mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 14:30:58 +07:00
29a0c84397
The function should return NULL in case no device is found, but it
always returns the last checked mc device from the list even if the
index did not match. Fix that.
I did some analysis why this did not raise any issues for about 3 years
and the reason is that edac_mc_find() is mostly used to search for
existing devices. Thus, the bug is not triggered.
[ bp: Drop the if (mci->mc_idx > idx) test in favor of readability. ]
Fixes: c73e8833be
("EDAC, mc: Fix locking around mc_devices list")
Signed-off-by: Robert Richter <rrichter@marvell.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Link: https://lkml.kernel.org/r/20190514104838.15065-1-rrichter@marvell.com
1251 lines
31 KiB
C
1251 lines
31 KiB
C
/*
|
|
* edac_mc kernel module
|
|
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*
|
|
* Written by Thayne Harbaugh
|
|
* Based on work by Dan Hollis <goemon at anime dot net> and others.
|
|
* http://www.anime.net/~goemon/linux-ecc/
|
|
*
|
|
* Modified by Dave Peterson and Doug Thompson
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/page.h>
|
|
#include "edac_mc.h"
|
|
#include "edac_module.h"
|
|
#include <ras/ras_event.h>
|
|
|
|
#ifdef CONFIG_EDAC_ATOMIC_SCRUB
|
|
#include <asm/edac.h>
|
|
#else
|
|
#define edac_atomic_scrub(va, size) do { } while (0)
|
|
#endif
|
|
|
|
int edac_op_state = EDAC_OPSTATE_INVAL;
|
|
EXPORT_SYMBOL_GPL(edac_op_state);
|
|
|
|
static int edac_report = EDAC_REPORTING_ENABLED;
|
|
|
|
/* lock to memory controller's control array */
|
|
static DEFINE_MUTEX(mem_ctls_mutex);
|
|
static LIST_HEAD(mc_devices);
|
|
|
|
/*
|
|
* Used to lock EDAC MC to just one module, avoiding two drivers e. g.
|
|
* apei/ghes and i7core_edac to be used at the same time.
|
|
*/
|
|
static const char *edac_mc_owner;
|
|
|
|
int edac_get_report_status(void)
|
|
{
|
|
return edac_report;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_get_report_status);
|
|
|
|
void edac_set_report_status(int new)
|
|
{
|
|
if (new == EDAC_REPORTING_ENABLED ||
|
|
new == EDAC_REPORTING_DISABLED ||
|
|
new == EDAC_REPORTING_FORCE)
|
|
edac_report = new;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_set_report_status);
|
|
|
|
static int edac_report_set(const char *str, const struct kernel_param *kp)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
if (!strncmp(str, "on", 2))
|
|
edac_report = EDAC_REPORTING_ENABLED;
|
|
else if (!strncmp(str, "off", 3))
|
|
edac_report = EDAC_REPORTING_DISABLED;
|
|
else if (!strncmp(str, "force", 5))
|
|
edac_report = EDAC_REPORTING_FORCE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int edac_report_get(char *buffer, const struct kernel_param *kp)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (edac_report) {
|
|
case EDAC_REPORTING_ENABLED:
|
|
ret = sprintf(buffer, "on");
|
|
break;
|
|
case EDAC_REPORTING_DISABLED:
|
|
ret = sprintf(buffer, "off");
|
|
break;
|
|
case EDAC_REPORTING_FORCE:
|
|
ret = sprintf(buffer, "force");
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct kernel_param_ops edac_report_ops = {
|
|
.set = edac_report_set,
|
|
.get = edac_report_get,
|
|
};
|
|
|
|
module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
|
|
|
|
unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
|
|
unsigned len)
|
|
{
|
|
struct mem_ctl_info *mci = dimm->mci;
|
|
int i, n, count = 0;
|
|
char *p = buf;
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
n = snprintf(p, len, "%s %d ",
|
|
edac_layer_name[mci->layers[i].type],
|
|
dimm->location[i]);
|
|
p += n;
|
|
len -= n;
|
|
count += n;
|
|
if (!len)
|
|
break;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
|
|
static void edac_mc_dump_channel(struct rank_info *chan)
|
|
{
|
|
edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
|
|
edac_dbg(4, " channel = %p\n", chan);
|
|
edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
|
|
edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
|
|
}
|
|
|
|
static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
|
|
{
|
|
char location[80];
|
|
|
|
