linux_dsm_epyc7002/drivers/gpu/drm/bridge/cdns-dsi.c
Boris Brezillon e19233955d drm/bridge: Add Cadence DSI driver
Add a driver for Cadence DPI -> DSI bridge.

This driver only support a subset of Cadence DSI bridge capabilities.

This driver has been tested/debugged in a simulated environment which
explains why some of the features are missing.  Here is a
non-exhaustive list of missing features:
 * burst mode
 * DPHY init/configuration steps
 * support for additional input interfaces (SDI input)

DSI commands and non-burst video mode have been tested.

Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Acked-by: Eric Anholt <eric@anholt.net>
Reviewed-by: Archit Taneja <architt@codeaurora.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20180421070846.10330-1-boris.brezillon@bootlin.com
2018-04-23 19:12:18 +02:00

1624 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright: 2017 Cadence Design Systems, Inc.
*
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_panel.h>
#include <video/mipi_display.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#define IP_CONF 0x0
#define SP_HS_FIFO_DEPTH(x) (((x) & GENMASK(30, 26)) >> 26)
#define SP_LP_FIFO_DEPTH(x) (((x) & GENMASK(25, 21)) >> 21)
#define VRS_FIFO_DEPTH(x) (((x) & GENMASK(20, 16)) >> 16)
#define DIRCMD_FIFO_DEPTH(x) (((x) & GENMASK(15, 13)) >> 13)
#define SDI_IFACE_32 BIT(12)
#define INTERNAL_DATAPATH_32 (0 << 10)
#define INTERNAL_DATAPATH_16 (1 << 10)
#define INTERNAL_DATAPATH_8 (3 << 10)
#define INTERNAL_DATAPATH_SIZE ((x) & GENMASK(11, 10))
#define NUM_IFACE(x) ((((x) & GENMASK(9, 8)) >> 8) + 1)
#define MAX_LANE_NB(x) (((x) & GENMASK(7, 6)) >> 6)
#define RX_FIFO_DEPTH(x) ((x) & GENMASK(5, 0))
#define MCTL_MAIN_DATA_CTL 0x4
#define TE_MIPI_POLLING_EN BIT(25)
#define TE_HW_POLLING_EN BIT(24)
#define DISP_EOT_GEN BIT(18)
#define HOST_EOT_GEN BIT(17)
#define DISP_GEN_CHECKSUM BIT(16)
#define DISP_GEN_ECC BIT(15)
#define BTA_EN BIT(14)
#define READ_EN BIT(13)
#define REG_TE_EN BIT(12)
#define IF_TE_EN(x) BIT(8 + (x))
#define TVG_SEL BIT(6)
#define VID_EN BIT(5)
#define IF_VID_SELECT(x) ((x) << 2)
#define IF_VID_SELECT_MASK GENMASK(3, 2)
#define IF_VID_MODE BIT(1)
#define LINK_EN BIT(0)
#define MCTL_MAIN_PHY_CTL 0x8
#define HS_INVERT_DAT(x) BIT(19 + ((x) * 2))
#define SWAP_PINS_DAT(x) BIT(18 + ((x) * 2))
#define HS_INVERT_CLK BIT(17)
#define SWAP_PINS_CLK BIT(16)
#define HS_SKEWCAL_EN BIT(15)
#define WAIT_BURST_TIME(x) ((x) << 10)
#define DATA_ULPM_EN(x) BIT(6 + (x))
#define CLK_ULPM_EN BIT(5)
#define CLK_CONTINUOUS BIT(4)
#define DATA_LANE_EN(x) BIT((x) - 1)
#define MCTL_MAIN_EN 0xc
#define DATA_FORCE_STOP BIT(17)
#define CLK_FORCE_STOP BIT(16)
#define IF_EN(x) BIT(13 + (x))
#define DATA_LANE_ULPM_REQ(l) BIT(9 + (l))
#define CLK_LANE_ULPM_REQ BIT(8)
#define DATA_LANE_START(x) BIT(4 + (x))
#define CLK_LANE_EN BIT(3)
#define PLL_START BIT(0)
#define MCTL_DPHY_CFG0 0x10
#define DPHY_C_RSTB BIT(20)
#define DPHY_D_RSTB(x) GENMASK(15 + (x), 16)
#define DPHY_PLL_PDN BIT(10)
#define DPHY_CMN_PDN BIT(9)
#define DPHY_C_PDN BIT(8)
#define DPHY_D_PDN(x) GENMASK(3 + (x), 4)
#define DPHY_ALL_D_PDN GENMASK(7, 4)
#define DPHY_PLL_PSO BIT(1)
#define DPHY_CMN_PSO BIT(0)
#define MCTL_DPHY_TIMEOUT1 0x14
#define HSTX_TIMEOUT(x) ((x) << 4)
#define HSTX_TIMEOUT_MAX GENMASK(17, 0)
#define CLK_DIV(x) (x)
#define CLK_DIV_MAX GENMASK(3, 0)
#define MCTL_DPHY_TIMEOUT2 0x18
#define LPRX_TIMEOUT(x) (x)
#define MCTL_ULPOUT_TIME 0x1c
#define DATA_LANE_ULPOUT_TIME(x) ((x) << 9)
#define CLK_LANE_ULPOUT_TIME(x) (x)
#define MCTL_3DVIDEO_CTL 0x20
#define VID_VSYNC_3D_EN BIT(7)
#define VID_VSYNC_3D_LR BIT(5)
#define VID_VSYNC_3D_SECOND_EN BIT(4)
#define VID_VSYNC_3DFORMAT_LINE (0 << 2)
#define VID_VSYNC_3DFORMAT_FRAME (1 << 2)
#define VID_VSYNC_3DFORMAT_PIXEL (2 << 2)
#define VID_VSYNC_3DMODE_OFF 0
#define VID_VSYNC_3DMODE_PORTRAIT 1
#define VID_VSYNC_3DMODE_LANDSCAPE 2
#define MCTL_MAIN_STS 0x24
#define MCTL_MAIN_STS_CTL 0x130
#define MCTL_MAIN_STS_CLR 0x150
#define MCTL_MAIN_STS_FLAG 0x170
#define HS_SKEWCAL_DONE BIT(11)
#define IF_UNTERM_PKT_ERR(x) BIT(8 + (x))
#define LPRX_TIMEOUT_ERR BIT(7)
#define HSTX_TIMEOUT_ERR BIT(6)
#define DATA_LANE_RDY(l) BIT(2 + (l))
#define CLK_LANE_RDY BIT(1)
#define PLL_LOCKED BIT(0)
#define MCTL_DPHY_ERR 0x28
#define MCTL_DPHY_ERR_CTL1 0x148
#define MCTL_DPHY_ERR_CLR 0x168
#define MCTL_DPHY_ERR_FLAG 0x188
#define ERR_CONT_LP(x, l) BIT(18 + ((x) * 4) + (l))
#define ERR_CONTROL(l) BIT(14 + (l))
#define ERR_SYNESC(l) BIT(10 + (l))
#define ERR_ESC(l) BIT(6 + (l))
#define MCTL_DPHY_ERR_CTL2 0x14c
#define ERR_CONT_LP_EDGE(x, l) BIT(12 + ((x) * 4) + (l))
#define ERR_CONTROL_EDGE(l) BIT(8 + (l))
#define ERR_SYN_ESC_EDGE(l) BIT(4 + (l))
#define ERR_ESC_EDGE(l) BIT(0 + (l))
#define MCTL_LANE_STS 0x2c
#define PPI_C_TX_READY_HS BIT(18)
#define DPHY_PLL_LOCK BIT(17)
#define PPI_D_RX_ULPS_ESC(x) (((x) & GENMASK(15, 12)) >> 12)
#define LANE_STATE_START 0
#define LANE_STATE_IDLE 1
#define LANE_STATE_WRITE 2
#define LANE_STATE_ULPM 3
#define LANE_STATE_READ 4
#define DATA_LANE_STATE(l, val) \
(((val) >> (2 + 2 * (l) + ((l) ? 1 : 0))) & GENMASK((l) ? 1 : 2, 0))
#define CLK_LANE_STATE_HS 2
#define CLK_LANE_STATE(val) ((val) & GENMASK(1, 0))
#define DSC_MODE_CTL 0x30
#define DSC_MODE_EN BIT(0)
#define DSC_CMD_SEND 0x34
