mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
ee0e87b174
The older add_mtd_device()/add_mtd_partitions() and their removal counterparts will soon be gone. Replace uses with mtd_device_register() and mtd_device_unregister(). Signed-off-by: Jamie Iles <jamie@jamieiles.com> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
1202 lines
32 KiB
C
1202 lines
32 KiB
C
|
|
/*
|
|
* Linux driver for Disk-On-Chip 2000 and Millennium
|
|
* (c) 1999 Machine Vision Holdings, Inc.
|
|
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/doc2000.h>
|
|
|
|
#define DOC_SUPPORT_2000
|
|
#define DOC_SUPPORT_2000TSOP
|
|
#define DOC_SUPPORT_MILLENNIUM
|
|
|
|
#ifdef DOC_SUPPORT_2000
|
|
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
|
|
#else
|
|
#define DoC_is_2000(doc) (0)
|
|
#endif
|
|
|
|
#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
|
|
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
|
|
#else
|
|
#define DoC_is_Millennium(doc) (0)
|
|
#endif
|
|
|
|
/* #define ECC_DEBUG */
|
|
|
|
/* I have no idea why some DoC chips can not use memcpy_from|to_io().
|
|
* This may be due to the different revisions of the ASIC controller built-in or
|
|
* simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
|
|
* this:
|
|
#undef USE_MEMCPY
|
|
*/
|
|
|
|
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf);
|
|
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf);
|
|
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
|
|
struct mtd_oob_ops *ops);
|
|
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
|
|
struct mtd_oob_ops *ops);
|
|
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
|
|
size_t *retlen, const u_char *buf);
|
|
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
|
|
|
|
static struct mtd_info *doc2klist = NULL;
|
|
|
|
/* Perform the required delay cycles by reading from the appropriate register */
|
|
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
|
|
{
|
|
volatile char dummy;
|
|
int i;
|
|
|
|
for (i = 0; i < cycles; i++) {
|
|
if (DoC_is_Millennium(doc))
|
|
dummy = ReadDOC(doc->virtadr, NOP);
|
|
else
|
|
dummy = ReadDOC(doc->virtadr, DOCStatus);
|
|
}
|
|
|
|
}
|
|
|
|
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
|
|
static int _DoC_WaitReady(struct DiskOnChip *doc)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
unsigned long timeo = jiffies + (HZ * 10);
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"_DoC_WaitReady called for out-of-line wait\n");
|
|
|
|
/* Out-of-line routine to wait for chip response */
|
|
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
|
|
/* issue 2 read from NOP register after reading from CDSNControl register
|
|
see Software Requirement 11.4 item 2. */
|
|
DoC_Delay(doc, 2);
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
|
|
return -EIO;
|
|
}
|
|
udelay(1);
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int DoC_WaitReady(struct DiskOnChip *doc)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/* This is inline, to optimise the common case, where it's ready instantly */
|
|
int ret = 0;
|
|
|
|
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
|
|
see Software Requirement 11.4 item 2. */
|
|
DoC_Delay(doc, 4);
|
|
|
|
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
|
|
/* Call the out-of-line routine to wait */
|
|
ret = _DoC_WaitReady(doc);
|
|
|
|
/* issue 2 read from NOP register after reading from CDSNControl register
|
|
see Software Requirement 11.4 item 2. */
|
|
DoC_Delay(doc, 2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
|
|
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
|
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
|
|
|
static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
|
|
unsigned char xtraflags)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
if (DoC_is_2000(doc))
|
|
xtraflags |= CDSN_CTRL_FLASH_IO;
|
|
|
|
/* Assert the CLE (Command Latch Enable) line to the flash chip */
|
|
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(command, docptr, CDSNSlowIO);
|
|
|
|
/* Send the command */
|
|
WriteDOC_(command, docptr, doc->ioreg);
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(command, docptr, WritePipeTerm);
|
|
|
|
/* Lower the CLE line */
|
|
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
|
|
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
|
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
|
|
|
static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
|
|
unsigned char xtraflags1, unsigned char xtraflags2)
|
|
{
|
|
int i;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
if (DoC_is_2000(doc))
|
|
xtraflags1 |= CDSN_CTRL_FLASH_IO;
|
|
|
|
/* Assert the ALE (Address Latch Enable) line to the flash chip */
|
|
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Send the address */
|
|
/* Devices with 256-byte page are addressed as:
|
|
Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
|
|
* there is no device on the market with page256
|
|
and more than 24 bits.
