linux_dsm_epyc7002/drivers/net/ethernet/amazon/ena/ena_netdev.c
Netanel Belgazal a3af7c18cf net: ena: fix theoretical Rx hang on low memory systems
For the rare case where the device runs out of free rx buffer
descriptors (in case of pressure on kernel  memory),
and the napi handler continuously fail to refill new Rx descriptors
until device rx queue totally runs out of all free rx buffers
to post incoming packet, leading to a deadlock:
* The device won't send interrupts since all the new
Rx packets will be dropped.
* The napi handler won't try to allocate new Rx descriptors
since allocation is part of NAPI that's not being invoked any more

The fix involves detecting this scenario and rescheduling NAPI
(to refill buffers) by the keepalive/watchdog task.

Fixes: 1738cd3ed3 ("Add a driver for Amazon Elastic Network Adapters (ENA)")
Signed-off-by: Netanel Belgazal <netanel@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-11 16:36:46 -04:00

3375 lines
86 KiB
C

/*
* Copyright 2015 Amazon.com, Inc. or its affiliates.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif /* CONFIG_RFS_ACCEL */
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/numa.h>
#include <linux/pci.h>
#include <linux/utsname.h>
#include <linux/version.h>
#include <linux/vmalloc.h>
#include <net/ip.h>
#include "ena_netdev.h"
#include "ena_pci_id_tbl.h"
static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n";
MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
MODULE_DESCRIPTION(DEVICE_NAME);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (5 * HZ)
#define ENA_NAPI_BUDGET 64
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static struct ena_aenq_handlers aenq_handlers;
static struct workqueue_struct *ena_wq;
MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
static int ena_rss_init_default(struct ena_adapter *adapter);
static void ena_tx_timeout(struct net_device *dev)
{
struct ena_adapter *adapter = netdev_priv(dev);
/* Change the state of the device to trigger reset
* Check that we are not in the middle or a trigger already
*/
if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.tx_timeout++;
u64_stats_update_end(&adapter->syncp);
netif_err(adapter, tx_err, dev, "Transmit time out\n");
}
static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
adapter->rx_ring[i].mtu = mtu;
}
static int ena_change_mtu(struct net_device *dev, int new_mtu)
{
struct ena_adapter *adapter = netdev_priv(dev);
int ret;
ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
if (!ret) {
netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
update_rx_ring_mtu(adapter, new_mtu);
dev->mtu = new_mtu;
} else {
netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
new_mtu);
}
return ret;
}
static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
{
#ifdef CONFIG_RFS_ACCEL
u32 i;
int rc;
adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_queues);
if (!adapter->netdev->rx_cpu_rmap)
return -ENOMEM;
for (i = 0; i < adapter->num_queues; i++) {
int irq_idx = ENA_IO_IRQ_IDX(i);
rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
pci_irq_vector(adapter->pdev, irq_idx));
if (rc) {
free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
adapter->netdev->rx_cpu_rmap = NULL;
return rc;
}
}
#endif /* CONFIG_RFS_ACCEL */
return 0;
}
static void ena_init_io_rings_common(struct ena_adapter *adapter,
struct ena_ring *ring, u16 qid)
{
ring->qid = qid;
ring->pdev = adapter->pdev;
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
ring->napi = &adapter->ena_napi[qid].napi;
ring->adapter = adapter;
ring->ena_dev = adapter->ena_dev;
ring->per_napi_packets = 0;
ring->per_napi_bytes = 0;
ring->cpu = 0;
u64_stats_init(&ring->syncp);
}
static void ena_init_io_rings(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev;
struct ena_ring *txr, *rxr;
int i;
ena_dev = adapter->ena_dev;
for (i = 0; i < adapter->num_queues; i++) {
txr = &adapter->tx_ring[i];
rxr = &adapter->rx_ring[i];
/* TX/RX common ring state */
ena_init_io_rings_common(adapter, txr, i);
ena_init_io_rings_common(adapter, rxr, i);