edac_dimm_info_location(dimm, location, sizeof(location));
|
|
|
|
edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
|
|
dimm->mci->csbased ? "rank" : "dimm",
|
|
number, location, dimm->csrow, dimm->cschannel);
|
|
edac_dbg(4, " dimm = %p\n", dimm);
|
|
edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
|
|
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
|
|
edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
|
|
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
|
|
}
|
|
|
|
static void edac_mc_dump_csrow(struct csrow_info *csrow)
|
|
{
|
|
edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
|
|
edac_dbg(4, " csrow = %p\n", csrow);
|
|
edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
|
|
edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
|
|
edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
|
|
edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
|
|
edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
|
|
edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
|
|
}
|
|
|
|
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
|
|
{
|
|
edac_dbg(3, "\tmci = %p\n", mci);
|
|
edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
|
|
edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
|
|
edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
|
|
edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
|
|
edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
|
|
mci->nr_csrows, mci->csrows);
|
|
edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
|
|
mci->tot_dimms, mci->dimms);
|
|
edac_dbg(3, "\tdev = %p\n", mci->pdev);
|
|
edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
|
|
mci->mod_name, mci->ctl_name);
|
|
edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
|
|
}
|
|
|
|
#endif /* CONFIG_EDAC_DEBUG */
|
|
|
|
const char * const edac_mem_types[] = {
|
|
[MEM_EMPTY] = "Empty",
|
|
[MEM_RESERVED] = "Reserved",
|
|
[MEM_UNKNOWN] = "Unknown",
|
|
[MEM_FPM] = "FPM",
|
|
[MEM_EDO] = "EDO",
|
|
[MEM_BEDO] = "BEDO",
|
|
[MEM_SDR] = "Unbuffered-SDR",
|
|
[MEM_RDR] = "Registered-SDR",
|
|
[MEM_DDR] = "Unbuffered-DDR",
|
|
[MEM_RDDR] = "Registered-DDR",
|
|
[MEM_RMBS] = "RMBS",
|
|
[MEM_DDR2] = "Unbuffered-DDR2",
|
|
[MEM_FB_DDR2] = "FullyBuffered-DDR2",
|
|
[MEM_RDDR2] = "Registered-DDR2",
|
|
[MEM_XDR] = "XDR",
|
|
[MEM_DDR3] = "Unbuffered-DDR3",
|
|
[MEM_RDDR3] = "Registered-DDR3",
|
|
[MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
|
|
[MEM_DDR4] = "Unbuffered-DDR4",
|
|
[MEM_RDDR4] = "Registered-DDR4",
|
|
[MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
|
|
[MEM_NVDIMM] = "Non-volatile-RAM",
|
|
};
|
|
EXPORT_SYMBOL_GPL(edac_mem_types);
|
|
|
|
/**
|
|
* edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
|
|
* @p: pointer to a pointer with the memory offset to be used. At
|
|
* return, this will be incremented to point to the next offset
|
|
* @size: Size of the data structure to be reserved
|
|
* @n_elems: Number of elements that should be reserved
|
|
*
|
|
* If 'size' is a constant, the compiler will optimize this whole function
|
|
* down to either a no-op or the addition of a constant to the value of '*p'.
|
|
*
|
|
* The 'p' pointer is absolutely needed to keep the proper advancing
|
|
* further in memory to the proper offsets when allocating the struct along
|
|
* with its embedded structs, as edac_device_alloc_ctl_info() does it
|
|
* above, for example.
|
|
*
|
|
* At return, the pointer 'p' will be incremented to be used on a next call
|
|
* to this function.
|
|
*/
|
|
void *edac_align_ptr(void **p, unsigned size, int n_elems)
|
|
{
|
|
unsigned align, r;
|
|
void *ptr = *p;
|
|
|
|
*p += size * n_elems;
|
|
|
|
/*
|
|
* 'p' can possibly be an unaligned item X such that sizeof(X) is
|
|
* 'size'. Adjust 'p' so that its alignment is at least as
|
|
* stringent as what the compiler would provide for X and return
|
|
* the aligned result.
|
|
* Here we assume that the alignment of a "long long" is the most
|
|
* stringent alignment that the compiler will ever provide by default.
|
|
* As far as I know, this is a reasonable assumption.