|
|
Devices with 512-byte page are addressed as:
|
|
Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
|
|
* 25-31 is sent only if the chip support it.
|
|
* bit 8 changes the read command to be sent
|
|
(NAND_CMD_READ0 or NAND_CMD_READ1).
|
|
*/
|
|
|
|
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
|
|
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
|
|
}
|
|
|
|
if (doc->page256) {
|
|
ofs = ofs >> 8;
|
|
} else {
|
|
ofs = ofs >> 9;
|
|
}
|
|
|
|
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
|
|
for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
|
|
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
|
|
}
|
|
}
|
|
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
|
|
|
|
DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
|
|
|
|
/* FIXME: The SlowIO's for millennium could be replaced by
|
|
a single WritePipeTerm here. mf. */
|
|
|
|
/* Lower the ALE line */
|
|
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
|
|
CDSNControl);
|
|
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Wait for the chip to respond - Software requirement 11.4.1 */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* Read a buffer from DoC, taking care of Millennium odditys */
|
|
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
|
|
{
|
|
volatile int dummy;
|
|
int modulus = 0xffff;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
if (len <= 0)
|
|
return;
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
/* Read the data via the internal pipeline through CDSN IO register,
|
|
see Pipelined Read Operations 11.3 */
|
|
dummy = ReadDOC(docptr, ReadPipeInit);
|
|
|
|
/* Millennium should use the LastDataRead register - Pipeline Reads */
|
|
len--;
|
|
|
|
/* This is needed for correctly ECC calculation */
|
|
modulus = 0xff;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
buf[i] = ReadDOC(docptr, LastDataRead);
|
|
}
|
|
}
|
|
|
|
/* Write a buffer to DoC, taking care of Millennium odditys */
|
|
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
if (len <= 0)
|
|
return;
|
|
|
|
for (i = 0; i < len; i++)
|
|
WriteDOC_(buf[i], docptr, doc->ioreg + i);
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
WriteDOC(0x00, docptr, WritePipeTerm);
|
|
}
|
|
}
|
|
|
|
|
|
/* DoC_SelectChip: Select a given flash chip within the current floor */
|
|
|
|
static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/* Software requirement 11.4.4 before writing DeviceSelect */
|
|
/* Deassert the CE line to eliminate glitches on the FCE# outputs */
|
|
WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Select the individual flash chip requested */
|
|
WriteDOC(chip, docptr, CDSNDeviceSelect);
|
|
DoC_Delay(doc, 4);
|
|
|
|
/* Reassert the CE line */
|
|
WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
|
|
CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Wait for it to be ready */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
|
|
|
|
static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/* Select the floor (bank) of chips required */
|
|
WriteDOC(floor, docptr, FloorSelect);
|
|
|
|
/* Wait for the chip to be ready */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
|
|
|
|
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
|
|
{
|
|
int mfr, id, i, j;
|
|
volatile char dummy;
|
|
|
|
/* Page in the required floor/chip */
|
|
DoC_SelectFloor(doc, floor);
|
|
DoC_SelectChip(doc, chip);
|
|
|
|
/* Reset the chip */
|
|
if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
|
"DoC_Command (reset) for %d,%d returned true\n",
|
|