/* TX specific ring state */
txr->ring_size = adapter->tx_ring_size;
txr->tx_max_header_size = ena_dev->tx_max_header_size;
txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
txr->sgl_size = adapter->max_tx_sgl_size;
txr->smoothed_interval =
ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
/* RX specific ring state */
rxr->ring_size = adapter->rx_ring_size;
rxr->rx_copybreak = adapter->rx_copybreak;
rxr->sgl_size = adapter->max_rx_sgl_size;
rxr->smoothed_interval =
ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
rxr->empty_rx_queue = 0;
}
}
/* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Return 0 on success, negative on failure
*/
static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
{
struct ena_ring *tx_ring = &adapter->tx_ring[qid];
struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
int size, i, node;
if (tx_ring->tx_buffer_info) {
netif_err(adapter, ifup,
adapter->netdev, "tx_buffer_info info is not NULL");
return -EEXIST;
}
size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
node = cpu_to_node(ena_irq->cpu);
tx_ring->tx_buffer_info = vzalloc_node(size, node);
if (!tx_ring->tx_buffer_info) {
tx_ring->tx_buffer_info = vzalloc(size);
if (!tx_ring->tx_buffer_info)
return -ENOMEM;
}
size = sizeof(u16) * tx_ring->ring_size;
tx_ring->free_tx_ids = vzalloc_node(size, node);
if (!tx_ring->free_tx_ids) {
tx_ring->free_tx_ids = vzalloc(size);
if (!tx_ring->free_tx_ids) {
vfree(tx_ring->tx_buffer_info);
return -ENOMEM;
}
}
/* Req id ring for TX out of order completions */
for (i = 0; i < tx_ring->ring_size; i++)
tx_ring->free_tx_ids[i] = i;
/* Reset tx statistics */
memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->cpu = ena_irq->cpu;
return 0;
}
/* ena_free_tx_resources - Free I/O Tx Resources per Queue
* @adapter: network interface device structure
* @qid: queue index
*
* Free all transmit software resources
*/
static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
{
struct ena_ring *tx_ring = &adapter->tx_ring[qid];
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
vfree(tx_ring->free_tx_ids);
tx_ring->free_tx_ids = NULL;
}
/* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues
* @adapter: private structure
*
* Return 0 on success, negative on failure
*/
static int ena_setup_all_tx_resources(struct ena_adapter *adapter)
{
int i, rc = 0;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_setup_tx_resources(adapter, i);
if (rc)
goto err_setup_tx;
}
return 0;
err_setup_tx:
netif_err(adapter, ifup, adapter->netdev,
"Tx queue %d: allocation failed\n", i);
/* rewind the index freeing the rings as we go */
while (i--)
ena_free_tx_resources(adapter, i);
return rc;
}
/* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
ena_free_tx_resources(adapter, i);
}
/* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Returns 0 on success, negative on failure
*/
static int ena_setup_rx_resources(struct ena_adapter *adapter,
u32 qid)
{
struct ena_ring *rx_ring = &adapter->rx_ring[qid];
struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
int size, node;
if (rx_ring->rx_buffer_info) {
netif_err(adapter, ifup, adapter->netdev,
"rx_buffer_info is not NULL");
return -EEXIST;
}
/* alloc extra element so in rx path
* we can always prefetch rx_info + 1
*/
size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
node = cpu_to_node(ena_irq->cpu);
rx_ring->rx_buffer_info = vzalloc_node(size, node);
if (!rx_ring->rx_buffer_info) {
rx_ring->rx_buffer_info = vzalloc(size);
if (!rx_ring->rx_buffer_info)
return -ENOMEM;
}
/* Reset rx statistics */
memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->cpu = ena_irq->cpu;
return 0;
}
/* ena_free_rx_resources - Free I/O Rx Resources
* @adapter: network interface device structure
* @qid: queue index
*
* Free all receive software resources
*/
static void ena_free_rx_resources(struct ena_adapter *adapter,
u32 qid)
{
struct ena_ring *rx_ring = &adapter->rx_ring[qid];
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
}
/* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