|
|
*/
|
|
if (size > sizeof(long))
|
|
align = sizeof(long long);
|
|
else if (size > sizeof(int))
|
|
align = sizeof(long);
|
|
else if (size > sizeof(short))
|
|
align = sizeof(int);
|
|
else if (size > sizeof(char))
|
|
align = sizeof(short);
|
|
else
|
|
return (char *)ptr;
|
|
|
|
r = (unsigned long)p % align;
|
|
|
|
if (r == 0)
|
|
return (char *)ptr;
|
|
|
|
*p += align - r;
|
|
|
|
return (void *)(((unsigned long)ptr) + align - r);
|
|
}
|
|
|
|
static void _edac_mc_free(struct mem_ctl_info *mci)
|
|
{
|
|
int i, chn, row;
|
|
struct csrow_info *csr;
|
|
const unsigned int tot_dimms = mci->tot_dimms;
|
|
const unsigned int tot_channels = mci->num_cschannel;
|
|
const unsigned int tot_csrows = mci->nr_csrows;
|
|
|
|
if (mci->dimms) {
|
|
for (i = 0; i < tot_dimms; i++)
|
|
kfree(mci->dimms[i]);
|
|
kfree(mci->dimms);
|
|
}
|
|
if (mci->csrows) {
|
|
for (row = 0; row < tot_csrows; row++) {
|
|
csr = mci->csrows[row];
|
|
if (csr) {
|
|
if (csr->channels) {
|
|
for (chn = 0; chn < tot_channels; chn++)
|
|
kfree(csr->channels[chn]);
|
|
kfree(csr->channels);
|
|
}
|
|
kfree(csr);
|
|
}
|
|
}
|
|
kfree(mci->csrows);
|
|
}
|
|
kfree(mci);
|
|
}
|
|
|
|
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
|
|
unsigned n_layers,
|
|
struct edac_mc_layer *layers,
|
|
unsigned sz_pvt)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer *layer;
|
|
struct csrow_info *csr;
|
|
struct rank_info *chan;
|
|
struct dimm_info *dimm;
|
|
u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
|
|
unsigned pos[EDAC_MAX_LAYERS];
|
|
unsigned size, tot_dimms = 1, count = 1;
|
|
unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
|
|
void *pvt, *p, *ptr = NULL;
|
|
int i, j, row, chn, n, len, off;
|
|
bool per_rank = false;
|
|
|
|
BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
|
|
/*
|
|
* Calculate the total amount of dimms and csrows/cschannels while
|
|
* in the old API emulation mode
|
|
*/
|
|
for (i = 0; i < n_layers; i++) {
|
|
tot_dimms *= layers[i].size;
|
|
if (layers[i].is_virt_csrow)
|
|
tot_csrows *= layers[i].size;
|
|
else
|
|
tot_channels *= layers[i].size;
|
|
|
|
if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
|
|
per_rank = true;
|
|
}
|
|
|
|
/* Figure out the offsets of the various items from the start of an mc
|
|
* structure. We want the alignment of each item to be at least as
|
|
* stringent as what the compiler would provide if we could simply
|
|
* hardcode everything into a single struct.
|
|
*/
|
|
mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
|
|
layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
|
|
for (i = 0; i < n_layers; i++) {
|
|
count *= layers[i].size;
|
|
edac_dbg(4, "errcount layer %d size %d\n", i, count);
|
|
ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
|
|
ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
|
|
tot_errcount += 2 * count;
|
|
}
|
|
|
|
edac_dbg(4, "allocating %d error counters\n", tot_errcount);
|
|
pvt = edac_align_ptr(&ptr, sz_pvt, 1);
|
|
size = ((unsigned long)pvt) + sz_pvt;
|
|
|
|
edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
|
|
size,
|
|
tot_dimms,
|
|
per_rank ? "ranks" : "dimms",
|
|
tot_csrows * tot_channels);
|
|
|
|
mci = kzalloc(size, GFP_KERNEL);
|
|
if (mci == NULL)
|
|
return NULL;
|
|
|
|
/* Adjust pointers so they point within the memory we just allocated
|
|
* rather than an imaginary chunk of memory located at address 0.
|
|
*/
|
|
layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
|
|
for (i = 0; i < n_layers; i++) {
|
|
mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
|
|
mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
|
|
}
|
|
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
|
|
|
|
/* setup index and various internal pointers */
|
|
mci->mc_idx = mc_num;
|
|
mci->tot_dimms = tot_dimms;
|
|
mci->pvt_info = pvt;
|
|
mci->n_layers = n_layers;
|
|
mci->layers = layer;
|
|
memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
|
|
mci->nr_csrows = tot_csrows;
|
|
mci->num_cschannel = tot_channels;
|
|
mci->csbased = per_rank;
|
|
|
|
/*
|
|
* Alocate and fill the csrow/channels structs
|
|
*/
|
|
mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
|
|
if (!mci->csrows)
|
|
goto error;
|
|
for (row = 0; row < tot_csrows; row++) {
|
|
csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
|
|
if (!csr)
|
|
goto error;
|
|
mci->csrows[row] = csr;
|
|
csr->csrow_idx = row;
|
|
csr->mci = mci;
|
|
csr->nr_channels = tot_channels;
|
|
csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
|
|
GFP_KERNEL);
|
|
if (!csr->channels)
|
|
goto error;
|
|
|
|
for (chn = 0; chn < tot_channels; chn++) {
|
|
chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
|
|
if (!chan)
|
|
goto error;
|
|
csr->channels[chn] = chan;
|
|
chan->chan_idx = chn;
|
|
chan->csrow = csr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and fill the dimm structs
|
|
*/
|
|
mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
|
|
if (!mci->dimms)
|
|
goto error;
|
|
|
|
memset(&pos, 0, sizeof(pos));
|
|
row = 0;
|
|
chn = 0;
|
|
for (i = 0; i < tot_dimms; i++) {
|
|
chan = mci->csrows[row]->channels[chn];
|
|
off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
|
|
if (off < 0 || off >= tot_dimms) {
|
|
edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
|
|
goto error;
|
|
}
|
|
|
|
dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
|
|
if (!dimm)
|
|
goto error;
|
|
mci->dimms[off] = dimm;
|
|
dimm->mci = mci;
|
|
|
|
/*
|
|
* Copy DIMM location and initialize it.