floor, chip);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read the NAND chip ID: 1. Send ReadID command */
|
|
if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
|
"DoC_Command (ReadID) for %d,%d returned true\n",
|
|
floor, chip);
|
|
return 0;
|
|
}
|
|
|
|
/* Read the NAND chip ID: 2. Send address byte zero */
|
|
DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
|
|
|
|
/* Read the manufacturer and device id codes from the device */
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
DoC_Delay(doc, 2);
|
|
dummy = ReadDOC(doc->virtadr, ReadPipeInit);
|
|
mfr = ReadDOC(doc->virtadr, LastDataRead);
|
|
|
|
DoC_Delay(doc, 2);
|
|
dummy = ReadDOC(doc->virtadr, ReadPipeInit);
|
|
id = ReadDOC(doc->virtadr, LastDataRead);
|
|
} else {
|
|
/* CDSN Slow IO register see Software Req 11.4 item 5. */
|
|
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
|
|
DoC_Delay(doc, 2);
|
|
mfr = ReadDOC_(doc->virtadr, doc->ioreg);
|
|
|
|
/* CDSN Slow IO register see Software Req 11.4 item 5. */
|
|
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
|
|
DoC_Delay(doc, 2);
|
|
id = ReadDOC_(doc->virtadr, doc->ioreg);
|
|
}
|
|
|
|
/* No response - return failure */
|
|
if (mfr == 0xff || mfr == 0)
|
|
return 0;
|
|
|
|
/* Check it's the same as the first chip we identified.
|
|
* M-Systems say that any given DiskOnChip device should only
|
|
* contain _one_ type of flash part, although that's not a
|
|
* hardware restriction. */
|
|
if (doc->mfr) {
|
|
if (doc->mfr == mfr && doc->id == id)
|
|
return 1; /* This is the same as the first */
|
|
else
|
|
printk(KERN_WARNING
|
|
"Flash chip at floor %d, chip %d is different:\n",
|
|
floor, chip);
|
|
}
|
|
|
|
/* Print and store the manufacturer and ID codes. */
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
if (id == nand_flash_ids[i].id) {
|
|
/* Try to identify manufacturer */
|
|
for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
|
|
if (nand_manuf_ids[j].id == mfr)
|
|
break;
|
|
}
|
|
printk(KERN_INFO
|
|
"Flash chip found: Manufacturer ID: %2.2X, "
|
|
"Chip ID: %2.2X (%s:%s)\n", mfr, id,
|
|
nand_manuf_ids[j].name, nand_flash_ids[i].name);
|
|
if (!doc->mfr) {
|
|
doc->mfr = mfr;
|
|
doc->id = id;
|
|
doc->chipshift =
|
|
ffs((nand_flash_ids[i].chipsize << 20)) - 1;
|
|
doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
|
|
doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
|
|
doc->erasesize =
|
|
nand_flash_ids[i].erasesize;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* We haven't fully identified the chip. Print as much as we know. */
|
|
printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
|
|
id, mfr);
|
|
|
|
printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
|
|
return 0;
|
|
}
|
|
|
|
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
|
|
|
|
static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
|
|
{
|
|
int floor, chip;
|
|
int numchips[MAX_FLOORS];
|
|
int ret = 1;
|
|
|
|
this->numchips = 0;
|
|
this->mfr = 0;
|
|
this->id = 0;
|
|
|
|
/* For each floor, find the number of valid chips it contains */
|
|
for (floor = 0; floor < MAX_FLOORS; floor++) {
|
|
ret = 1;
|
|
numchips[floor] = 0;
|
|
for (chip = 0; chip < maxchips && ret != 0; chip++) {
|
|
|
|
ret = DoC_IdentChip(this, floor, chip);
|
|
if (ret) {
|
|
numchips[floor]++;
|
|
this->numchips++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there are none at all that we recognise, bail */
|
|
if (!this->numchips) {
|
|
printk(KERN_NOTICE "No flash chips recognised.\n");
|
|
return;
|
|
}
|
|
|
|
/* Allocate an array to hold the information for each chip */