{
int i, rc = 0;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_setup_rx_resources(adapter, i);
if (rc)
goto err_setup_rx;
}
return 0;
err_setup_rx:
netif_err(adapter, ifup, adapter->netdev,
"Rx queue %d: allocation failed\n", i);
/* rewind the index freeing the rings as we go */
while (i--)
ena_free_rx_resources(adapter, i);
return rc;
}
/* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
*/
static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
ena_free_rx_resources(adapter, i);
}
static inline int ena_alloc_rx_page(struct ena_ring *rx_ring,
struct ena_rx_buffer *rx_info, gfp_t gfp)
{
struct ena_com_buf *ena_buf;
struct page *page;
dma_addr_t dma;
/* if previous allocated page is not used */
if (unlikely(rx_info->page))
return 0;
page = alloc_page(gfp);
if (unlikely(!page)) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.page_alloc_fail++;
u64_stats_update_end(&rx_ring->syncp);
return -ENOMEM;
}
dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.dma_mapping_err++;
u64_stats_update_end(&rx_ring->syncp);
__free_page(page);
return -EIO;
}
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"alloc page %p, rx_info %p\n", page, rx_info);
rx_info->page = page;
rx_info->page_offset = 0;
ena_buf = &rx_info->ena_buf;
ena_buf->paddr = dma;
ena_buf->len = PAGE_SIZE;
return 0;
}
static void ena_free_rx_page(struct ena_ring *rx_ring,
struct ena_rx_buffer *rx_info)
{
struct page *page = rx_info->page;
struct ena_com_buf *ena_buf = &rx_info->ena_buf;
if (unlikely(!page)) {
netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
"Trying to free unallocated buffer\n");
return;
}
dma_unmap_page(rx_ring->dev, ena_buf->paddr, PAGE_SIZE,
DMA_FROM_DEVICE);
__free_page(page);
rx_info->page = NULL;
}
static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
{
u16 next_to_use;
u32 i;
int rc;
next_to_use = rx_ring->next_to_use;
for (i = 0; i < num; i++) {
struct ena_rx_buffer *rx_info =
&rx_ring->rx_buffer_info[next_to_use];
rc = ena_alloc_rx_page(rx_ring, rx_info,
__GFP_COLD | GFP_ATOMIC | __GFP_COMP);
if (unlikely(rc < 0)) {
netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
"failed to alloc buffer for rx queue %d\n",
rx_ring->qid);
break;
}
rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
&rx_info->ena_buf,
next_to_use);
if (unlikely(rc)) {
netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
"failed to add buffer for rx queue %d\n",
rx_ring->qid);
break;
}
next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
rx_ring->ring_size);
}
if (unlikely(i < num)) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.refil_partial++;
u64_stats_update_end(&rx_ring->syncp);
netdev_warn(rx_ring->netdev,
"refilled rx qid %d with only %d buffers (from %d)\n",
rx_ring->qid, i, num);
}
if (likely(i)) {
/* Add memory barrier to make sure the desc were written before
* issue a doorbell
*/
wmb();
ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
}
rx_ring->next_to_use = next_to_use;
return i;
}
static void ena_free_rx_bufs(struct ena_adapter *adapter,
u32 qid)
{
struct ena_ring *rx_ring = &adapter->rx_ring[qid];
u32 i;
for (i = 0; i < rx_ring->ring_size; i++) {
struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
if (rx_info->page)
ena_free_rx_page(rx_ring, rx_info);
}
}
/* ena_refill_all_rx_bufs - allocate all queues Rx buffers
* @adapter: board private structure
*
*/
static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
{
struct ena_ring *rx_ring;
int i, rc, bufs_num;
for (i = 0; i < adapter->num_queues; i++) {
rx_ring = &adapter->rx_ring[i];
bufs_num = rx_ring->ring_size - 1;
rc = ena_refill_rx_bufs(rx_ring, bufs_num);
if (unlikely(rc != bufs_num))
netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
"refilling Queue %d failed. allocated %d buffers from: %d\n",
i, rc, bufs_num);
}
}
static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
ena_free_rx_bufs(adapter, i);
}
/* ena_free_tx_bufs - Free Tx Buffers per Queue
* @tx_ring: TX ring for which buffers be freed
*/
static void ena_free_tx_bufs(struct ena_ring *tx_ring)