|
|
*/
|
|
len = sizeof(dimm->label);
|
|
p = dimm->label;
|
|
n = snprintf(p, len, "mc#%u", mc_num);
|
|
p += n;
|
|
len -= n;
|
|
for (j = 0; j < n_layers; j++) {
|
|
n = snprintf(p, len, "%s#%u",
|
|
edac_layer_name[layers[j].type],
|
|
pos[j]);
|
|
p += n;
|
|
len -= n;
|
|
dimm->location[j] = pos[j];
|
|
|
|
if (len <= 0)
|
|
break;
|
|
}
|
|
|
|
/* Link it to the csrows old API data */
|
|
chan->dimm = dimm;
|
|
dimm->csrow = row;
|
|
dimm->cschannel = chn;
|
|
|
|
/* Increment csrow location */
|
|
if (layers[0].is_virt_csrow) {
|
|
chn++;
|
|
if (chn == tot_channels) {
|
|
chn = 0;
|
|
row++;
|
|
}
|
|
} else {
|
|
row++;
|
|
if (row == tot_csrows) {
|
|
row = 0;
|
|
chn++;
|
|
}
|
|
}
|
|
|
|
/* Increment dimm location */
|
|
for (j = n_layers - 1; j >= 0; j--) {
|
|
pos[j]++;
|
|
if (pos[j] < layers[j].size)
|
|
break;
|
|
pos[j] = 0;
|
|
}
|
|
}
|
|
|
|
mci->op_state = OP_ALLOC;
|
|
|
|
return mci;
|
|
|
|
error:
|
|
_edac_mc_free(mci);
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_alloc);
|
|
|
|
void edac_mc_free(struct mem_ctl_info *mci)
|
|
{
|
|
edac_dbg(1, "\n");
|
|
|
|
/* If we're not yet registered with sysfs free only what was allocated
|
|
* in edac_mc_alloc().
|
|
*/
|
|
if (!device_is_registered(&mci->dev)) {
|
|
_edac_mc_free(mci);
|
|
return;
|
|
}
|
|
|
|
/* the mci instance is freed here, when the sysfs object is dropped */
|
|
edac_unregister_sysfs(mci);
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_free);
|
|
|
|
bool edac_has_mcs(void)
|
|
{
|
|
bool ret;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
ret = list_empty(&mc_devices);
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
return !ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_has_mcs);
|
|
|
|
/* Caller must hold mem_ctls_mutex */
|
|
static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
edac_dbg(3, "\n");
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->pdev == dev)
|
|
return mci;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* find_mci_by_dev
|
|
*
|
|
* scan list of controllers looking for the one that manages
|
|
* the 'dev' device
|
|
* @dev: pointer to a struct device related with the MCI
|
|
*/
|
|
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *ret;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
ret = __find_mci_by_dev(dev);
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_mci_by_dev);
|
|
|
|
/*
|
|
* edac_mc_workq_function
|
|
* performs the operation scheduled by a workq request
|
|
*/
|
|
static void edac_mc_workq_function(struct work_struct *work_req)
|
|
{
|
|
struct delayed_work *d_work = to_delayed_work(work_req);
|
|
struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
if (mci->op_state != OP_RUNNING_POLL) {
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return;
|
|
}
|
|
|
|
if (edac_op_state == EDAC_OPSTATE_POLL)
|
|
mci->edac_check(mci);
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
/* Queue ourselves again. */
|
|
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
|
|
}
|
|
|
|
/*
|
|
* edac_mc_reset_delay_period(unsigned long value)
|
|
*
|
|
* user space has updated our poll period value, need to
|
|
* reset our workq delays
|
|
*/
|
|
void edac_mc_reset_delay_period(unsigned long value)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->op_state == OP_RUNNING_POLL)
|
|
edac_mod_work(&mci->work, value);
|
|
}
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
}
|
|
|
|
|
|
|
|
/* Return 0 on success, 1 on failure.
|
|
* Before calling this function, caller must
|
|
* assign a unique value to mci->mc_idx.