|
|
this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
|
|
if (!this->chips) {
|
|
printk(KERN_NOTICE "No memory for allocating chip info structures\n");
|
|
return;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
/* Fill out the chip array with {floor, chipno} for each
|
|
* detected chip in the device. */
|
|
for (floor = 0; floor < MAX_FLOORS; floor++) {
|
|
for (chip = 0; chip < numchips[floor]; chip++) {
|
|
this->chips[ret].floor = floor;
|
|
this->chips[ret].chip = chip;
|
|
this->chips[ret].curadr = 0;
|
|
this->chips[ret].curmode = 0x50;
|
|
ret++;
|
|
}
|
|
}
|
|
|
|
/* Calculate and print the total size of the device */
|
|
this->totlen = this->numchips * (1 << this->chipshift);
|
|
|
|
printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
|
|
this->numchips, this->totlen >> 20);
|
|
}
|
|
|
|
static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
|
|
{
|
|
int tmp1, tmp2, retval;
|
|
if (doc1->physadr == doc2->physadr)
|
|
return 1;
|
|
|
|
/* Use the alias resolution register which was set aside for this
|
|
* purpose. If it's value is the same on both chips, they might
|
|
* be the same chip, and we write to one and check for a change in
|
|
* the other. It's unclear if this register is usuable in the
|
|
* DoC 2000 (it's in the Millennium docs), but it seems to work. */
|
|
tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
|
|
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
|
|
if (tmp1 != tmp2)
|
|
return 0;
|
|
|
|
WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
|
|
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
|
|
if (tmp2 == (tmp1 + 1) % 0xff)
|
|
retval = 1;
|
|
else
|
|
retval = 0;
|
|
|
|
/* Restore register contents. May not be necessary, but do it just to
|
|
* be safe. */
|
|
WriteDOC(tmp1, doc1->virtadr, AliasResolution);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* This routine is found from the docprobe code by symbol_get(),
|
|
* which will bump the use count of this module. */
|
|
void DoC2k_init(struct mtd_info *mtd)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
struct DiskOnChip *old = NULL;
|
|
int maxchips;
|
|
|
|
/* We must avoid being called twice for the same device. */
|
|
|
|
if (doc2klist)
|
|
old = doc2klist->priv;
|
|
|
|
while (old) {
|
|
if (DoC2k_is_alias(old, this)) {
|
|
printk(KERN_NOTICE
|
|
"Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
|
|
this->physadr);
|
|
iounmap(this->virtadr);
|
|
kfree(mtd);
|
|
return;
|
|
}
|
|
if (old->nextdoc)
|
|
old = old->nextdoc->priv;
|
|
else
|
|
old = NULL;
|
|
}
|
|
|
|
|
|
switch (this->ChipID) {
|
|
case DOC_ChipID_Doc2kTSOP:
|
|
mtd->name = "DiskOnChip 2000 TSOP";
|
|
this->ioreg = DoC_Mil_CDSN_IO;
|
|
/* Pretend it's a Millennium */
|
|
this->ChipID = DOC_ChipID_DocMil;
|
|
maxchips = MAX_CHIPS;
|
|
break;
|
|
case DOC_ChipID_Doc2k:
|
|
mtd->name = "DiskOnChip 2000";
|
|
this->ioreg = DoC_2k_CDSN_IO;
|
|
maxchips = MAX_CHIPS;
|
|
break;
|
|
case DOC_ChipID_DocMil:
|
|
mtd->name = "DiskOnChip Millennium";
|
|
this->ioreg = DoC_Mil_CDSN_IO;
|
|
maxchips = MAX_CHIPS_MIL;
|
|
break;
|
|
default:
|
|
printk("Unknown ChipID 0x%02x\n", this->ChipID);
|
|
kfree(mtd);
|
|
iounmap(this->virtadr);
|
|
return;
|
|
}
|
|
|
|
printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
|
|
this->physadr);
|
|
|
|
mtd->type = MTD_NANDFLASH;
|
|
mtd->flags = MTD_CAP_NANDFLASH;
|
|
mtd->size = 0;
|
|
mtd->erasesize = 0;
|
|
mtd->writesize = 512;
|
|
mtd->oobsize = 16;
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->erase = doc_erase;
|
|
mtd->point = NULL;
