linux_dsm_epyc7002/net/ceph/crypto.c
Ilya Dryomov a45f795c65 libceph: introduce ceph_crypt() for in-place en/decryption
Starting with 4.9, kernel stacks may be vmalloced and therefore not
guaranteed to be physically contiguous; the new CONFIG_VMAP_STACK
option is enabled by default on x86.  This makes it invalid to use
on-stack buffers with the crypto scatterlist API, as sg_set_buf()
expects a logical address and won't work with vmalloced addresses.

There isn't a different (e.g. kvec-based) crypto API we could switch
net/ceph/crypto.c to and the current scatterlist.h API isn't getting
updated to accommodate this use case.  Allocating a new header and
padding for each operation is a non-starter, so do the en/decryption
in-place on a single pre-assembled (header + data + padding) heap
buffer.  This is explicitly supported by the crypto API:

    "... the caller may provide the same scatter/gather list for the
     plaintext and cipher text. After the completion of the cipher
     operation, the plaintext data is replaced with the ciphertext data
     in case of an encryption and vice versa for a decryption."

Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-12 23:09:19 +01:00

678 lines
16 KiB
C

#include <linux/ceph/ceph_debug.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <crypto/aes.h>
#include <crypto/skcipher.h>
#include <linux/key-type.h>
#include <keys/ceph-type.h>
#include <keys/user-type.h>
#include <linux/ceph/decode.h>
#include "crypto.h"
int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
const struct ceph_crypto_key *src)
{
memcpy(dst, src, sizeof(struct ceph_crypto_key));
dst->key = kmemdup(src->key, src->len, GFP_NOFS);
if (!dst->key)
return -ENOMEM;
return 0;
}
int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
{
if (*p + sizeof(u16) + sizeof(key->created) +
sizeof(u16) + key->len > end)
return -ERANGE;
ceph_encode_16(p, key->type);
ceph_encode_copy(p, &key->created, sizeof(key->created));
ceph_encode_16(p, key->len);
ceph_encode_copy(p, key->key, key->len);
return 0;
}
int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
{
ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
key->type = ceph_decode_16(p);
ceph_decode_copy(p, &key->created, sizeof(key->created));
key->len = ceph_decode_16(p);
ceph_decode_need(p, end, key->len, bad);
key->key = kmalloc(key->len, GFP_NOFS);
if (!key->key)
return -ENOMEM;
ceph_decode_copy(p, key->key, key->len);
return 0;
bad:
dout("failed to decode crypto key\n");
return -EINVAL;
}
int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
{
int inlen = strlen(inkey);
int blen = inlen * 3 / 4;
void *buf, *p;
int ret;
dout("crypto_key_unarmor %s\n", inkey);
buf = kmalloc(blen, GFP_NOFS);
if (!buf)
return -ENOMEM;
blen = ceph_unarmor(buf, inkey, inkey+inlen);
if (blen < 0) {
kfree(buf);
return blen;
}
p = buf;
ret = ceph_crypto_key_decode(key, &p, p + blen);
kfree(buf);
if (ret)
return ret;
dout("crypto_key_unarmor key %p type %d len %d\n", key,
key->type, key->len);
return 0;
}
static struct crypto_skcipher *ceph_crypto_alloc_cipher(void)
{
return crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
}
static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
/*
* Should be used for buffers allocated with ceph_kvmalloc().
* Currently these are encrypt out-buffer (ceph_buffer) and decrypt
* in-buffer (msg front).
*
* Dispose of @sgt with teardown_sgtable().
*
* @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
* in cases where a single sg is sufficient. No attempt to reduce the
* number of sgs by squeezing physically contiguous pages together is
* made though, for simplicity.