|
|
*
|
|
* locking model:
|
|
*
|
|
* called with the mem_ctls_mutex lock held
|
|
*/
|
|
static int add_mc_to_global_list(struct mem_ctl_info *mci)
|
|
{
|
|
struct list_head *item, *insert_before;
|
|
struct mem_ctl_info *p;
|
|
|
|
insert_before = &mc_devices;
|
|
|
|
p = __find_mci_by_dev(mci->pdev);
|
|
if (unlikely(p != NULL))
|
|
goto fail0;
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
p = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (p->mc_idx >= mci->mc_idx) {
|
|
if (unlikely(p->mc_idx == mci->mc_idx))
|
|
goto fail1;
|
|
|
|
insert_before = item;
|
|
break;
|
|
}
|
|
}
|
|
|
|
list_add_tail_rcu(&mci->link, insert_before);
|
|
return 0;
|
|
|
|
fail0:
|
|
edac_printk(KERN_WARNING, EDAC_MC,
|
|
"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
|
|
edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
|
|
return 1;
|
|
|
|
fail1:
|
|
edac_printk(KERN_WARNING, EDAC_MC,
|
|
"bug in low-level driver: attempt to assign\n"
|
|
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
|
|
return 1;
|
|
}
|
|
|
|
static int del_mc_from_global_list(struct mem_ctl_info *mci)
|
|
{
|
|
list_del_rcu(&mci->link);
|
|
|
|
/* these are for safe removal of devices from global list while
|
|
* NMI handlers may be traversing list
|
|
*/
|
|
synchronize_rcu();
|
|
INIT_LIST_HEAD(&mci->link);
|
|
|
|
return list_empty(&mc_devices);
|
|
}
|
|
|
|
struct mem_ctl_info *edac_mc_find(int idx)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
if (mci->mc_idx == idx)
|
|
goto unlock;
|
|
}
|
|
|
|
mci = NULL;
|
|
unlock:
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return mci;
|
|
}
|
|
EXPORT_SYMBOL(edac_mc_find);
|
|
|
|
const char *edac_get_owner(void)
|
|
{
|
|
return edac_mc_owner;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_get_owner);
|
|
|
|
/* FIXME - should a warning be printed if no error detection? correction? */
|
|
int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
|
|
const struct attribute_group **groups)
|
|
{
|
|
int ret = -EINVAL;
|
|
edac_dbg(0, "\n");
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
if (edac_debug_level >= 3)
|
|
edac_mc_dump_mci(mci);
|
|
|
|
if (edac_debug_level >= 4) {
|
|
int i;
|
|
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
struct csrow_info *csrow = mci->csrows[i];
|
|
u32 nr_pages = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < csrow->nr_channels; j++)
|
|
nr_pages += csrow->channels[j]->dimm->nr_pages;
|
|
if (!nr_pages)
|
|
continue;
|
|
edac_mc_dump_csrow(csrow);
|
|
for (j = 0; j < csrow->nr_channels; j++)
|
|
if (csrow->channels[j]->dimm->nr_pages)
|
|
edac_mc_dump_channel(csrow->channels[j]);
|
|
}
|
|
for (i = 0; i < mci->tot_dimms; i++)
|
|
if (mci->dimms[i]->nr_pages)
|
|
edac_mc_dump_dimm(mci->dimms[i], i);
|
|
}
|
|
#endif
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
|
|
ret = -EPERM;
|
|
goto fail0;
|
|
}
|
|
|
|
if (add_mc_to_global_list(mci))
|
|
goto fail0;
|
|
|
|
/* set load time so that error rate can be tracked */
|
|
mci->start_time = jiffies;
|
|
|
|
mci->bus = edac_get_sysfs_subsys();
|
|
|
|
if (edac_create_sysfs_mci_device(mci, groups)) {
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"failed to create sysfs device\n");
|
|
goto fail1;
|
|
}
|
|
|
|
if (mci->edac_check) {
|
|
mci->op_state = OP_RUNNING_POLL;
|
|
|
|
INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
|
|
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
|
|
|
|
} else {
|
|
mci->op_state = OP_RUNNING_INTERRUPT;
|
|
}
|
|
|
|
/* Report action taken */
|
|
edac_mc_printk(mci, KERN_INFO,
|
|
"Giving out device to module %s controller %s: DEV %s (%s)\n",
|
|
mci->mod_name, mci->ctl_name, mci->dev_name,
|
|
edac_op_state_to_string(mci->op_state));
|
|
|
|
edac_mc_owner = mci->mod_name;
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return 0;
|
|
|
|
fail1:
|
|
del_mc_from_global_list(mci);
|
|
|
|
fail0:
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
|
|
|
|
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
/* find the requested mci struct in the global list */
|
|
mci = __find_mci_by_dev(dev);
|
|
if (mci == NULL) {
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
/* mark MCI offline: */
|
|
mci->op_state = OP_OFFLINE;
|
|
|
|
if (del_mc_from_global_list(mci))
|
|
edac_mc_owner = NULL;
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
if (mci->edac_check)
|
|
edac_stop_work(&mci->work);
|
|
|
|
/* remove from sysfs */
|
|
edac_remove_sysfs_mci_device(mci);
|
|
|
|
edac_printk(KERN_INFO, EDAC_MC,