#define DSC_SEND_PPS BIT(0)
#define DSC_EXECUTE_QUEUE BIT(1)
#define DSC_PPS_WRDAT 0x38
#define DSC_MODE_STS 0x3c
#define DSC_PPS_DONE BIT(1)
#define DSC_EXEC_DONE BIT(2)
#define CMD_MODE_CTL 0x70
#define IF_LP_EN(x) BIT(9 + (x))
#define IF_VCHAN_ID(x, c) ((c) << ((x) * 2))
#define CMD_MODE_CTL2 0x74
#define TE_TIMEOUT(x) ((x) << 11)
#define FILL_VALUE(x) ((x) << 3)
#define ARB_IF_WITH_HIGHEST_PRIORITY(x) ((x) << 1)
#define ARB_ROUND_ROBIN_MODE BIT(0)
#define CMD_MODE_STS 0x78
#define CMD_MODE_STS_CTL 0x134
#define CMD_MODE_STS_CLR 0x154
#define CMD_MODE_STS_FLAG 0x174
#define ERR_IF_UNDERRUN(x) BIT(4 + (x))
#define ERR_UNWANTED_READ BIT(3)
#define ERR_TE_MISS BIT(2)
#define ERR_NO_TE BIT(1)
#define CSM_RUNNING BIT(0)
#define DIRECT_CMD_SEND 0x80
#define DIRECT_CMD_MAIN_SETTINGS 0x84
#define TRIGGER_VAL(x) ((x) << 25)
#define CMD_LP_EN BIT(24)
#define CMD_SIZE(x) ((x) << 16)
#define CMD_VCHAN_ID(x) ((x) << 14)
#define CMD_DATATYPE(x) ((x) << 8)
#define CMD_LONG BIT(3)
#define WRITE_CMD 0
#define READ_CMD 1
#define TE_REQ 4
#define TRIGGER_REQ 5
#define BTA_REQ 6
#define DIRECT_CMD_STS 0x88
#define DIRECT_CMD_STS_CTL 0x138
#define DIRECT_CMD_STS_CLR 0x158
#define DIRECT_CMD_STS_FLAG 0x178
#define RCVD_ACK_VAL(val) ((val) >> 16)
#define RCVD_TRIGGER_VAL(val) (((val) & GENMASK(14, 11)) >> 11)
#define READ_COMPLETED_WITH_ERR BIT(10)
#define BTA_FINISHED BIT(9)
#define BTA_COMPLETED BIT(8)
#define TE_RCVD BIT(7)
#define TRIGGER_RCVD BIT(6)
#define ACK_WITH_ERR_RCVD BIT(5)
#define ACK_RCVD BIT(4)
#define READ_COMPLETED BIT(3)
#define TRIGGER_COMPLETED BIT(2)
#define WRITE_COMPLETED BIT(1)
#define SENDING_CMD BIT(0)
#define DIRECT_CMD_STOP_READ 0x8c
#define DIRECT_CMD_WRDATA 0x90
#define DIRECT_CMD_FIFO_RST 0x94
#define DIRECT_CMD_RDDATA 0xa0
#define DIRECT_CMD_RD_PROPS 0xa4
#define RD_DCS BIT(18)
#define RD_VCHAN_ID(val) (((val) >> 16) & GENMASK(1, 0))
#define RD_SIZE(val) ((val) & GENMASK(15, 0))
#define DIRECT_CMD_RD_STS 0xa8
#define DIRECT_CMD_RD_STS_CTL 0x13c
#define DIRECT_CMD_RD_STS_CLR 0x15c
#define DIRECT_CMD_RD_STS_FLAG 0x17c
#define ERR_EOT_WITH_ERR BIT(8)
#define ERR_MISSING_EOT BIT(7)
#define ERR_WRONG_LENGTH BIT(6)
#define ERR_OVERSIZE BIT(5)
#define ERR_RECEIVE BIT(4)
#define ERR_UNDECODABLE BIT(3)
#define ERR_CHECKSUM BIT(2)
#define ERR_UNCORRECTABLE BIT(1)
#define ERR_FIXED BIT(0)
#define VID_MAIN_CTL 0xb0
#define VID_IGNORE_MISS_VSYNC BIT(31)
#define VID_FIELD_SW BIT(28)
#define VID_INTERLACED_EN BIT(27)
#define RECOVERY_MODE(x) ((x) << 25)
#define RECOVERY_MODE_NEXT_HSYNC 0
#define RECOVERY_MODE_NEXT_STOP_POINT 2
#define RECOVERY_MODE_NEXT_VSYNC 3
#define REG_BLKEOL_MODE(x) ((x) << 23)
#define REG_BLKLINE_MODE(x) ((x) << 21)
#define REG_BLK_MODE_NULL_PKT 0
#define REG_BLK_MODE_BLANKING_PKT 1
#define REG_BLK_MODE_LP 2
#define SYNC_PULSE_HORIZONTAL BIT(20)
#define SYNC_PULSE_ACTIVE BIT(19)
#define BURST_MODE BIT(18)
#define VID_PIXEL_MODE_MASK GENMASK(17, 14)
#define VID_PIXEL_MODE_RGB565 (0 << 14)
#define VID_PIXEL_MODE_RGB666_PACKED (1 << 14)
#define VID_PIXEL_MODE_RGB666 (2 << 14)
#define VID_PIXEL_MODE_RGB888 (3 << 14)
#define VID_PIXEL_MODE_RGB101010 (4 << 14)
#define VID_PIXEL_MODE_RGB121212 (5 << 14)
#define VID_PIXEL_MODE_YUV420 (8 << 14)
#define VID_PIXEL_MODE_YUV422_PACKED (9 << 14)
#define VID_PIXEL_MODE_YUV422 (10 << 14)
#define VID_PIXEL_MODE_YUV422_24B (11 << 14)
#define VID_PIXEL_MODE_DSC_COMP (12 << 14)
#define VID_DATATYPE(x) ((x) << 8)
#define VID_VIRTCHAN_ID(iface, x) ((x) << (4 + (iface) * 2))
#define STOP_MODE(x) ((x) << 2)
#define START_MODE(x) (x)
#define VID_VSIZE1 0xb4
#define VFP_LEN(x) ((x) << 12)
#define VBP_LEN(x) ((x) << 6)
#define VSA_LEN(x) (x)
#define VID_VSIZE2 0xb8
#define VACT_LEN(x) (x)
#define VID_HSIZE1 0xc0
#define HBP_LEN(x) ((x) << 16)
#define HSA_LEN(x) (x)
#define VID_HSIZE2 0xc4
#define HFP_LEN(x) ((x) << 16)
#define HACT_LEN(x) (x)
#define VID_BLKSIZE1 0xcc
#define BLK_EOL_PKT_LEN(x) ((x) << 15)
#define BLK_LINE_EVENT_PKT_LEN(x) (x)
#define VID_BLKSIZE2 0xd0
#define BLK_LINE_PULSE_PKT_LEN(x) (x)
#define VID_PKT_TIME 0xd8
#define BLK_EOL_DURATION(x) (x)
#define VID_DPHY_TIME 0xdc
#define REG_WAKEUP_TIME(x) ((x) << 17)
#define REG_LINE_DURATION(x) (x)
#define VID_ERR_COLOR1 0xe0
#define COL_GREEN(x) ((x) << 12)
#define COL_RED(x) (x)
#define VID_ERR_COLOR2 0xe4
#define PAD_VAL(x) ((x) << 12)
#define COL_BLUE(x) (x)
#define VID_VPOS 0xe8
#define LINE_VAL(val) (((val) & GENMASK(14, 2)) >> 2)
#define LINE_POS(val) ((val) & GENMASK(1, 0))
#define VID_HPOS 0xec
#define HORIZ_VAL(val) (((val) & GENMASK(17, 3)) >> 3)
#define HORIZ_POS(val) ((val) & GENMASK(2, 0))
#define VID_MODE_STS 0xf0
#define VID_MODE_STS_CTL 0x140
#define VID_MODE_STS_CLR 0x160
#define VID_MODE_STS_FLAG 0x180
#define VSG_RECOVERY BIT(10)
#define ERR_VRS_WRONG_LEN BIT(9)
#define ERR_LONG_READ BIT(8)
#define ERR_LINE_WRITE BIT(7)
#define ERR_BURST_WRITE BIT(6)
#define ERR_SMALL_HEIGHT BIT(5)
#define ERR_SMALL_LEN BIT(4)
#define ERR_MISSING_VSYNC BIT(3)
#define ERR_MISSING_HSYNC BIT(2)
#define ERR_MISSING_DATA BIT(1)
#define VSG_RUNNING BIT(0)
#define VID_VCA_SETTING1 0xf4
#define BURST_LP BIT(16)
#define MAX_BURST_LIMIT(x) (x)
#define VID_VCA_SETTING2 0xf8
#define MAX_LINE_LIMIT(x) ((x) << 16)
#define EXACT_BURST_LIMIT(x) (x)
#define TVG_CTL 0xfc