|
|
mtd->unpoint = NULL;
|
|
mtd->read = doc_read;
|
|
mtd->write = doc_write;
|
|
mtd->read_oob = doc_read_oob;
|
|
mtd->write_oob = doc_write_oob;
|
|
mtd->sync = NULL;
|
|
|
|
this->totlen = 0;
|
|
this->numchips = 0;
|
|
|
|
this->curfloor = -1;
|
|
this->curchip = -1;
|
|
mutex_init(&this->lock);
|
|
|
|
/* Ident all the chips present. */
|
|
DoC_ScanChips(this, maxchips);
|
|
|
|
if (!this->totlen) {
|
|
kfree(mtd);
|
|
iounmap(this->virtadr);
|
|
} else {
|
|
this->nextdoc = doc2klist;
|
|
doc2klist = mtd;
|
|
mtd->size = this->totlen;
|
|
mtd->erasesize = this->erasesize;
|
|
mtd_device_register(mtd, NULL, 0);
|
|
return;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(DoC2k_init);
|
|
|
|
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
void __iomem *docptr = this->virtadr;
|
|
struct Nand *mychip;
|
|
unsigned char syndrome[6], eccbuf[6];
|
|
volatile char dummy;
|
|
int i, len256 = 0, ret=0;
|
|
size_t left = len;
|
|
|
|
/* Don't allow read past end of device */
|
|
if (from >= this->totlen)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&this->lock);
|
|
|
|
*retlen = 0;
|
|
while (left) {
|
|
len = left;
|
|
|
|
/* Don't allow a single read to cross a 512-byte block boundary */
|
|
if (from + len > ((from | 0x1ff) + 1))
|
|
len = ((from | 0x1ff) + 1) - from;
|
|
|
|
/* The ECC will not be calculated correctly if less than 512 is read */
|
|
if (len != 0x200)
|
|
printk(KERN_WARNING
|
|
"ECC needs a full sector read (adr: %lx size %lx)\n",
|
|
(long) from, (long) len);
|
|
|
|
/* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
|
|
|
|
|
|
/* Find the chip which is to be used and select it */
|
|
mychip = &this->chips[from >> (this->chipshift)];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
DoC_Command(this,
|
|
(!this->page256
|
|
&& (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
|
|
CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
|
|
CDSN_CTRL_ECC_IO);
|
|
|
|
/* Prime the ECC engine */
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
|
|
|
|
/* treat crossing 256-byte sector for 2M x 8bits devices */
|
|
if (this->page256 && from + len > (from | 0xff) + 1) {
|
|
len256 = (from | 0xff) + 1 - from;
|
|
DoC_ReadBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
|
|
CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
|
|
}
|
|
|
|
DoC_ReadBuf(this, &buf[len256], len - len256);
|
|
|
|
/* Let the caller know we completed it */
|
|
*retlen += len;
|
|
|
|
/* Read the ECC data through the DiskOnChip ECC logic */
|
|
/* Note: this will work even with 2M x 8bit devices as */
|
|
/* they have 8 bytes of OOB per 256 page. mf. */
|
|
DoC_ReadBuf(this, eccbuf, 6);
|
|
|
|
/* Flush the pipeline */
|
|
if (DoC_is_Millennium(this)) {
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
i = ReadDOC(docptr, ECCConf);
|
|
} else {
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
i = ReadDOC(docptr, 2k_ECCStatus);
|
|
}
|
|
|
|
/* Check the ECC Status */
|
|
if (i & 0x80) {
|
|
int nb_errors;
|
|
/* There was an ECC error */
|
|
#ifdef ECC_DEBUG
|
|
printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
|
|
#endif
|
|
/* Read the ECC syndrom through the DiskOnChip ECC
|
|
logic. These syndrome will be all ZERO when there
|
|
is no error */
|
|
for (i = 0; i < 6; i++) {
|
|
syndrome[i] =
|
|
ReadDOC(docptr, ECCSyndrome0 + i);
|
|
}
|
|
nb_errors = doc_decode_ecc(buf, syndrome);
|
|
|
|
#ifdef ECC_DEBUG
|
|
printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
|
|
#endif
|
|
if (nb_errors < 0) {
|
|
/* We return error, but have actually done the