|
|
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
|
|
mci->mod_name, mci->ctl_name, edac_dev_name(mci));
|
|
|
|
return mci;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
|
|
|
|
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
|
|
u32 size)
|
|
{
|
|
struct page *pg;
|
|
void *virt_addr;
|
|
unsigned long flags = 0;
|
|
|
|
edac_dbg(3, "\n");
|
|
|
|
/* ECC error page was not in our memory. Ignore it. */
|
|
if (!pfn_valid(page))
|
|
return;
|
|
|
|
/* Find the actual page structure then map it and fix */
|
|
pg = pfn_to_page(page);
|
|
|
|
if (PageHighMem(pg))
|
|
local_irq_save(flags);
|
|
|
|
virt_addr = kmap_atomic(pg);
|
|
|
|
/* Perform architecture specific atomic scrub operation */
|
|
edac_atomic_scrub(virt_addr + offset, size);
|
|
|
|
/* Unmap and complete */
|
|
kunmap_atomic(virt_addr);
|
|
|
|
if (PageHighMem(pg))
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* FIXME - should return -1 */
|
|
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
|
|
{
|
|
struct csrow_info **csrows = mci->csrows;
|
|
int row, i, j, n;
|
|
|
|
edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
|
|
row = -1;
|
|
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
struct csrow_info *csrow = csrows[i];
|
|
n = 0;
|
|
for (j = 0; j < csrow->nr_channels; j++) {
|
|
struct dimm_info *dimm = csrow->channels[j]->dimm;
|
|
n += dimm->nr_pages;
|
|
}
|
|
if (n == 0)
|
|
continue;
|
|
|
|
edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
|
|
mci->mc_idx,
|
|
csrow->first_page, page, csrow->last_page,
|
|
csrow->page_mask);
|
|
|
|
if ((page >= csrow->first_page) &&
|
|
(page <= csrow->last_page) &&
|
|
((page & csrow->page_mask) ==
|
|
(csrow->first_page & csrow->page_mask))) {
|
|
row = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (row == -1)
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"could not look up page error address %lx\n",
|
|
(unsigned long)page);
|
|
|
|
return row;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
|
|
|
|
const char *edac_layer_name[] = {
|
|
[EDAC_MC_LAYER_BRANCH] = "branch",
|
|
[EDAC_MC_LAYER_CHANNEL] = "channel",
|
|
[EDAC_MC_LAYER_SLOT] = "slot",
|
|
[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
|
|
[EDAC_MC_LAYER_ALL_MEM] = "memory",
|
|
};
|
|
EXPORT_SYMBOL_GPL(edac_layer_name);
|
|
|
|
static void edac_inc_ce_error(struct mem_ctl_info *mci,
|
|
bool enable_per_layer_report,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const u16 count)
|
|
{
|
|
int i, index = 0;
|
|
|
|
mci->ce_mc += count;
|
|
|
|
if (!enable_per_layer_report) {
|
|
mci->ce_noinfo_count += count;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] < 0)
|
|
break;
|
|
index += pos[i];
|
|
mci->ce_per_layer[i][index] += count;
|
|
|
|
if (i < mci->n_layers - 1)
|
|
index *= mci->layers[i + 1].size;
|
|
}
|
|
}
|
|
|
|
static void edac_inc_ue_error(struct mem_ctl_info *mci,
|
|
bool enable_per_layer_report,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const u16 count)
|
|
{
|
|
int i, index = 0;
|
|
|
|
mci->ue_mc += count;
|
|
|
|
if (!enable_per_layer_report) {
|
|
mci->ue_noinfo_count += count;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] < 0)
|
|
break;
|
|
index += pos[i];
|
|
mci->ue_per_layer[i][index] += count;
|
|
|
|
if (i < mci->n_layers - 1)
|
|
index *= mci->layers[i + 1].size;
|
|
}
|
|
}
|
|
|
|
static void edac_ce_error(struct mem_ctl_info *mci,
|
|
const u16 error_count,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const char *msg,
|
|
const char *location,
|
|
const char *label,
|
|
const char *detail,
|
|
const char *other_detail,
|
|
const bool enable_per_layer_report,
|
|
const unsigned long page_frame_number,
|
|
const unsigned long offset_in_page,
|
|
long grain)
|
|
{
|
|
unsigned long remapped_page;
|
|
char *msg_aux = "";
|
|
|
|
if (*msg)
|
|
msg_aux = " ";
|
|
|
|
if (edac_mc_get_log_ce()) {
|
|
if (other_detail && *other_detail)
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d CE %s%son %s (%s %s - %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail, other_detail);
|
|
else
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d CE %s%son %s (%s %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail);
|
|
}
|
|
edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
|
|
|
|
if (mci->scrub_mode == SCRUB_SW_SRC) {
|
|
/*
|
|
* Some memory controllers (called MCs below) can remap
|
|
* memory so that it is still available at a different
|
|
* address when PCI devices map into memory.