{
bool print_once = true;
u32 i;
for (i = 0; i < tx_ring->ring_size; i++) {
struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
struct ena_com_buf *ena_buf;
int nr_frags;
int j;
if (!tx_info->skb)
continue;
if (print_once) {
netdev_notice(tx_ring->netdev,
"free uncompleted tx skb qid %d idx 0x%x\n",
tx_ring->qid, i);
print_once = false;
} else {
netdev_dbg(tx_ring->netdev,
"free uncompleted tx skb qid %d idx 0x%x\n",
tx_ring->qid, i);
}
ena_buf = tx_info->bufs;
dma_unmap_single(tx_ring->dev,
ena_buf->paddr,
ena_buf->len,
DMA_TO_DEVICE);
/* unmap remaining mapped pages */
nr_frags = tx_info->num_of_bufs - 1;
for (j = 0; j < nr_frags; j++) {
ena_buf++;
dma_unmap_page(tx_ring->dev,
ena_buf->paddr,
ena_buf->len,
DMA_TO_DEVICE);
}
dev_kfree_skb_any(tx_info->skb);
}
netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
tx_ring->qid));
}
static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
{
struct ena_ring *tx_ring;
int i;
for (i = 0; i < adapter->num_queues; i++) {
tx_ring = &adapter->tx_ring[i];
ena_free_tx_bufs(tx_ring);
}
}
static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
{
u16 ena_qid;
int i;
for (i = 0; i < adapter->num_queues; i++) {
ena_qid = ENA_IO_TXQ_IDX(i);
ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
}
}
static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
{
u16 ena_qid;
int i;
for (i = 0; i < adapter->num_queues; i++) {
ena_qid = ENA_IO_RXQ_IDX(i);
ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
}
}
static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
{
ena_destroy_all_tx_queues(adapter);
ena_destroy_all_rx_queues(adapter);
}
static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
{
struct ena_tx_buffer *tx_info = NULL;
if (likely(req_id < tx_ring->ring_size)) {
tx_info = &tx_ring->tx_buffer_info[req_id];
if (likely(tx_info->skb))
return 0;
}
if (tx_info)
netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
"tx_info doesn't have valid skb\n");
else
netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
"Invalid req_id: %hu\n", req_id);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.bad_req_id++;
u64_stats_update_end(&tx_ring->syncp);
/* Trigger device reset */
set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags);
return -EFAULT;
}
static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
{
struct netdev_queue *txq;
bool above_thresh;
u32 tx_bytes = 0;
u32 total_done = 0;
u16 next_to_clean;
u16 req_id;
int tx_pkts = 0;
int rc;
next_to_clean = tx_ring->next_to_clean;
txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
while (tx_pkts < budget) {
struct ena_tx_buffer *tx_info;
struct sk_buff *skb;
struct ena_com_buf *ena_buf;
int i, nr_frags;
rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
&req_id);
if (rc)
break;
rc = validate_tx_req_id(tx_ring, req_id);
if (rc)
break;
tx_info = &tx_ring->tx_buffer_info[req_id];
skb = tx_info->skb;
/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
prefetch(&skb->end);
tx_info->skb = NULL;
tx_info->last_jiffies = 0;
if (likely(tx_info->num_of_bufs != 0)) {
ena_buf = tx_info->bufs;
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(ena_buf, paddr),
dma_unmap_len(ena_buf, len),
DMA_TO_DEVICE);
/* unmap remaining mapped pages */
nr_frags = tx_info->num_of_bufs - 1;
for (i = 0; i < nr_frags; i++) {
ena_buf++;
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(ena_buf, paddr),
dma_unmap_len(ena_buf, len),
DMA_TO_DEVICE);
}
}
netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
"tx_poll: q %d skb %p completed\n", tx_ring->qid,
skb);
tx_bytes += skb->len;
dev_kfree_skb(skb);
tx_pkts++;
total_done += tx_info->tx_descs;
tx_ring->free_tx_ids[next_to_clean] = req_id;
next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
tx_ring->ring_size);
}
tx_ring->next_to_clean = next_to_clean;
ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
"tx_poll: q %d done. total pkts: %d\n",
tx_ring->qid, tx_pkts);
/* need to make the rings circular update visible to
* ena_start_xmit() before checking for netif_queue_stopped().