|
|
read. Not that this can be told to
|
|
user-space, via sys_read(), but at least
|
|
MTD-aware stuff can know about it by
|
|
checking *retlen */
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
|
(long)from, eccbuf[0], eccbuf[1], eccbuf[2],
|
|
eccbuf[3], eccbuf[4], eccbuf[5]);
|
|
#endif
|
|
|
|
/* disable the ECC engine */
|
|
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
|
|
|
|
/* according to 11.4.1, we need to wait for the busy line
|
|
* drop if we read to the end of the page. */
|
|
if(0 == ((from + len) & 0x1ff))
|
|
{
|
|
DoC_WaitReady(this);
|
|
}
|
|
|
|
from += len;
|
|
left -= len;
|
|
buf += len;
|
|
}
|
|
|
|
mutex_unlock(&this->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t * retlen, const u_char * buf)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
|
|
void __iomem *docptr = this->virtadr;
|
|
unsigned char eccbuf[6];
|
|
volatile char dummy;
|
|
int len256 = 0;
|
|
struct Nand *mychip;
|
|
size_t left = len;
|
|
int status;
|
|
|
|
/* Don't allow write past end of device */
|
|
if (to >= this->totlen)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&this->lock);
|
|
|
|
*retlen = 0;
|
|
while (left) {
|
|
len = left;
|
|
|
|
/* Don't allow a single write to cross a 512-byte block boundary */
|
|
if (to + len > ((to | 0x1ff) + 1))
|
|
len = ((to | 0x1ff) + 1) - to;
|
|
|
|
/* The ECC will not be calculated correctly if less than 512 is written */
|
|
/* DBB-
|
|
if (len != 0x200 && eccbuf)
|
|
printk(KERN_WARNING
|
|
"ECC needs a full sector write (adr: %lx size %lx)\n",
|
|
(long) to, (long) len);
|
|
-DBB */
|
|
|
|
/* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
|
|
|
|
/* Find the chip which is to be used and select it */
|
|
mychip = &this->chips[to >> (this->chipshift)];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
/* Set device to main plane of flash */
|
|
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
|
|
DoC_Command(this,
|
|
(!this->page256
|
|
&& (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
|
|
CDSN_CTRL_WP);
|
|
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
|
|
|
|
/* Prime the ECC engine */
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
|
|
|
|
/* treat crossing 256-byte sector for 2M x 8bits devices */
|
|
if (this->page256 && to + len > (to | 0xff) + 1) {
|
|
len256 = (to | 0xff) + 1 - to;
|
|
DoC_WriteBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
|
/* There's an implicit DoC_WaitReady() in DoC_Command */
|
|
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
|
printk(KERN_ERR "Error programming flash\n");
|
|
/* Error in programming */
|
|
*retlen = 0;
|
|
mutex_unlock(&this->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
|
|
CDSN_CTRL_ECC_IO);
|
|
}
|
|
|
|
DoC_WriteBuf(this, &buf[len256], len - len256);
|
|
|
|
WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
|
|
if (DoC_is_Millennium(this)) {
|
|
WriteDOC(0, docptr, NOP);
|
|
WriteDOC(0, docptr, NOP);
|
|
WriteDOC(0, docptr, NOP);
|
|
} else {
|
|
WriteDOC_(0, docptr, this->ioreg);
|
|
WriteDOC_(0, docptr, this->ioreg);
|
|
WriteDOC_(0, docptr, this->ioreg);
|
|
}
|
|
|
|
WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
|
|
CDSNControl);
|
|
|
|
/* Read the ECC data through the DiskOnChip ECC logic */
|
|
for (di = 0; di < 6; di++) {
|
|
eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
|
|
}
|
|
|
|
/* Reset the ECC engine */
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printk
|
|
("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
|
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
|
|