*/
static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
const void *buf, unsigned int buf_len)
{
struct scatterlist *sg;
const bool is_vmalloc = is_vmalloc_addr(buf);
unsigned int off = offset_in_page(buf);
unsigned int chunk_cnt = 1;
unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
int i;
int ret;
if (buf_len == 0) {
memset(sgt, 0, sizeof(*sgt));
return -EINVAL;
}
if (is_vmalloc) {
chunk_cnt = chunk_len >> PAGE_SHIFT;
chunk_len = PAGE_SIZE;
}
if (chunk_cnt > 1) {
ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
if (ret)
return ret;
} else {
WARN_ON(chunk_cnt != 1);
sg_init_table(prealloc_sg, 1);
sgt->sgl = prealloc_sg;
sgt->nents = sgt->orig_nents = 1;
}
for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
struct page *page;
unsigned int len = min(chunk_len - off, buf_len);
if (is_vmalloc)
page = vmalloc_to_page(buf);
else
page = virt_to_page(buf);
sg_set_page(sg, page, len, off);
off = 0;
buf += len;
buf_len -= len;
}
WARN_ON(buf_len != 0);
return 0;
}
static void teardown_sgtable(struct sg_table *sgt)
{
if (sgt->orig_nents > 1)
sg_free_table(sgt);
}
static int ceph_aes_encrypt(const void *key, int key_len,
void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
struct scatterlist sg_in[2], prealloc_sg;
struct sg_table sg_out;
struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
SKCIPHER_REQUEST_ON_STACK(req, tfm);
int ret;
char iv[AES_BLOCK_SIZE];
size_t zero_padding = (0x10 - (src_len & 0x0f));
char pad[16];
if (IS_ERR(tfm))
return PTR_ERR(tfm);
memset(pad, zero_padding, zero_padding);
*dst_len = src_len + zero_padding;
sg_init_table(sg_in, 2);
sg_set_buf(&sg_in[0], src, src_len);
sg_set_buf(&sg_in[1], pad, zero_padding);
ret = setup_sgtable(&sg_out, &prealloc_sg, dst, *dst_len);
if (ret)
goto out_tfm;
crypto_skcipher_setkey((void *)tfm, key, key_len);
memcpy(iv, aes_iv, AES_BLOCK_SIZE);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg_in, sg_out.sgl,
src_len + zero_padding, iv);
/*
print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "enc src: ", DUMP_PREFIX_NONE, 16, 1,
src, src_len, 1);
print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
pad, zero_padding, 1);
*/
ret = crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
if (ret < 0) {
pr_err("ceph_aes_crypt failed %d\n", ret);
goto out_sg;
}
/*
print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
dst, *dst_len, 1);
*/
out_sg:
teardown_sgtable(&sg_out);
out_tfm:
crypto_free_skcipher(tfm);
return ret;
}
static int ceph_aes_encrypt2(const void *key, int key_len, void *dst,
size_t *dst_len,
const void *src1, size_t src1_len,
const void *src2, size_t src2_len)
{
struct scatterlist sg_in[3], prealloc_sg;
struct sg_table sg_out;
struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
SKCIPHER_REQUEST_ON_STACK(req, tfm);
int ret;
char iv[AES_BLOCK_SIZE];
size_t zero_padding = (0x10 - ((src1_len + src2_len) & 0x0f));
char pad[16];
if (IS_ERR(tfm))
return PTR_ERR(tfm);
memset(pad, zero_padding, zero_padding);
*dst_len = src1_len + src2_len + zero_padding;
sg_init_table(sg_in, 3);
sg_set_buf(&sg_in[0], src1, src1_len);
sg_set_buf(&sg_in[1], src2, src2_len);
sg_set_buf(&sg_in[2], pad, zero_padding);
ret = setup_sgtable(&sg_out, &prealloc_sg, dst, *dst_len);
if (ret)
goto out_tfm;
crypto_skcipher_setkey((void *)tfm, key, key_len);
memcpy(iv, aes_iv, AES_BLOCK_SIZE);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg_in, sg_out.sgl,
src1_len + src2_len + zero_padding, iv);
/*
print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "enc src1: ", DUMP_PREFIX_NONE, 16, 1,
src1, src1_len, 1);
print_hex_dump(KERN_ERR, "enc src2: ", DUMP_PREFIX_NONE, 16, 1,
src2, src2_len, 1);
print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
pad, zero_padding, 1);
*/
ret = crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
if (ret < 0) {
pr_err("ceph_aes_crypt2 failed %d\n", ret);
goto out_sg;
}
/*
print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
dst, *dst_len, 1);
*/
out_sg:
teardown_sgtable(&sg_out);
out_tfm:
crypto_free_skcipher(tfm);
return ret;
}
static int ceph_aes_decrypt(const void *key, int key_len,