#define TVG_STRIPE_SIZE(x) ((x) << 5)
#define TVG_MODE_MASK GENMASK(4, 3)
#define TVG_MODE_SINGLE_COLOR (0 << 3)
#define TVG_MODE_VSTRIPES (2 << 3)
#define TVG_MODE_HSTRIPES (3 << 3)
#define TVG_STOPMODE_MASK GENMASK(2, 1)
#define TVG_STOPMODE_EOF (0 << 1)
#define TVG_STOPMODE_EOL (1 << 1)
#define TVG_STOPMODE_NOW (2 << 1)
#define TVG_RUN BIT(0)
#define TVG_IMG_SIZE 0x100
#define TVG_NBLINES(x) ((x) << 16)
#define TVG_LINE_SIZE(x) (x)
#define TVG_COLOR1 0x104
#define TVG_COL1_GREEN(x) ((x) << 12)
#define TVG_COL1_RED(x) (x)
#define TVG_COLOR1_BIS 0x108
#define TVG_COL1_BLUE(x) (x)
#define TVG_COLOR2 0x10c
#define TVG_COL2_GREEN(x) ((x) << 12)
#define TVG_COL2_RED(x) (x)
#define TVG_COLOR2_BIS 0x110
#define TVG_COL2_BLUE(x) (x)
#define TVG_STS 0x114
#define TVG_STS_CTL 0x144
#define TVG_STS_CLR 0x164
#define TVG_STS_FLAG 0x184
#define TVG_STS_RUNNING BIT(0)
#define STS_CTL_EDGE(e) ((e) << 16)
#define DPHY_LANES_MAP 0x198
#define DAT_REMAP_CFG(b, l) ((l) << ((b) * 8))
#define DPI_IRQ_EN 0x1a0
#define DPI_IRQ_CLR 0x1a4
#define DPI_IRQ_STS 0x1a8
#define PIXEL_BUF_OVERFLOW BIT(0)
#define DPI_CFG 0x1ac
#define DPI_CFG_FIFO_DEPTH(x) ((x) >> 16)
#define DPI_CFG_FIFO_LEVEL(x) ((x) & GENMASK(15, 0))
#define TEST_GENERIC 0x1f0
#define TEST_STATUS(x) ((x) >> 16)
#define TEST_CTRL(x) (x)
#define ID_REG 0x1fc
#define REV_VENDOR_ID(x) (((x) & GENMASK(31, 20)) >> 20)
#define REV_PRODUCT_ID(x) (((x) & GENMASK(19, 12)) >> 12)
#define REV_HW(x) (((x) & GENMASK(11, 8)) >> 8)
#define REV_MAJOR(x) (((x) & GENMASK(7, 4)) >> 4)
#define REV_MINOR(x) ((x) & GENMASK(3, 0))
#define DSI_OUTPUT_PORT 0
#define DSI_INPUT_PORT(inputid) (1 + (inputid))
#define DSI_HBP_FRAME_OVERHEAD 12
#define DSI_HSA_FRAME_OVERHEAD 14
#define DSI_HFP_FRAME_OVERHEAD 6
#define DSI_HSS_VSS_VSE_FRAME_OVERHEAD 4
#define DSI_BLANKING_FRAME_OVERHEAD 6
#define DSI_NULL_FRAME_OVERHEAD 6
#define DSI_EOT_PKT_SIZE 4
#define REG_WAKEUP_TIME_NS 800
#define DPHY_PLL_RATE_HZ 108000000
/* DPHY registers */
#define DPHY_PMA_CMN(reg) (reg)
#define DPHY_PMA_LCLK(reg) (0x100 + (reg))
#define DPHY_PMA_LDATA(lane, reg) (0x200 + ((lane) * 0x100) + (reg))
#define DPHY_PMA_RCLK(reg) (0x600 + (reg))
#define DPHY_PMA_RDATA(lane, reg) (0x700 + ((lane) * 0x100) + (reg))
#define DPHY_PCS(reg) (0xb00 + (reg))
#define DPHY_CMN_SSM DPHY_PMA_CMN(0x20)
#define DPHY_CMN_SSM_EN BIT(0)
#define DPHY_CMN_TX_MODE_EN BIT(9)
#define DPHY_CMN_PWM DPHY_PMA_CMN(0x40)
#define DPHY_CMN_PWM_DIV(x) ((x) << 20)
#define DPHY_CMN_PWM_LOW(x) ((x) << 10)
#define DPHY_CMN_PWM_HIGH(x) (x)
#define DPHY_CMN_FBDIV DPHY_PMA_CMN(0x4c)
#define DPHY_CMN_FBDIV_VAL(low, high) (((high) << 11) | ((low) << 22))
#define DPHY_CMN_FBDIV_FROM_REG (BIT(10) | BIT(21))
#define DPHY_CMN_OPIPDIV DPHY_PMA_CMN(0x50)
#define DPHY_CMN_IPDIV_FROM_REG BIT(0)
#define DPHY_CMN_IPDIV(x) ((x) << 1)
#define DPHY_CMN_OPDIV_FROM_REG BIT(6)
#define DPHY_CMN_OPDIV(x) ((x) << 7)
#define DPHY_PSM_CFG DPHY_PCS(0x4)
#define DPHY_PSM_CFG_FROM_REG BIT(0)
#define DPHY_PSM_CLK_DIV(x) ((x) << 1)
struct cdns_dsi_output {
struct mipi_dsi_device *dev;
struct drm_panel *panel;
struct drm_bridge *bridge;
};
enum cdns_dsi_input_id {
CDNS_SDI_INPUT,
CDNS_DPI_INPUT,
CDNS_DSC_INPUT,
};
struct cdns_dphy_cfg {
u8 pll_ipdiv;
u8 pll_opdiv;
u16 pll_fbdiv;
unsigned long lane_bps;
unsigned int nlanes;
};
struct cdns_dsi_cfg {
unsigned int hfp;
unsigned int hsa;
unsigned int hbp;
unsigned int hact;
unsigned int htotal;
};
struct cdns_dphy;
enum cdns_dphy_clk_lane_cfg {
DPHY_CLK_CFG_LEFT_DRIVES_ALL = 0,
DPHY_CLK_CFG_LEFT_DRIVES_RIGHT = 1,
DPHY_CLK_CFG_LEFT_DRIVES_LEFT = 2,
DPHY_CLK_CFG_RIGHT_DRIVES_ALL = 3,
};
struct cdns_dphy_ops {
int (*probe)(struct cdns_dphy *dphy);
void (*remove)(struct cdns_dphy *dphy);
void (*set_psm_div)(struct cdns_dphy *dphy, u8 div);
void (*set_clk_lane_cfg)(struct cdns_dphy *dphy,
enum cdns_dphy_clk_lane_cfg cfg);
void (*set_pll_cfg)(struct cdns_dphy *dphy,
const struct cdns_dphy_cfg *cfg);
unsigned long (*get_wakeup_time_ns)(struct cdns_dphy *dphy);
};
struct cdns_dphy {
struct cdns_dphy_cfg cfg;
void __iomem *regs;
struct clk *psm_clk;
struct clk *pll_ref_clk;
const struct cdns_dphy_ops *ops;
};
struct cdns_dsi_input {
enum cdns_dsi_input_id id;
struct drm_bridge bridge;
};
struct cdns_dsi {
struct mipi_dsi_host base;
void __iomem *regs;
struct cdns_dsi_input input;
struct cdns_dsi_output output;
unsigned int direct_cmd_fifo_depth;
unsigned int rx_fifo_depth;
struct completion direct_cmd_comp;
struct clk *dsi_p_clk;
struct reset_control *dsi_p_rst;
struct clk *dsi_sys_clk;
bool link_initialized;
struct cdns_dphy *dphy;
};
static inline struct cdns_dsi *input_to_dsi(struct cdns_dsi_input *input)
{
return container_of(input, struct cdns_dsi, input);
}
static inline struct cdns_dsi *to_cdns_dsi(struct mipi_dsi_host *host)
{
return container_of(host, struct cdns_dsi, base);
}
static inline struct cdns_dsi_input *
bridge_to_cdns_dsi_input(struct drm_bridge *bridge)
{
return container_of(bridge, struct cdns_dsi_input, bridge);
}
static int cdns_dsi_get_dphy_pll_cfg(struct cdns_dphy *dphy,
struct cdns_dphy_cfg *cfg,
unsigned int dpi_htotal,
unsigned int dpi_bpp,
unsigned int dpi_hz,
unsigned int dsi_htotal,
unsigned int dsi_nlanes,
unsigned int *dsi_hfp_ext)
{
u64 dlane_bps, dlane_bps_max, fbdiv, fbdiv_max, adj_dsi_htotal;