eccbuf[4], eccbuf[5]);
|
|
#endif
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
|
/* There's an implicit DoC_WaitReady() in DoC_Command */
|
|
|
|
if (DoC_is_Millennium(this)) {
|
|
ReadDOC(docptr, ReadPipeInit);
|
|
status = ReadDOC(docptr, LastDataRead);
|
|
} else {
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
status = ReadDOC_(docptr, this->ioreg);
|
|
}
|
|
|
|
if (status & 1) {
|
|
printk(KERN_ERR "Error programming flash\n");
|
|
/* Error in programming */
|
|
*retlen = 0;
|
|
mutex_unlock(&this->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Let the caller know we completed it */
|
|
*retlen += len;
|
|
|
|
{
|
|
unsigned char x[8];
|
|
size_t dummy;
|
|
int ret;
|
|
|
|
/* Write the ECC data to flash */
|
|
for (di=0; di<6; di++)
|
|
x[di] = eccbuf[di];
|
|
|
|
x[6]=0x55;
|
|
x[7]=0x55;
|
|
|
|
ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
|
|
if (ret) {
|
|
mutex_unlock(&this->lock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
to += len;
|
|
left -= len;
|
|
buf += len;
|
|
}
|
|
|
|
mutex_unlock(&this->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
int len256 = 0, ret;
|
|
struct Nand *mychip;
|
|
uint8_t *buf = ops->oobbuf;
|
|
size_t len = ops->len;
|
|
|
|
BUG_ON(ops->mode != MTD_OOB_PLACE);
|
|
|
|
ofs += ops->ooboffs;
|
|
|
|
mutex_lock(&this->lock);
|
|
|
|
mychip = &this->chips[ofs >> this->chipshift];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
|
/* page to maintain compatibility with doc_read_ecc. */
|
|
if (this->page256) {
|
|
if (!(ofs & 0x8))
|
|
ofs += 0x100;
|
|
else
|
|
ofs -= 0x8;
|
|
}
|
|
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
|
|
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
|
/* next OOB block, but it didn't work here. mf. */
|
|
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
|
DoC_ReadBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
|
|
CDSN_CTRL_WP, 0);
|
|
}
|
|
|
|
DoC_ReadBuf(this, &buf[len256], len - len256);
|
|
|
|
ops->retlen = len;
|
|
/* Reading the full OOB data drops us off of the end of the page,
|
|
* causing the flash device to go into busy mode, so we need
|
|
* to wait until ready 11.4.1 and Toshiba TC58256FT docs */
|
|
|
|
ret = DoC_WaitReady(this);
|
|
|
|
mutex_unlock(&this->lock);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
|
|
size_t * retlen, const u_char * buf)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
int len256 = 0;
|
|
void __iomem *docptr = this->virtadr;
|
|
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
|
|
volatile int dummy;
|
|
int status;
|
|
|
|
// printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
|
|
// buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
|
|
|
|
/* Find the chip which is to be used and select it */
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
/* disable the ECC engine */
|
|
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
|
|
|
|
/* Reset the chip, see Software Requirement 11.4 item 1. */
|
|
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
|
|
|
|
/* issue the Read2 command to set the pointer to the Spare Data Area. */
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
|
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
|
/* page to maintain compatibility with doc_read_ecc. */
|
|
if (this->page256) {
|
|
if (!(ofs & 0x8))
|
|
ofs += 0x100;
|
|
else
|
|
ofs -= 0x8;
|
|
}
|
|
|
|
/* issue the Serial Data In command to initial the Page Program process */
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
|
|
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
|