void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
struct sg_table sg_in;
struct scatterlist sg_out[2], prealloc_sg;
struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
SKCIPHER_REQUEST_ON_STACK(req, tfm);
char pad[16];
char iv[AES_BLOCK_SIZE];
int ret;
int last_byte;
if (IS_ERR(tfm))
return PTR_ERR(tfm);
sg_init_table(sg_out, 2);
sg_set_buf(&sg_out[0], dst, *dst_len);
sg_set_buf(&sg_out[1], pad, sizeof(pad));
ret = setup_sgtable(&sg_in, &prealloc_sg, src, src_len);
if (ret)
goto out_tfm;
crypto_skcipher_setkey((void *)tfm, key, key_len);
memcpy(iv, aes_iv, AES_BLOCK_SIZE);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg_in.sgl, sg_out,
src_len, iv);
/*
print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "dec in: ", DUMP_PREFIX_NONE, 16, 1,
src, src_len, 1);
*/
ret = crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
if (ret < 0) {
pr_err("ceph_aes_decrypt failed %d\n", ret);
goto out_sg;
}
if (src_len <= *dst_len)
last_byte = ((char *)dst)[src_len - 1];
else
last_byte = pad[src_len - *dst_len - 1];
if (last_byte <= 16 && src_len >= last_byte) {
*dst_len = src_len - last_byte;
} else {
pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
last_byte, (int)src_len);
return -EPERM; /* bad padding */
}
/*
print_hex_dump(KERN_ERR, "dec out: ", DUMP_PREFIX_NONE, 16, 1,
dst, *dst_len, 1);
*/
out_sg:
teardown_sgtable(&sg_in);
out_tfm:
crypto_free_skcipher(tfm);
return ret;
}
static int ceph_aes_decrypt2(const void *key, int key_len,
void *dst1, size_t *dst1_len,
void *dst2, size_t *dst2_len,
const void *src, size_t src_len)
{
struct sg_table sg_in;
struct scatterlist sg_out[3], prealloc_sg;
struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
SKCIPHER_REQUEST_ON_STACK(req, tfm);
char pad[16];
char iv[AES_BLOCK_SIZE];
int ret;
int last_byte;
if (IS_ERR(tfm))
return PTR_ERR(tfm);
sg_init_table(sg_out, 3);
sg_set_buf(&sg_out[0], dst1, *dst1_len);
sg_set_buf(&sg_out[1], dst2, *dst2_len);
sg_set_buf(&sg_out[2], pad, sizeof(pad));
ret = setup_sgtable(&sg_in, &prealloc_sg, src, src_len);
if (ret)
goto out_tfm;
crypto_skcipher_setkey((void *)tfm, key, key_len);
memcpy(iv, aes_iv, AES_BLOCK_SIZE);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sg_in.sgl, sg_out,
src_len, iv);
/*
print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
key, key_len, 1);
print_hex_dump(KERN_ERR, "dec in: ", DUMP_PREFIX_NONE, 16, 1,
src, src_len, 1);
*/
ret = crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
if (ret < 0) {
pr_err("ceph_aes_decrypt failed %d\n", ret);
goto out_sg;
}
if (src_len <= *dst1_len)
last_byte = ((char *)dst1)[src_len - 1];
else if (src_len <= *dst1_len + *dst2_len)
last_byte = ((char *)dst2)[src_len - *dst1_len - 1];
else
last_byte = pad[src_len - *dst1_len - *dst2_len - 1];
if (last_byte <= 16 && src_len >= last_byte) {
src_len -= last_byte;
} else {
pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
last_byte, (int)src_len);
return -EPERM; /* bad padding */
}
if (src_len < *dst1_len) {
*dst1_len = src_len;
*dst2_len = 0;
} else {
*dst2_len = src_len - *dst1_len;
}
/*
print_hex_dump(KERN_ERR, "dec out1: ", DUMP_PREFIX_NONE, 16, 1,
dst1, *dst1_len, 1);
print_hex_dump(KERN_ERR, "dec out2: ", DUMP_PREFIX_NONE, 16, 1,
dst2, *dst2_len, 1);
*/
out_sg:
teardown_sgtable(&sg_in);
out_tfm:
crypto_free_skcipher(tfm);
return ret;
}
int ceph_decrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst_len < src_len)
return -ERANGE;
memcpy(dst, src, src_len);
*dst_len = src_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_decrypt(secret->key, secret->len, dst,
dst_len, src, src_len);
default:
return -EINVAL;
}
}
int ceph_decrypt2(struct ceph_crypto_key *secret,
void *dst1, size_t *dst1_len,
void *dst2, size_t *dst2_len,
const void *src, size_t src_len)
{
size_t t;
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst1_len + *dst2_len < src_len)
return -ERANGE;
t = min(*dst1_len, src_len);
memcpy(dst1, src, t);
*dst1_len = t;
src += t;
src_len -= t;
if (src_len) {
t = min(*dst2_len, src_len);
memcpy(dst2, src, t);
*dst2_len = t;
}
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_decrypt2(secret->key, secret->len,