unsigned long pll_ref_hz = clk_get_rate(dphy->pll_ref_clk);
memset(cfg, 0, sizeof(*cfg));
cfg->nlanes = dsi_nlanes;
if (pll_ref_hz < 9600000 || pll_ref_hz >= 150000000)
return -EINVAL;
else if (pll_ref_hz < 19200000)
cfg->pll_ipdiv = 1;
else if (pll_ref_hz < 38400000)
cfg->pll_ipdiv = 2;
else if (pll_ref_hz < 76800000)
cfg->pll_ipdiv = 4;
else
cfg->pll_ipdiv = 8;
/*
* Make sure DSI htotal is aligned on a lane boundary when calculating
* the expected data rate. This is done by extending HFP in case of
* misalignment.
*/
adj_dsi_htotal = dsi_htotal;
if (dsi_htotal % dsi_nlanes)
adj_dsi_htotal += dsi_nlanes - (dsi_htotal % dsi_nlanes);
dlane_bps = (u64)dpi_hz * adj_dsi_htotal;
/* data rate in bytes/sec is not an integer, refuse the mode. */
if (do_div(dlane_bps, dsi_nlanes * dpi_htotal))
return -EINVAL;
/* data rate was in bytes/sec, convert to bits/sec. */
dlane_bps *= 8;
if (dlane_bps > 2500000000UL || dlane_bps < 160000000UL)
return -EINVAL;
else if (dlane_bps >= 1250000000)
cfg->pll_opdiv = 1;
else if (dlane_bps >= 630000000)
cfg->pll_opdiv = 2;
else if (dlane_bps >= 320000000)
cfg->pll_opdiv = 4;
else if (dlane_bps >= 160000000)
cfg->pll_opdiv = 8;
/*
* Allow a deviation of 0.2% on the per-lane data rate to try to
* recover a potential mismatch between DPI and PPI clks.
*/
dlane_bps_max = dlane_bps + DIV_ROUND_DOWN_ULL(dlane_bps, 500);
fbdiv_max = DIV_ROUND_DOWN_ULL(dlane_bps_max * 2 *
cfg->pll_opdiv * cfg->pll_ipdiv,
pll_ref_hz);
fbdiv = DIV_ROUND_UP_ULL(dlane_bps * 2 * cfg->pll_opdiv *
cfg->pll_ipdiv,
pll_ref_hz);
/*
* Iterate over all acceptable fbdiv and try to find an adjusted DSI
* htotal length providing an exact match.
*
* Note that we could do something even trickier by relying on the fact
* that a new line is not necessarily aligned on a lane boundary, so,
* by making adj_dsi_htotal non aligned on a dsi_lanes we can improve a
* bit the precision. With this, the step would be
*
* pll_ref_hz / (2 * opdiv * ipdiv * nlanes)
*
* instead of
*
* pll_ref_hz / (2 * opdiv * ipdiv)
*
* The drawback of this approach is that we would need to make sure the
* number or lines is a multiple of the realignment periodicity which is
* a function of the number of lanes and the original misalignment. For
* example, for NLANES = 4 and HTOTAL % NLANES = 3, it takes 4 lines
* to realign on a lane:
* LINE 0: expected number of bytes, starts emitting first byte of
* LINE 1 on LANE 3
* LINE 1: expected number of bytes, starts emitting first 2 bytes of
* LINE 2 on LANES 2 and 3
* LINE 2: expected number of bytes, starts emitting first 3 bytes of
* of LINE 3 on LANES 1, 2 and 3
* LINE 3: one byte less, now things are realigned on LANE 0 for LINE 4
*
* I figured this extra complexity was not worth the benefit, but if
* someone really has unfixable mismatch, that would be something to
* investigate.
*/
for (; fbdiv <= fbdiv_max; fbdiv++) {
u32 rem;
adj_dsi_htotal = (u64)fbdiv * pll_ref_hz * dsi_nlanes *
dpi_htotal;
/*
* Do the division in 2 steps to avoid an overflow on the
* divider.
*/
rem = do_div(adj_dsi_htotal, dpi_hz);
if (rem)
continue;
rem = do_div(adj_dsi_htotal,
cfg->pll_opdiv * cfg->pll_ipdiv * 2 * 8);
if (rem)
continue;
cfg->pll_fbdiv = fbdiv;
*dsi_hfp_ext = adj_dsi_htotal - dsi_htotal;
break;
}
/* No match, let's just reject the display mode. */
if (!cfg->pll_fbdiv)
return -EINVAL;
dlane_bps = DIV_ROUND_DOWN_ULL((u64)dpi_hz * adj_dsi_htotal * 8,
dsi_nlanes * dpi_htotal);
cfg->lane_bps = dlane_bps;
return 0;
}
static int cdns_dphy_setup_psm(struct cdns_dphy *dphy)
{
unsigned long psm_clk_hz = clk_get_rate(dphy->psm_clk);
unsigned long psm_div;
if (!psm_clk_hz || psm_clk_hz > 100000000)
return -EINVAL;
psm_div = DIV_ROUND_CLOSEST(psm_clk_hz, 1000000);
if (dphy->ops->set_psm_div)
dphy->ops->set_psm_div(dphy, psm_div);
return 0;
}
static void cdns_dphy_set_clk_lane_cfg(struct cdns_dphy *dphy,
enum cdns_dphy_clk_lane_cfg cfg)
{
if (dphy->ops->set_clk_lane_cfg)
dphy->ops->set_clk_lane_cfg(dphy, cfg);
}
static void cdns_dphy_set_pll_cfg(struct cdns_dphy *dphy,
const struct cdns_dphy_cfg *cfg)
{
if (dphy->ops->set_pll_cfg)
dphy->ops->set_pll_cfg(dphy, cfg);
}
static unsigned long cdns_dphy_get_wakeup_time_ns(struct cdns_dphy *dphy)
{
return dphy->ops->get_wakeup_time_ns(dphy);
}
static unsigned int dpi_to_dsi_timing(unsigned int dpi_timing,
unsigned int dpi_bpp,
unsigned int dsi_pkt_overhead)
{
unsigned int dsi_timing = DIV_ROUND_UP(dpi_timing * dpi_bpp, 8);
if (dsi_timing < dsi_pkt_overhead)
dsi_timing = 0;
else
dsi_timing -= dsi_pkt_overhead;
return dsi_timing;
}
static int cdns_dsi_mode2cfg(struct cdns_dsi *dsi,
const struct drm_display_mode *mode,
struct cdns_dsi_cfg *dsi_cfg,
struct cdns_dphy_cfg *dphy_cfg,
bool mode_valid_check)
{
unsigned long dsi_htotal = 0, dsi_hss_hsa_hse_hbp = 0;
struct cdns_dsi_output *output = &dsi->output;
unsigned int dsi_hfp_ext = 0, dpi_hfp, tmp;
bool sync_pulse = false;
int bpp, nlanes, ret;
memset(dsi_cfg, 0, sizeof(*dsi_cfg));
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
sync_pulse = true;
bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format);
nlanes = output->dev->lanes;
if (mode_valid_check)
tmp = mode->htotal -
(sync_pulse ? mode->hsync_end : mode->hsync_start);
else
tmp = mode->crtc_htotal -
(sync_pulse ?