*/
smp_mb();
above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) >
ENA_TX_WAKEUP_THRESH;
if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
__netif_tx_lock(txq, smp_processor_id());
above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) >
ENA_TX_WAKEUP_THRESH;
if (netif_tx_queue_stopped(txq) && above_thresh) {
netif_tx_wake_queue(txq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_wakeup++;
u64_stats_update_end(&tx_ring->syncp);
}
__netif_tx_unlock(txq);
}
tx_ring->per_napi_bytes += tx_bytes;
tx_ring->per_napi_packets += tx_pkts;
return tx_pkts;
}
static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
struct ena_com_rx_buf_info *ena_bufs,
u32 descs,
u16 *next_to_clean)
{
struct sk_buff *skb;
struct ena_rx_buffer *rx_info =
&rx_ring->rx_buffer_info[*next_to_clean];
u32 len;
u32 buf = 0;
void *va;
len = ena_bufs[0].len;
if (unlikely(!rx_info->page)) {
netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
"Page is NULL\n");
return NULL;
}
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx_info %p page %p\n",
rx_info, rx_info->page);
/* save virt address of first buffer */
va = page_address(rx_info->page) + rx_info->page_offset;
prefetch(va + NET_IP_ALIGN);
if (len <= rx_ring->rx_copybreak) {
skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
rx_ring->rx_copybreak);
if (unlikely(!skb)) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.skb_alloc_fail++;
u64_stats_update_end(&rx_ring->syncp);
netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
"Failed to allocate skb\n");
return NULL;
}
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx allocated small packet. len %d. data_len %d\n",
skb->len, skb->data_len);
/* sync this buffer for CPU use */
dma_sync_single_for_cpu(rx_ring->dev,
dma_unmap_addr(&rx_info->ena_buf, paddr),
len,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, va, len);
dma_sync_single_for_device(rx_ring->dev,
dma_unmap_addr(&rx_info->ena_buf, paddr),
len,
DMA_FROM_DEVICE);
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
rx_ring->ring_size);
return skb;
}
skb = napi_get_frags(rx_ring->napi);
if (unlikely(!skb)) {
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"Failed allocating skb\n");
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.skb_alloc_fail++;
u64_stats_update_end(&rx_ring->syncp);
return NULL;
}
do {
dma_unmap_page(rx_ring->dev,
dma_unmap_addr(&rx_info->ena_buf, paddr),
PAGE_SIZE, DMA_FROM_DEVICE);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
rx_info->page_offset, len, PAGE_SIZE);
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx skb updated. len %d. data_len %d\n",
skb->len, skb->data_len);
rx_info->page = NULL;
*next_to_clean =
ENA_RX_RING_IDX_NEXT(*next_to_clean,
rx_ring->ring_size);
if (likely(--descs == 0))
break;
rx_info = &rx_ring->rx_buffer_info[*next_to_clean];
len = ena_bufs[++buf].len;
} while (1);
return skb;
}
/* ena_rx_checksum - indicate in skb if hw indicated a good cksum
* @adapter: structure containing adapter specific data
* @ena_rx_ctx: received packet context/metadata
* @skb: skb currently being received and modified
*/
static inline void ena_rx_checksum(struct ena_ring *rx_ring,
struct ena_com_rx_ctx *ena_rx_ctx,
struct sk_buff *skb)
{
/* Rx csum disabled */
if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
skb->ip_summed = CHECKSUM_NONE;
return;
}
/* For fragmented packets the checksum isn't valid */
if (ena_rx_ctx->frag) {
skb->ip_summed = CHECKSUM_NONE;
return;
}
/* if IP and error */
if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
(ena_rx_ctx->l3_csum_err))) {
/* ipv4 checksum error */
skb->ip_summed = CHECKSUM_NONE;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_csum++;
u64_stats_update_end(&rx_ring->syncp);
netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
"RX IPv4 header checksum error\n");
return;
}
/* if TCP/UDP */
if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
(ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
if (unlikely(ena_rx_ctx->l4_csum_err)) {
/* TCP/UDP checksum error */
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_csum++;
u64_stats_update_end(&rx_ring->syncp);
netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
"RX L4 checksum error\n");
skb->ip_summed = CHECKSUM_NONE;
return;
}
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
static void ena_set_rx_hash(struct ena_ring *rx_ring,
struct ena_com_rx_ctx *ena_rx_ctx,
struct sk_buff *skb)
{
enum pkt_hash_types hash_type;
if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
(ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
hash_type = PKT_HASH_TYPE_L4;
else
hash_type = PKT_HASH_TYPE_NONE;
/* Override hash type if the packet is fragmented */
if (ena_rx_ctx->frag)
hash_type = PKT_HASH_TYPE_NONE;
skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
}
}
/* ena_clean_rx_irq - Cleanup RX irq
* @rx_ring: RX ring to clean
* @napi: napi handler
* @budget: how many packets driver is allowed to clean
*
* Returns the number of cleaned buffers.
*/
static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
u32 budget)
{
u16 next_to_clean = rx_ring->next_to_clean;
u32 res_budget, work_done;
struct ena_com_rx_ctx ena_rx_ctx;
struct ena_adapter *adapter;
struct sk_buff *skb;
int refill_required;
int refill_threshold;
int rc = 0;
int total_len = 0;
int rx_copybreak_pkt = 0;
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"%s qid %d\n", __func__, rx_ring->qid);
res_budget = budget;
do {
ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
ena_rx_ctx.max_bufs = rx_ring->sgl_size;
ena_rx_ctx.descs = 0;
rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
rx_ring->ena_com_io_sq,
&ena_rx_ctx);
if (unlikely(rc))
goto error;
if (unlikely(ena_rx_ctx.descs == 0))
break;
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
/* allocate skb and fill it */
skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs,
&next_to_clean);
/* exit if we failed to retrieve a buffer */
if (unlikely(!skb)) {
next_to_clean = ENA_RX_RING_IDX_ADD(next_to_clean,
ena_rx_ctx.descs,
rx_ring->ring_size);
break;
}
ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
skb_record_rx_queue(skb, rx_ring->qid);
if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
total_len += rx_ring->ena_bufs[0].len;
rx_copybreak_pkt++;
napi_gro_receive(napi, skb);
} else {
total_len += skb->len;
napi_gro_frags(napi);
}
res_budget--;
} while (likely(res_budget));
work_done = budget - res_budget;
rx_ring->per_napi_bytes += total_len;
rx_ring->per_napi_packets += work_done;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bytes += total_len;
rx_ring->rx_stats.cnt += work_done;
rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
u64_stats_update_end(&rx_ring->syncp);
rx_ring->next_to_clean = next_to_clean;
refill_required = ena_com_sq_empty_space(rx_ring->ena_com_io_sq);
refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
/* Optimization, try to batch new rx buffers */
if (refill_required > refill_threshold) {
ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
ena_refill_rx_bufs(rx_ring, refill_required);
}
return work_done;
error:
adapter = netdev_priv(rx_ring->netdev);
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_desc_num++;
u64_stats_update_end(&rx_ring->syncp);
/* Too many desc from the device. Trigger reset */
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
return 0;
}
inline void ena_adjust_intr_moderation(struct ena_ring *rx_ring,
struct ena_ring *tx_ring)
{
/* We apply adaptive moderation on Rx path only.