|
|
* MC's that can't do this, lose the memory where PCI
|
|
* devices are mapped. This mapping is MC-dependent
|
|
* and so we call back into the MC driver for it to
|
|
* map the MC page to a physical (CPU) page which can
|
|
* then be mapped to a virtual page - which can then
|
|
* be scrubbed.
|
|
*/
|
|
remapped_page = mci->ctl_page_to_phys ?
|
|
mci->ctl_page_to_phys(mci, page_frame_number) :
|
|
page_frame_number;
|
|
|
|
edac_mc_scrub_block(remapped_page,
|
|
offset_in_page, grain);
|
|
}
|
|
}
|
|
|
|
static void edac_ue_error(struct mem_ctl_info *mci,
|
|
const u16 error_count,
|
|
const int pos[EDAC_MAX_LAYERS],
|
|
const char *msg,
|
|
const char *location,
|
|
const char *label,
|
|
const char *detail,
|
|
const char *other_detail,
|
|
const bool enable_per_layer_report)
|
|
{
|
|
char *msg_aux = "";
|
|
|
|
if (*msg)
|
|
msg_aux = " ";
|
|
|
|
if (edac_mc_get_log_ue()) {
|
|
if (other_detail && *other_detail)
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d UE %s%son %s (%s %s - %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail, other_detail);
|
|
else
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"%d UE %s%son %s (%s %s)\n",
|
|
error_count, msg, msg_aux, label,
|
|
location, detail);
|
|
}
|
|
|
|
if (edac_mc_get_panic_on_ue()) {
|
|
if (other_detail && *other_detail)
|
|
panic("UE %s%son %s (%s%s - %s)\n",
|
|
msg, msg_aux, label, location, detail, other_detail);
|
|
else
|
|
panic("UE %s%son %s (%s%s)\n",
|
|
msg, msg_aux, label, location, detail);
|
|
}
|
|
|
|
edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
|
|
}
|
|
|
|
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
|
|
struct mem_ctl_info *mci,
|
|
struct edac_raw_error_desc *e)
|
|
{
|
|
char detail[80];
|
|
int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
|
|
|
|
/* Memory type dependent details about the error */
|
|
if (type == HW_EVENT_ERR_CORRECTED) {
|
|
snprintf(detail, sizeof(detail),
|
|
"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
|
|
e->page_frame_number, e->offset_in_page,
|
|
e->grain, e->syndrome);
|
|
edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
|
|
detail, e->other_detail, e->enable_per_layer_report,
|
|
e->page_frame_number, e->offset_in_page, e->grain);
|
|
} else {
|
|
snprintf(detail, sizeof(detail),
|
|
"page:0x%lx offset:0x%lx grain:%ld",
|
|
e->page_frame_number, e->offset_in_page, e->grain);
|
|
|
|
edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
|
|
detail, e->other_detail, e->enable_per_layer_report);
|
|
}
|
|
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
|
|
|
|
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
|
|
struct mem_ctl_info *mci,
|
|
const u16 error_count,
|
|
const unsigned long page_frame_number,
|
|
const unsigned long offset_in_page,
|
|
const unsigned long syndrome,
|
|
const int top_layer,
|
|
const int mid_layer,
|
|
const int low_layer,
|
|
const char *msg,
|
|
const char *other_detail)
|
|
{
|
|
char *p;
|
|
int row = -1, chan = -1;
|
|
int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
|
|
int i, n_labels = 0;
|
|
u8 grain_bits;
|
|
struct edac_raw_error_desc *e = &mci->error_desc;
|
|
|
|
edac_dbg(3, "MC%d\n", mci->mc_idx);
|
|
|
|
/* Fills the error report buffer */
|
|
memset(e, 0, sizeof (*e));
|
|
e->error_count = error_count;
|
|
e->top_layer = top_layer;
|
|
e->mid_layer = mid_layer;
|
|
e->low_layer = low_layer;
|
|
e->page_frame_number = page_frame_number;
|
|
e->offset_in_page = offset_in_page;
|
|
e->syndrome = syndrome;
|
|
e->msg = msg;
|
|
e->other_detail = other_detail;
|
|
|
|
/*
|
|
* Check if the event report is consistent and if the memory
|
|
* location is known. If it is known, enable_per_layer_report will be
|
|
* true, the DIMM(s) label info will be filled and the per-layer
|
|
* error counters will be incremented.