mode->crtc_hsync_end : mode->crtc_hsync_start);
dsi_cfg->hbp = dpi_to_dsi_timing(tmp, bpp, DSI_HBP_FRAME_OVERHEAD);
dsi_htotal += dsi_cfg->hbp + DSI_HBP_FRAME_OVERHEAD;
dsi_hss_hsa_hse_hbp += dsi_cfg->hbp + DSI_HBP_FRAME_OVERHEAD;
if (sync_pulse) {
if (mode_valid_check)
tmp = mode->hsync_end - mode->hsync_start;
else
tmp = mode->crtc_hsync_end - mode->crtc_hsync_start;
dsi_cfg->hsa = dpi_to_dsi_timing(tmp, bpp,
DSI_HSA_FRAME_OVERHEAD);
dsi_htotal += dsi_cfg->hsa + DSI_HSA_FRAME_OVERHEAD;
dsi_hss_hsa_hse_hbp += dsi_cfg->hsa + DSI_HSA_FRAME_OVERHEAD;
}
dsi_cfg->hact = dpi_to_dsi_timing(mode_valid_check ?
mode->hdisplay : mode->crtc_hdisplay,
bpp, 0);
dsi_htotal += dsi_cfg->hact;
if (mode_valid_check)
dpi_hfp = mode->hsync_start - mode->hdisplay;
else
dpi_hfp = mode->crtc_hsync_start - mode->crtc_hdisplay;
dsi_cfg->hfp = dpi_to_dsi_timing(dpi_hfp, bpp, DSI_HFP_FRAME_OVERHEAD);
dsi_htotal += dsi_cfg->hfp + DSI_HFP_FRAME_OVERHEAD;
if (mode_valid_check)
ret = cdns_dsi_get_dphy_pll_cfg(dsi->dphy, dphy_cfg,
mode->htotal, bpp,
mode->clock * 1000,
dsi_htotal, nlanes,
&dsi_hfp_ext);
else
ret = cdns_dsi_get_dphy_pll_cfg(dsi->dphy, dphy_cfg,
mode->crtc_htotal, bpp,
mode->crtc_clock * 1000,
dsi_htotal, nlanes,
&dsi_hfp_ext);
if (ret)
return ret;
dsi_cfg->hfp += dsi_hfp_ext;
dsi_htotal += dsi_hfp_ext;
dsi_cfg->htotal = dsi_htotal;
/*
* Make sure DPI(HFP) > DSI(HSS+HSA+HSE+HBP) to guarantee that the FIFO
* is empty before we start a receiving a new line on the DPI
* interface.
*/
if ((u64)dphy_cfg->lane_bps * dpi_hfp * nlanes <
(u64)dsi_hss_hsa_hse_hbp *
(mode_valid_check ? mode->clock : mode->crtc_clock) * 1000)
return -EINVAL;
return 0;
}
static int cdns_dsi_bridge_attach(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
struct cdns_dsi_output *output = &dsi->output;
if (!drm_core_check_feature(bridge->dev, DRIVER_ATOMIC)) {
dev_err(dsi->base.dev,
"cdns-dsi driver is only compatible with DRM devices supporting atomic updates");
return -ENOTSUPP;
}
return drm_bridge_attach(bridge->encoder, output->bridge, bridge);
}
static enum drm_mode_status
cdns_dsi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_mode *mode)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
struct cdns_dsi_output *output = &dsi->output;
struct cdns_dphy_cfg dphy_cfg;
struct cdns_dsi_cfg dsi_cfg;
int bpp, nlanes, ret;
/*
* VFP_DSI should be less than VFP_DPI and VFP_DSI should be at
* least 1.
*/
if (mode->vtotal - mode->vsync_end < 2)
return MODE_V_ILLEGAL;
/* VSA_DSI = VSA_DPI and must be at least 2. */
if (mode->vsync_end - mode->vsync_start < 2)
return MODE_V_ILLEGAL;
/* HACT must be 32-bits aligned. */
bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format);
if ((mode->hdisplay * bpp) % 32)
return MODE_H_ILLEGAL;
nlanes = output->dev->lanes;
ret = cdns_dsi_mode2cfg(dsi, mode, &dsi_cfg, &dphy_cfg, true);
if (ret)
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static void cdns_dsi_bridge_disable(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
u32 val;
val = readl(dsi->regs + MCTL_MAIN_DATA_CTL);
val &= ~(IF_VID_SELECT_MASK | IF_VID_MODE | VID_EN | HOST_EOT_GEN |
DISP_EOT_GEN);
writel(val, dsi->regs + MCTL_MAIN_DATA_CTL);
val = readl(dsi->regs + MCTL_MAIN_EN) & ~IF_EN(input->id);
writel(val, dsi->regs + MCTL_MAIN_EN);
pm_runtime_put(dsi->base.dev);
}
static void cdns_dsi_hs_init(struct cdns_dsi *dsi,
const struct cdns_dphy_cfg *dphy_cfg)
{
u32 status;
/*
* Power all internal DPHY blocks down and maintain their reset line
* asserted before changing the DPHY config.
*/
writel(DPHY_CMN_PSO | DPHY_PLL_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN |
DPHY_CMN_PDN | DPHY_PLL_PDN,
dsi->regs + MCTL_DPHY_CFG0);
/*
* Configure the internal PSM clk divider so that the DPHY has a
* 1MHz clk (or something close).
*/
WARN_ON_ONCE(cdns_dphy_setup_psm(dsi->dphy));
/*
* Configure attach clk lanes to data lanes: the DPHY has 2 clk lanes
* and 8 data lanes, each clk lane can be attache different set of
* data lanes. The 2 groups are named 'left' and 'right', so here we
* just say that we want the 'left' clk lane to drive the 'left' data
* lanes.
*/
cdns_dphy_set_clk_lane_cfg(dsi->dphy, DPHY_CLK_CFG_LEFT_DRIVES_LEFT);
/*
* Configure the DPHY PLL that will be used to generate the TX byte
* clk.