/* next OOB block, but it didn't work here. mf. */
|
|
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
|
DoC_WriteBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
DoC_Command(this, NAND_CMD_STATUS, 0);
|
|
/* DoC_WaitReady() is implicit in DoC_Command */
|
|
|
|
if (DoC_is_Millennium(this)) {
|
|
ReadDOC(docptr, ReadPipeInit);
|
|
status = ReadDOC(docptr, LastDataRead);
|
|
} else {
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
status = ReadDOC_(docptr, this->ioreg);
|
|
}
|
|
|
|
if (status & 1) {
|
|
printk(KERN_ERR "Error programming oob data\n");
|
|
/* There was an error */
|
|
*retlen = 0;
|
|
return -EIO;
|
|
}
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
|
|
}
|
|
|
|
DoC_WriteBuf(this, &buf[len256], len - len256);
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
DoC_Command(this, NAND_CMD_STATUS, 0);
|
|
/* DoC_WaitReady() is implicit in DoC_Command */
|
|
|
|
if (DoC_is_Millennium(this)) {
|
|
ReadDOC(docptr, ReadPipeInit);
|
|
status = ReadDOC(docptr, LastDataRead);
|
|
} else {
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
status = ReadDOC_(docptr, this->ioreg);
|
|
}
|
|
|
|
if (status & 1) {
|
|
printk(KERN_ERR "Error programming oob data\n");
|
|
/* There was an error */
|
|
*retlen = 0;
|
|
return -EIO;
|
|
}
|
|
|
|
*retlen = len;
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
int ret;
|
|
|
|
BUG_ON(ops->mode != MTD_OOB_PLACE);
|
|
|
|
mutex_lock(&this->lock);
|
|
ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
|
|
&ops->retlen, ops->oobbuf);
|
|
|
|
mutex_unlock(&this->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct DiskOnChip *this = mtd->priv;
|
|
__u32 ofs = instr->addr;
|
|
__u32 len = instr->len;
|
|
volatile int dummy;
|
|
void __iomem *docptr = this->virtadr;
|
|
struct Nand *mychip;
|
|
int status;
|
|
|
|
mutex_lock(&this->lock);
|
|
|
|
if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
|
|
mutex_unlock(&this->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
instr->state = MTD_ERASING;
|
|
|
|
/* FIXME: Do this in the background. Use timers or schedule_task() */
|
|
while(len) {
|
|
mychip = &this->chips[ofs >> this->chipshift];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
DoC_Command(this, NAND_CMD_ERASE1, 0);
|
|
DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
|
|
DoC_Command(this, NAND_CMD_ERASE2, 0);
|
|
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
|
|
|
if (DoC_is_Millennium(this)) {
|
|
ReadDOC(docptr, ReadPipeInit);
|
|
status = ReadDOC(docptr, LastDataRead);
|
|
} else {
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
status = ReadDOC_(docptr, this->ioreg);
|
|
}
|
|
|
|
if (status & 1) {
|
|
printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
|
|
/* There was an error */
|
|
instr->state = MTD_ERASE_FAILED;
|
|
goto callback;
|
|
}
|
|
ofs += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
}
|
|
instr->state = MTD_ERASE_DONE;
|
|
|
|
callback:
|
|
mtd_erase_callback(instr);
|
|
|
|
mutex_unlock(&this->lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Module stuff
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void __exit cleanup_doc2000(void)
|
|
{
|
|
struct mtd_info *mtd;
|
|
struct DiskOnChip *this;
|
|
|
|
while ((mtd = doc2klist)) {
|
|
this = mtd->priv;
|
|
doc2klist = this->nextdoc;
|
|
|
|
mtd_device_unregister(mtd);
|
|
|
|
iounmap(this->virtadr);
|
|
kfree(this->chips);
|
|
kfree(mtd);
|
|
}
|
|
}
|
|
|
|
module_exit(cleanup_doc2000);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
|
|
MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
|
|
|