engine;
|
|
}
|
|
|
|
static void __i915_schedule(struct i915_request *rq,
|
|
const struct i915_sched_attr *attr)
|
|
{
|
|
struct list_head *uninitialized_var(pl);
|
|
struct intel_engine_cs *engine, *last;
|
|
struct i915_dependency *dep, *p;
|
|
struct i915_dependency stack;
|
|
const int prio = attr->priority;
|
|
LIST_HEAD(dfs);
|
|
|
|
/* Needed in order to use the temporary link inside i915_dependency */
|
|
lockdep_assert_held(&schedule_lock);
|
|
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
|
|
|
|
if (i915_request_completed(rq))
|
|
return;
|
|
|
|
if (prio <= READ_ONCE(rq->sched.attr.priority))
|
|
return;
|
|
|
|
stack.signaler = &rq->sched;
|
|
list_add(&stack.dfs_link, &dfs);
|
|
|
|
/*
|
|
* Recursively bump all dependent priorities to match the new request.
|
|
*
|
|
* A naive approach would be to use recursion:
|
|
* static void update_priorities(struct i915_sched_node *node, prio) {
|
|
* list_for_each_entry(dep, &node->signalers_list, signal_link)
|
|
* update_priorities(dep->signal, prio)
|
|
* queue_request(node);
|
|
* }
|
|
* but that may have unlimited recursion depth and so runs a very
|
|
* real risk of overunning the kernel stack. Instead, we build
|
|
* a flat list of all dependencies starting with the current request.
|
|
* As we walk the list of dependencies, we add all of its dependencies
|
|
* to the end of the list (this may include an already visited
|
|
* request) and continue to walk onwards onto the new dependencies. The
|
|
* end result is a topological list of requests in reverse order, the
|
|
* last element in the list is the request we must execute first.
|
|
*/
|
|
list_for_each_entry(dep, &dfs, dfs_link) {
|
|
struct i915_sched_node *node = dep->signaler;
|
|
|
|
/*
|
|
* Within an engine, there can be no cycle, but we may
|
|
* refer to the same dependency chain multiple times
|
|
* (redundant dependencies are not eliminated) and across
|
|
* engines.
|
|
*/
|
|
list_for_each_entry(p, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(p == dep); /* no cycles! */
|
|
|
|
if (node_signaled(p->signaler))
|
|
continue;
|
|
|
|
GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
|
|
if (prio > READ_ONCE(p->signaler->attr.priority))
|
|
list_move_tail(&p->dfs_link, &dfs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we didn't need to bump any existing priorities, and we haven't
|
|
* yet submitted this request (i.e. there is no potential race with
|
|
* execlists_submit_request()), we can set our own priority and skip
|
|
* acquiring the engine locks.
|
|
*/
|
|
if (rq->sched.attr.priority == I915_PRIORITY_INVALID) {
|
|
GEM_BUG_ON(!list_empty(&rq->sched.link));
|
|
rq->sched.attr = *attr;
|
|
|
|
if (stack.dfs_link.next == stack.dfs_link.prev)
|
|
return;
|
|
|
|
__list_del_entry(&stack.dfs_link);
|
|
}
|
|
|
|
last = NULL;
|
|
engine = rq->engine;
|
|
spin_lock_irq(&engine->timeline.lock);
|
|
|
|
/* Fifo and depth-first replacement ensure our deps execute before us */
|
|
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
|
|
struct i915_sched_node *node = dep->signaler;
|
|
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
|
|
engine = sched_lock_engine(node, engine);
|
|
|
|
/* Recheck after acquiring the engine->timeline.lock */
|
|
if (prio <= node->attr.priority || node_signaled(node))
|
|
continue;
|
|
|
|
node->attr.priority = prio;
|
|
if (!list_empty(&node->link)) {
|
|
if (last != engine) {
|
|
pl = i915_sched_lookup_priolist(engine, prio);
|
|
last = engine;
|
|
}
|
|
list_move_tail(&node->link, pl);
|
|
} else {
|
|
/*
|
|
* If the request is not in the priolist queue because
|
|
* it is not yet runnable, then it doesn't contribute
|
|
* to our preemption decisions. On the other hand,
|
|
* if the request is on the HW, it too is not in the
|
|
* queue; but in that case we may still need to reorder
|
|
* the inflight requests.
|
|
*/
|
|
if (!i915_sw_fence_done(&node_to_request(node)->submit))
|
|
continue;
|
|
}
|
|
|
|
if (prio <= engine->execlists.queue_priority)
|
|
continue;
|
|
|
|
/*
|
|
* If we are already the currently executing context, don't
|
|
* bother evaluating if we should preempt ourselves.
|
|
*/
|
|
if (node_to_request(node)->global_seqno &&
|
|
i915_seqno_passed(port_request(engine->execlists.port)->global_seqno,
|
|
node_to_request(node)->global_seqno))
|
|
continue;
|
|
|
|
/* Defer (tasklet) submission until after all of our updates. */
|
|
engine->execlists.queue_priority = prio;
|
|
tasklet_hi_schedule(&engine->execlists.tasklet);
|
|
}
|
|
|
|
spin_unlock_irq(&engine->timeline.lock);
|
|
}
|
|
|
|
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
|
|
{
|
|
spin_lock(&schedule_lock);
|
|
__i915_schedule(rq, attr);
|
|
spin_unlock(&schedule_lock);
|
|
}
|
|
|
|
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
|
|
{
|
|
struct i915_sched_attr attr;
|
|
|
|
GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
|
|
|
|
if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID)
|
|
return;
|
|
|
|
spin_lock_bh(&schedule_lock);
|
|
|
|
attr = rq->sched.attr;
|
|
attr.priority |= bump;
|
|
__i915_schedule(rq, &attr);
|
|
|
|
spin_unlock_bh(&schedule_lock);
|
|
}
|