*/
cdns_dphy_set_pll_cfg(dsi->dphy, dphy_cfg);
/* Start TX state machine. */
writel(DPHY_CMN_SSM_EN | DPHY_CMN_TX_MODE_EN,
dsi->dphy->regs + DPHY_CMN_SSM);
/* Activate the PLL and wait until it's locked. */
writel(PLL_LOCKED, dsi->regs + MCTL_MAIN_STS_CLR);
writel(DPHY_CMN_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN,
dsi->regs + MCTL_DPHY_CFG0);
WARN_ON_ONCE(readl_poll_timeout(dsi->regs + MCTL_MAIN_STS, status,
status & PLL_LOCKED, 100, 100));
/* De-assert data and clock reset lines. */
writel(DPHY_CMN_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN |
DPHY_D_RSTB(dphy_cfg->nlanes) | DPHY_C_RSTB,
dsi->regs + MCTL_DPHY_CFG0);
}
static void cdns_dsi_init_link(struct cdns_dsi *dsi)
{
struct cdns_dsi_output *output = &dsi->output;
unsigned long sysclk_period, ulpout;
u32 val;
int i;
if (dsi->link_initialized)
return;
val = 0;
for (i = 1; i < output->dev->lanes; i++)
val |= DATA_LANE_EN(i);
if (!(output->dev->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
val |= CLK_CONTINUOUS;
writel(val, dsi->regs + MCTL_MAIN_PHY_CTL);
/* ULPOUT should be set to 1ms and is expressed in sysclk cycles. */
sysclk_period = NSEC_PER_SEC / clk_get_rate(dsi->dsi_sys_clk);
ulpout = DIV_ROUND_UP(NSEC_PER_MSEC, sysclk_period);
writel(CLK_LANE_ULPOUT_TIME(ulpout) | DATA_LANE_ULPOUT_TIME(ulpout),
dsi->regs + MCTL_ULPOUT_TIME);
writel(LINK_EN, dsi->regs + MCTL_MAIN_DATA_CTL);
val = CLK_LANE_EN | PLL_START;
for (i = 0; i < output->dev->lanes; i++)
val |= DATA_LANE_START(i);
writel(val, dsi->regs + MCTL_MAIN_EN);
dsi->link_initialized = true;
}
static void cdns_dsi_bridge_enable(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
struct cdns_dsi_output *output = &dsi->output;
struct drm_display_mode *mode;
struct cdns_dphy_cfg dphy_cfg;
unsigned long tx_byte_period;
struct cdns_dsi_cfg dsi_cfg;
u32 tmp, reg_wakeup, div;
int bpp, nlanes;
if (WARN_ON(pm_runtime_get_sync(dsi->base.dev) < 0))
return;
mode = &bridge->encoder->crtc->state->adjusted_mode;
bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format);
nlanes = output->dev->lanes;
WARN_ON_ONCE(cdns_dsi_mode2cfg(dsi, mode, &dsi_cfg, &dphy_cfg, false));
cdns_dsi_hs_init(dsi, &dphy_cfg);
cdns_dsi_init_link(dsi);
writel(HBP_LEN(dsi_cfg.hbp) | HSA_LEN(dsi_cfg.hsa),
dsi->regs + VID_HSIZE1);
writel(HFP_LEN(dsi_cfg.hfp) | HACT_LEN(dsi_cfg.hact),
dsi->regs + VID_HSIZE2);
writel(VBP_LEN(mode->crtc_vtotal - mode->crtc_vsync_end - 1) |
VFP_LEN(mode->crtc_vsync_start - mode->crtc_vdisplay) |
VSA_LEN(mode->crtc_vsync_end - mode->crtc_vsync_start + 1),
dsi->regs + VID_VSIZE1);
writel(mode->crtc_vdisplay, dsi->regs + VID_VSIZE2);
tmp = dsi_cfg.htotal -
(dsi_cfg.hsa + DSI_BLANKING_FRAME_OVERHEAD +
DSI_HSA_FRAME_OVERHEAD);
writel(BLK_LINE_PULSE_PKT_LEN(tmp), dsi->regs + VID_BLKSIZE2);
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
writel(MAX_LINE_LIMIT(tmp - DSI_NULL_FRAME_OVERHEAD),
dsi->regs + VID_VCA_SETTING2);
tmp = dsi_cfg.htotal -
(DSI_HSS_VSS_VSE_FRAME_OVERHEAD + DSI_BLANKING_FRAME_OVERHEAD);
writel(BLK_LINE_EVENT_PKT_LEN(tmp), dsi->regs + VID_BLKSIZE1);
if (!(output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE))
writel(MAX_LINE_LIMIT(tmp - DSI_NULL_FRAME_OVERHEAD),
dsi->regs + VID_VCA_SETTING2);
tmp = DIV_ROUND_UP(dsi_cfg.htotal, nlanes) -
DIV_ROUND_UP(dsi_cfg.hsa, nlanes);
if (!(output->dev->mode_flags & MIPI_DSI_MODE_EOT_PACKET))
tmp -= DIV_ROUND_UP(DSI_EOT_PKT_SIZE, nlanes);
tx_byte_period = DIV_ROUND_DOWN_ULL((u64)NSEC_PER_SEC * 8,
dphy_cfg.lane_bps);
reg_wakeup = cdns_dphy_get_wakeup_time_ns(dsi->dphy) /
tx_byte_period;
writel(REG_WAKEUP_TIME(reg_wakeup) | REG_LINE_DURATION(tmp),
dsi->regs + VID_DPHY_TIME);
/*
* HSTX and LPRX timeouts are both expressed in TX byte clk cycles and
* both should be set to at least the time it takes to transmit a
* frame.
*/
tmp = NSEC_PER_SEC / drm_mode_vrefresh(mode);
tmp /= tx_byte_period;
for (div = 0; div <= CLK_DIV_MAX; div++) {
if (tmp <= HSTX_TIMEOUT_MAX)
break;
tmp >>= 1;
}
if (tmp > HSTX_TIMEOUT_MAX)
tmp = HSTX_TIMEOUT_MAX;
writel(CLK_DIV(div) | HSTX_TIMEOUT(tmp),
dsi->regs + MCTL_DPHY_TIMEOUT1);
writel(LPRX_TIMEOUT(tmp), dsi->regs + MCTL_DPHY_TIMEOUT2);
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO) {
switch (output->dev->format) {
case MIPI_DSI_FMT_RGB888:
tmp = VID_PIXEL_MODE_RGB888 |
VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_24);
break;
case MIPI_DSI_FMT_RGB666:
tmp = VID_PIXEL_MODE_RGB666 |
VID_DATATYPE(MIPI_DSI_PIXEL_STREAM_3BYTE_18);
break;
case MIPI_DSI_FMT_RGB666_PACKED:
tmp = VID_PIXEL_MODE_RGB666_PACKED |
VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_18);
break;
case MIPI_DSI_FMT_RGB565:
tmp = VID_PIXEL_MODE_RGB565 |
VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_16);
break;
default:
dev_err(dsi->base.dev, "Unsupported DSI format\n");
return;
}
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
tmp |= SYNC_PULSE_ACTIVE | SYNC_PULSE_HORIZONTAL;
tmp |= REG_BLKLINE_MODE(REG_BLK_MODE_BLANKING_PKT) |
REG_BLKEOL_MODE(REG_BLK_MODE_BLANKING_PKT) |
RECOVERY_MODE(RECOVERY_MODE_NEXT_HSYNC) |
VID_IGNORE_MISS_VSYNC;
writel(tmp, dsi->regs + VID_MAIN_CTL);
}
tmp = readl(dsi->regs + MCTL_MAIN_DATA_CTL);
tmp &= ~(IF_VID_SELECT_MASK | HOST_EOT_GEN | IF_VID_MODE);
if (!(output->dev->mode_flags & MIPI_DSI_MODE_EOT_PACKET))
tmp |= HOST_EOT_GEN;
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO)
tmp |= IF_VID_MODE | IF_VID_SELECT(input->id) | VID_EN;
writel(tmp, dsi->regs + MCTL_MAIN_DATA_CTL);
tmp = readl(dsi->regs + MCTL_MAIN_EN) | IF_EN(input->id);
writel(tmp, dsi->regs + MCTL_MAIN_EN);
}
static const struct drm_bridge_funcs cdns_dsi_bridge_funcs = {
.attach = cdns_dsi_bridge_attach,
.mode_valid = cdns_dsi_bridge_mode_valid,
.disable = cdns_dsi_bridge_disable,
.enable = cdns_dsi_bridge_enable,
};
static int cdns_dsi_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
struct cdns_dsi *dsi = to_cdns_dsi(host);
struct cdns_dsi_output *output = &dsi->output;
struct cdns_dsi_input *input = &dsi->input;
struct drm_bridge *bridge;
struct drm_panel *panel;
struct device_node *np;
int ret;
/*
* We currently do not support connecting several DSI devices to the
* same host. In order to support that we'd need the DRM bridge
* framework to allow dynamic reconfiguration of the bridge chain.