|
|
*/
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] >= (int)mci->layers[i].size) {
|
|
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
|
|
edac_layer_name[mci->layers[i].type],
|
|
pos[i], mci->layers[i].size);
|
|
/*
|
|
* Instead of just returning it, let's use what's
|
|
* known about the error. The increment routines and
|
|
* the DIMM filter logic will do the right thing by
|
|
* pointing the likely damaged DIMMs.
|
|
*/
|
|
pos[i] = -1;
|
|
}
|
|
if (pos[i] >= 0)
|
|
e->enable_per_layer_report = true;
|
|
}
|
|
|
|
/*
|
|
* Get the dimm label/grain that applies to the match criteria.
|
|
* As the error algorithm may not be able to point to just one memory
|
|
* stick, the logic here will get all possible labels that could
|
|
* pottentially be affected by the error.
|
|
* On FB-DIMM memory controllers, for uncorrected errors, it is common
|
|
* to have only the MC channel and the MC dimm (also called "branch")
|
|
* but the channel is not known, as the memory is arranged in pairs,
|
|
* where each memory belongs to a separate channel within the same
|
|
* branch.
|
|
*/
|
|
p = e->label;
|
|
*p = '\0';
|
|
|
|
for (i = 0; i < mci->tot_dimms; i++) {
|
|
struct dimm_info *dimm = mci->dimms[i];
|
|
|
|
if (top_layer >= 0 && top_layer != dimm->location[0])
|
|
continue;
|
|
if (mid_layer >= 0 && mid_layer != dimm->location[1])
|
|
continue;
|
|
if (low_layer >= 0 && low_layer != dimm->location[2])
|
|
continue;
|
|
|
|
/* get the max grain, over the error match range */
|
|
if (dimm->grain > e->grain)
|
|
e->grain = dimm->grain;
|
|
|
|
/*
|
|
* If the error is memory-controller wide, there's no need to
|
|
* seek for the affected DIMMs because the whole
|
|
* channel/memory controller/... may be affected.
|
|
* Also, don't show errors for empty DIMM slots.
|
|
*/
|
|
if (e->enable_per_layer_report && dimm->nr_pages) {
|
|
if (n_labels >= EDAC_MAX_LABELS) {
|
|
e->enable_per_layer_report = false;
|
|
break;
|
|
}
|
|
n_labels++;
|
|
if (p != e->label) {
|
|
strcpy(p, OTHER_LABEL);
|
|
p += strlen(OTHER_LABEL);
|
|
}
|
|
strcpy(p, dimm->label);
|
|
p += strlen(p);
|
|
*p = '\0';
|
|
|
|
/*
|
|
* get csrow/channel of the DIMM, in order to allow
|
|
* incrementing the compat API counters
|
|
*/
|
|
edac_dbg(4, "%s csrows map: (%d,%d)\n",
|
|
mci->csbased ? "rank" : "dimm",
|
|
dimm->csrow, dimm->cschannel);
|
|
if (row == -1)
|
|
row = dimm->csrow;
|
|
else if (row >= 0 && row != dimm->csrow)
|
|
row = -2;
|
|
|
|
if (chan == -1)
|
|
chan = dimm->cschannel;
|
|
else if (chan >= 0 && chan != dimm->cschannel)
|
|
chan = -2;
|
|
}
|
|
}
|
|
|
|
if (!e->enable_per_layer_report) {
|
|
strcpy(e->label, "any memory");
|
|
} else {
|
|
edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
|
|
if (p == e->label)
|
|
strcpy(e->label, "unknown memory");
|
|
if (type == HW_EVENT_ERR_CORRECTED) {
|
|
if (row >= 0) {
|
|
mci->csrows[row]->ce_count += error_count;
|
|
if (chan >= 0)
|
|
mci->csrows[row]->channels[chan]->ce_count += error_count;
|
|
}
|
|
} else
|
|
if (row >= 0)
|
|
mci->csrows[row]->ue_count += error_count;
|
|
}
|
|
|
|
/* Fill the RAM location data */
|
|
p = e->location;
|
|
|
|
for (i = 0; i < mci->n_layers; i++) {
|
|
if (pos[i] < 0)
|
|
continue;
|
|
|
|
p += sprintf(p, "%s:%d ",
|
|
edac_layer_name[mci->layers[i].type],
|
|
pos[i]);
|
|
}
|
|
if (p > e->location)
|
|
*(p - 1) = '\0';
|
|
|
|
/* Report the error via the trace interface */
|
|
grain_bits = fls_long(e->grain) + 1;
|
|
|
|
if (IS_ENABLED(CONFIG_RAS))
|
|
trace_mc_event(type, e->msg, e->label, e->error_count,
|
|
mci->mc_idx, e->top_layer, e->mid_layer,
|
|
e->low_layer,
|
|
(e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
|
|
grain_bits, e->syndrome, e->other_detail);
|
|
|
|
edac_raw_mc_handle_error(type, mci, e);
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_handle_error);
|