dst1, dst1_len, dst2, dst2_len,
src, src_len);
default:
return -EINVAL;
}
}
int ceph_encrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
const void *src, size_t src_len)
{
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst_len < src_len)
return -ERANGE;
memcpy(dst, src, src_len);
*dst_len = src_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_encrypt(secret->key, secret->len, dst,
dst_len, src, src_len);
default:
return -EINVAL;
}
}
int ceph_encrypt2(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
const void *src1, size_t src1_len,
const void *src2, size_t src2_len)
{
switch (secret->type) {
case CEPH_CRYPTO_NONE:
if (*dst_len < src1_len + src2_len)
return -ERANGE;
memcpy(dst, src1, src1_len);
memcpy(dst + src1_len, src2, src2_len);
*dst_len = src1_len + src2_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_encrypt2(secret->key, secret->len, dst, dst_len,
src1, src1_len, src2, src2_len);
default:
return -EINVAL;
}
}
static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt,
void *buf, int buf_len, int in_len, int *pout_len)
{
struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
SKCIPHER_REQUEST_ON_STACK(req, tfm);
struct sg_table sgt;
struct scatterlist prealloc_sg;
char iv[AES_BLOCK_SIZE];
int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1));
int crypt_len = encrypt ? in_len + pad_byte : in_len;
int ret;
if (IS_ERR(tfm))
return PTR_ERR(tfm);
WARN_ON(crypt_len > buf_len);
if (encrypt)
memset(buf + in_len, pad_byte, pad_byte);
ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len);
if (ret)
goto out_tfm;
crypto_skcipher_setkey((void *)tfm, key->key, key->len);
memcpy(iv, aes_iv, AES_BLOCK_SIZE);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv);
/*
print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1,
key->key, key->len, 1);
print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1,
buf, crypt_len, 1);
*/
if (encrypt)
ret = crypto_skcipher_encrypt(req);
else
ret = crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
if (ret) {
pr_err("%s %scrypt failed: %d\n", __func__,
encrypt ? "en" : "de", ret);
goto out_sgt;
}
/*
print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1,
buf, crypt_len, 1);
*/
if (encrypt) {
*pout_len = crypt_len;
} else {
pad_byte = *(char *)(buf + in_len - 1);
if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE &&
in_len >= pad_byte) {
*pout_len = in_len - pad_byte;
} else {
pr_err("%s got bad padding %d on in_len %d\n",
__func__, pad_byte, in_len);
ret = -EPERM;
goto out_sgt;
}
}
out_sgt:
teardown_sgtable(&sgt);
out_tfm:
crypto_free_skcipher(tfm);
return ret;
}
int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt,
void *buf, int buf_len, int in_len, int *pout_len)
{
switch (key->type) {
case CEPH_CRYPTO_NONE:
*pout_len = in_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len,
pout_len);
default:
return -ENOTSUPP;
}
}
static int ceph_key_preparse(struct key_preparsed_payload *prep)
{
struct ceph_crypto_key *ckey;
size_t datalen = prep->datalen;
int ret;
void *p;
ret = -EINVAL;
if (datalen <= 0 || datalen > 32767 || !prep->data)
goto err;
ret = -ENOMEM;
ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
if (!ckey)
goto err;
/* TODO ceph_crypto_key_decode should really take const input */
p = (void *)prep->data;
ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
if (ret < 0)
goto err_ckey;
prep->payload.data[0] = ckey;
prep->quotalen = datalen;
return 0;
err_ckey:
kfree(ckey);
err:
return ret;
}
static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
{
struct ceph_crypto_key *ckey = prep->payload.data[0];
ceph_crypto_key_destroy(ckey);
kfree(ckey);
}
static void ceph_key_destroy(struct key *key)
{
struct ceph_crypto_key *ckey = key->payload.data[0];
ceph_crypto_key_destroy(ckey);
kfree(ckey);
}
struct key_type key_type_ceph = {
.name = "ceph",
.preparse = ceph_key_preparse,
.free_preparse = ceph_key_free_preparse,
.instantiate = generic_key_instantiate,
.destroy = ceph_key_destroy,
};
int ceph_crypto_init(void) {
return register_key_type(&key_type_ceph);
}
void ceph_crypto_shutdown(void) {
unregister_key_type(&key_type_ceph);
}