*/
if (output->dev)
return -EBUSY;
/* We do not support burst mode yet. */
if (dev->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
return -ENOTSUPP;
/*
* The host <-> device link might be described using an OF-graph
* representation, in this case we extract the device of_node from
* this representation, otherwise we use dsidev->dev.of_node which
* should have been filled by the core.
*/
np = of_graph_get_remote_node(dsi->base.dev->of_node, DSI_OUTPUT_PORT,
dev->channel);
if (!np)
np = of_node_get(dev->dev.of_node);
panel = of_drm_find_panel(np);
if (panel) {
bridge = drm_panel_bridge_add(panel, DRM_MODE_CONNECTOR_DSI);
} else {
bridge = of_drm_find_bridge(dev->dev.of_node);
if (!bridge)
bridge = ERR_PTR(-EINVAL);
}
of_node_put(np);
if (IS_ERR(bridge)) {
ret = PTR_ERR(bridge);
dev_err(host->dev, "failed to add DSI device %s (err = %d)",
dev->name, ret);
return ret;
}
output->dev = dev;
output->bridge = bridge;
output->panel = panel;
/*
* The DSI output has been properly configured, we can now safely
* register the input to the bridge framework so that it can take place
* in a display pipeline.
*/
drm_bridge_add(&input->bridge);
return 0;
}
static int cdns_dsi_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
struct cdns_dsi *dsi = to_cdns_dsi(host);
struct cdns_dsi_output *output = &dsi->output;
struct cdns_dsi_input *input = &dsi->input;
drm_bridge_remove(&input->bridge);
if (output->panel)
drm_panel_bridge_remove(output->bridge);
return 0;
}
static irqreturn_t cdns_dsi_interrupt(int irq, void *data)
{
struct cdns_dsi *dsi = data;
irqreturn_t ret = IRQ_NONE;
u32 flag, ctl;
flag = readl(dsi->regs + DIRECT_CMD_STS_FLAG);
if (flag) {
ctl = readl(dsi->regs + DIRECT_CMD_STS_CTL);
ctl &= ~flag;
writel(ctl, dsi->regs + DIRECT_CMD_STS_CTL);
complete(&dsi->direct_cmd_comp);
ret = IRQ_HANDLED;
}
return ret;
}
static ssize_t cdns_dsi_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct cdns_dsi *dsi = to_cdns_dsi(host);
u32 cmd, sts, val, wait = WRITE_COMPLETED, ctl = 0;
struct mipi_dsi_packet packet;
int ret, i, tx_len, rx_len;
ret = pm_runtime_get_sync(host->dev);
if (ret < 0)
return ret;
cdns_dsi_init_link(dsi);
ret = mipi_dsi_create_packet(&packet, msg);
if (ret)
goto out;
tx_len = msg->tx_buf ? msg->tx_len : 0;
rx_len = msg->rx_buf ? msg->rx_len : 0;
/* For read operations, the maximum TX len is 2. */
if (rx_len && tx_len > 2) {
ret = -ENOTSUPP;
goto out;
}
/* TX len is limited by the CMD FIFO depth. */
if (tx_len > dsi->direct_cmd_fifo_depth) {
ret = -ENOTSUPP;
goto out;
}
/* RX len is limited by the RX FIFO depth. */
if (rx_len > dsi->rx_fifo_depth) {
ret = -ENOTSUPP;
goto out;
}
cmd = CMD_SIZE(tx_len) | CMD_VCHAN_ID(msg->channel) |
CMD_DATATYPE(msg->type);
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
cmd |= CMD_LP_EN;
if (mipi_dsi_packet_format_is_long(msg->type))
cmd |= CMD_LONG;
if (rx_len) {
cmd |= READ_CMD;
wait = READ_COMPLETED_WITH_ERR | READ_COMPLETED;
ctl = READ_EN | BTA_EN;
} else if (msg->flags & MIPI_DSI_MSG_REQ_ACK) {
cmd |= BTA_REQ;
wait = ACK_WITH_ERR_RCVD | ACK_RCVD;
ctl = BTA_EN;
}
writel(readl(dsi->regs + MCTL_MAIN_DATA_CTL) | ctl,
dsi->regs + MCTL_MAIN_DATA_CTL);
writel(cmd, dsi->regs + DIRECT_CMD_MAIN_SETTINGS);
for (i = 0; i < tx_len; i += 4) {
const u8 *buf = msg->tx_buf;
int j;
val = 0;
for (j = 0; j < 4 && j + i < tx_len; j++)
val |= (u32)buf[i + j] << (8 * j);
writel(val, dsi->regs + DIRECT_CMD_WRDATA);
}
/* Clear status flags before sending the command. */
writel(wait, dsi->regs + DIRECT_CMD_STS_CLR);
writel(wait, dsi->regs + DIRECT_CMD_STS_CTL);
reinit_completion(&dsi->direct_cmd_comp);
writel(0, dsi->regs + DIRECT_CMD_SEND);
wait_for_completion_timeout(&dsi->direct_cmd_comp,
msecs_to_jiffies(1000));
sts = readl(dsi->regs + DIRECT_CMD_STS);
writel(wait, dsi->regs + DIRECT_CMD_STS_CLR);
writel(0, dsi->regs + DIRECT_CMD_STS_CTL);
writel(readl(dsi->regs + MCTL_MAIN_DATA_CTL) & ~ctl,
dsi->regs + MCTL_MAIN_DATA_CTL);
/* We did not receive the events we were waiting for. */
if (!(sts & wait)) {
ret = -ETIMEDOUT;
goto out;
}
/* 'READ' or 'WRITE with ACK' failed. */
if (sts & (READ_COMPLETED_WITH_ERR | ACK_WITH_ERR_RCVD)) {
ret = -EIO;
goto out;
}
for (i = 0; i < rx_len; i += 4) {
u8 *buf = msg->rx_buf;
int j;
val = readl(dsi->regs + DIRECT_CMD_RDDATA);
for (j = 0; j < 4 && j + i < rx_len; j++)
buf[i + j] = val >> (8 * j);
}
out:
pm_runtime_put(host->dev);
return ret;
}
static const struct mipi_dsi_host_ops cdns_dsi_ops = {
.attach = cdns_dsi_attach,
.detach = cdns_dsi_detach,
.transfer = cdns_dsi_transfer,
};
static int cdns_dsi_resume(struct device *dev)
{
struct cdns_dsi *dsi = dev_get_drvdata(dev);
reset_control_deassert(dsi->dsi_p_rst);
clk_prepare_enable(dsi->dsi_p_clk);
clk_prepare_enable(dsi->dsi_sys_clk);
clk_prepare_enable(dsi->dphy->psm_clk);
clk_prepare_enable(dsi->dphy->pll_ref_clk);
return 0;
}
static int cdns_dsi_suspend(struct device *dev)
{
struct cdns_dsi *dsi = dev_get_drvdata(dev);
clk_disable_unprepare(dsi->dphy->pll_ref_clk);
clk_disable_unprepare(dsi->dphy->psm_clk);
clk_disable_unprepare(dsi->dsi_sys_clk);
clk_disable_unprepare(dsi->dsi_p_clk);
reset_control_assert(dsi->dsi_p_rst);
dsi->link_initialized = false;
return 0;
}
static UNIVERSAL_DEV_PM_OPS(cdns_dsi_pm_ops, cdns_dsi_suspend, cdns_dsi_resume,
NULL);
static unsigned long cdns_dphy_ref_get_wakeup_time_ns(struct cdns_dphy *dphy)
{
/* Default wakeup time is 800 ns (in a simulated environment). */
return 800;
}
static void cdns_dphy_ref_set_pll_cfg(struct cdns_dphy *dphy,
const struct cdns_dphy_cfg *cfg)
{
u32 fbdiv_low, fbdiv_high;
fbdiv_low = (cfg->pll_fbdiv / 4) - 2;
fbdiv_high = cfg->pll_fbdiv - fbdiv_low - 2;
writel(DPHY_CMN_IPDIV_FROM_REG | DPHY_CMN_OPDIV_FROM_REG |
DPHY_CMN_IPDIV(cfg->pll_ipdiv) |
DPHY_CMN_OPDIV(cfg->pll_opdiv),
dphy->regs + DPHY_CMN_OPIPDIV);
writel(DPHY_CMN_FBDIV_FROM_REG |
DPHY_CMN_FBDIV_VAL(fbdiv_low, fbdiv_high),
dphy->regs + DPHY_CMN_FBDIV);
writel(DPHY_CMN_PWM_HIGH(6) | DPHY_CMN_PWM_LOW(0x101) |
DPHY_CMN_PWM_DIV(0x8),
dphy->regs + DPHY_CMN_PWM);
}
static void cdns_dphy_ref_set_psm_div(struct cdns_dphy *dphy, u8 div)
{
writel(DPHY_PSM_CFG_FROM_REG | DPHY_PSM_CLK_DIV(div),
dphy->regs + DPHY_PSM_CFG);
}
/*
* This is the reference implementation of DPHY hooks. Specific integration of
* this IP may have to re-implement some of them depending on how they decided
* to wire things in the SoC.
*/
static const struct cdns_dphy_ops ref_dphy_ops = {
.get_wakeup_time_ns = cdns_dphy_ref_get_wakeup_time_ns,
.set_pll_cfg = cdns_dphy_ref_set_pll_cfg,
.set_psm_div = cdns_dphy_ref_set_psm_div,
};
static const struct of_device_id cdns_dphy_of_match[] = {
{ .compatible = "cdns,dphy", .data = &ref_dphy_ops },
{ /* sentinel */ },
};
static struct cdns_dphy *cdns_dphy_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct cdns_dphy *dphy;
struct of_phandle_args args;
struct resource res;
int ret;
ret = of_parse_phandle_with_args(pdev->dev.of_node, "phys",
"#phy-cells", 0, &args);
if (ret)
return ERR_PTR(-ENOENT);
match = of_match_node(cdns_dphy_of_match, args.np);
if (!match || !match->data)
return ERR_PTR(-EINVAL);
dphy = devm_kzalloc(&pdev->dev, sizeof(*dphy), GFP_KERNEL);
if (!dphy)
return ERR_PTR(-ENOMEM);
dphy->ops = match->data;
ret = of_address_to_resource(args.np, 0, &res);
if (ret)
return ERR_PTR(ret);
dphy->regs = devm_ioremap_resource(&pdev->dev, &res);
if (IS_ERR(dphy->regs))
return ERR_CAST(dphy->regs);
dphy->psm_clk = of_clk_get_by_name(args.np, "psm");
if (IS_ERR(dphy->psm_clk))
return ERR_CAST(dphy->psm_clk);
dphy->pll_ref_clk = of_clk_get_by_name(args.np, "pll_ref");
if (IS_ERR(dphy->pll_ref_clk)) {
ret = PTR_ERR(dphy->pll_ref_clk);
goto err_put_psm_clk;
}
if (dphy->ops->probe) {
ret = dphy->ops->probe(dphy);
if (ret)
goto err_put_pll_ref_clk;
}
return dphy;
err_put_pll_ref_clk:
clk_put(dphy->pll_ref_clk);
err_put_psm_clk:
clk_put(dphy->psm_clk);
return ERR_PTR(ret);
}
static void cdns_dphy_remove(struct cdns_dphy *dphy)
{
if (dphy->ops->remove)
dphy->ops->remove(dphy);
clk_put(dphy->pll_ref_clk);
clk_put(dphy->psm_clk);
}
static int cdns_dsi_drm_probe(struct platform_device *pdev)
{
struct cdns_dsi *dsi;
struct cdns_dsi_input *input;
struct resource *res;
int ret, irq;
u32 val;
dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
platform_set_drvdata(pdev, dsi);
input = &dsi->input;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dsi->regs))
return PTR_ERR(dsi->regs);
dsi->dsi_p_clk = devm_clk_get(&pdev->dev, "dsi_p_clk");
if (IS_ERR(dsi->dsi_p_clk))
return PTR_ERR(dsi->dsi_p_clk);
dsi->dsi_p_rst = devm_reset_control_get_optional_exclusive(&pdev->dev,
"dsi_p_rst");
if (IS_ERR(dsi->dsi_p_rst))
return PTR_ERR(dsi->dsi_p_rst);
dsi->dsi_sys_clk = devm_clk_get(&pdev->dev, "dsi_sys_clk");
if (IS_ERR(dsi->dsi_sys_clk))
return PTR_ERR(dsi->dsi_sys_clk);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
dsi->dphy = cdns_dphy_probe(pdev);
if (IS_ERR(dsi->dphy))
return PTR_ERR(dsi->dphy);
ret = clk_prepare_enable(dsi->dsi_p_clk);
if (ret)
goto err_remove_dphy;
val = readl(dsi->regs + ID_REG);
if (REV_VENDOR_ID(val) != 0xcad) {
dev_err(&pdev->dev, "invalid vendor id\n");
ret = -EINVAL;
goto err_disable_pclk;
}
val = readl(dsi->regs + IP_CONF);
dsi->direct_cmd_fifo_depth = 1 << (DIRCMD_FIFO_DEPTH(val) + 2);
dsi->rx_fifo_depth = RX_FIFO_DEPTH(val);
init_completion(&dsi->direct_cmd_comp);
writel(0, dsi->regs + MCTL_MAIN_DATA_CTL);
writel(0, dsi->regs + MCTL_MAIN_EN);
writel(0, dsi->regs + MCTL_MAIN_PHY_CTL);
/*
* We only support the DPI input, so force input->id to
* CDNS_DPI_INPUT.
*/
input->id = CDNS_DPI_INPUT;
input->bridge.funcs = &cdns_dsi_bridge_funcs;
input->bridge.of_node = pdev->dev.of_node;
/* Mask all interrupts before registering the IRQ handler. */
writel(0, dsi->regs + MCTL_MAIN_STS_CTL);
writel(0, dsi->regs + MCTL_DPHY_ERR_CTL1);
writel(0, dsi->regs + CMD_MODE_STS_CTL);
writel(0, dsi->regs + DIRECT_CMD_STS_CTL);
writel(0, dsi->regs + DIRECT_CMD_RD_STS_CTL);
writel(0, dsi->regs + VID_MODE_STS_CTL);
writel(0, dsi->regs + TVG_STS_CTL);
writel(0, dsi->regs + DPI_IRQ_EN);
ret = devm_request_irq(&pdev->dev, irq, cdns_dsi_interrupt, 0,
dev_name(&pdev->dev), dsi);
if (ret)
goto err_disable_pclk;
pm_runtime_enable(&pdev->dev);
dsi->base.dev = &pdev->dev;
dsi->base.ops = &cdns_dsi_ops;
ret = mipi_dsi_host_register(&dsi->base);
if (ret)
goto err_disable_runtime_pm;
clk_disable_unprepare(dsi->dsi_p_clk);
return 0;
err_disable_runtime_pm:
pm_runtime_disable(&pdev->dev);
err_disable_pclk:
clk_disable_unprepare(dsi->dsi_p_clk);
err_remove_dphy:
cdns_dphy_remove(dsi->dphy);
return ret;
}
static int cdns_dsi_drm_remove(struct platform_device *pdev)
{
struct cdns_dsi *dsi = platform_get_drvdata(pdev);
mipi_dsi_host_unregister(&dsi->base);
pm_runtime_disable(&pdev->dev);
cdns_dphy_remove(dsi->dphy);
return 0;
}
static const struct of_device_id cdns_dsi_of_match[] = {
{ .compatible = "cdns,dsi" },
{ },
};
static struct platform_driver cdns_dsi_platform_driver = {
.probe = cdns_dsi_drm_probe,
.remove = cdns_dsi_drm_remove,
.driver = {
.name = "cdns-dsi",
.of_match_table = cdns_dsi_of_match,
.pm = &cdns_dsi_pm_ops,
},
};
module_platform_driver(cdns_dsi_platform_driver);
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@bootlin.com>");
MODULE_DESCRIPTION("Cadence DSI driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:cdns-dsi");