* Tx uses static interrupt moderation.
*/
ena_com_calculate_interrupt_delay(rx_ring->ena_dev,
rx_ring->per_napi_packets,
rx_ring->per_napi_bytes,
&rx_ring->smoothed_interval,
&rx_ring->moder_tbl_idx);
/* Reset per napi packets/bytes */
tx_ring->per_napi_packets = 0;
tx_ring->per_napi_bytes = 0;
rx_ring->per_napi_packets = 0;
rx_ring->per_napi_bytes = 0;
}
static inline void ena_unmask_interrupt(struct ena_ring *tx_ring,
struct ena_ring *rx_ring)
{
struct ena_eth_io_intr_reg intr_reg;
/* Update intr register: rx intr delay,
* tx intr delay and interrupt unmask
*/
ena_com_update_intr_reg(&intr_reg,
rx_ring->smoothed_interval,
tx_ring->smoothed_interval,
true);
/* It is a shared MSI-X.
* Tx and Rx CQ have pointer to it.
* So we use one of them to reach the intr reg
*/
ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg);
}
static inline void ena_update_ring_numa_node(struct ena_ring *tx_ring,
struct ena_ring *rx_ring)
{
int cpu = get_cpu();
int numa_node;
/* Check only one ring since the 2 rings are running on the same cpu */
if (likely(tx_ring->cpu == cpu))
goto out;
numa_node = cpu_to_node(cpu);
put_cpu();
if (numa_node != NUMA_NO_NODE) {
ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node);
}
tx_ring->cpu = cpu;
rx_ring->cpu = cpu;
return;
out:
put_cpu();
}
static int ena_io_poll(struct napi_struct *napi, int budget)
{
struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
struct ena_ring *tx_ring, *rx_ring;
u32 tx_work_done;
u32 rx_work_done;
int tx_budget;
int napi_comp_call = 0;
int ret;
tx_ring = ena_napi->tx_ring;
rx_ring = ena_napi->rx_ring;
tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
napi_complete_done(napi, 0);
return 0;
}
tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
/* If the device is about to reset or down, avoid unmask
* the interrupt and return 0 so NAPI won't reschedule
*/
if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
napi_complete_done(napi, 0);
ret = 0;
} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
napi_comp_call = 1;
/* Update numa and unmask the interrupt only when schedule
* from the interrupt context (vs from sk_busy_loop)
*/
if (napi_complete_done(napi, rx_work_done)) {
/* Tx and Rx share the same interrupt vector */
if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
ena_adjust_intr_moderation(rx_ring, tx_ring);
ena_unmask_interrupt(tx_ring, rx_ring);
}
ena_update_ring_numa_node(tx_ring, rx_ring);
ret = rx_work_done;
} else {
ret = budget;
}
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.napi_comp += napi_comp_call;
tx_ring->tx_stats.tx_poll++;
u64_stats_update_end(&tx_ring->syncp);
return ret;
}
static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
{
struct ena_adapter *adapter = (struct ena_adapter *)data;
ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
/* Don't call the aenq handler before probe is done */
if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
ena_com_aenq_intr_handler(adapter->ena_dev, data);
return IRQ_HANDLED;
}
/* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
* @irq: interrupt number
* @data: pointer to a network interface private napi device structure
*/
static irqreturn_t ena_intr_msix_io(int irq, void *data)
{
struct ena_napi *ena_napi = data;
napi_schedule(&ena_napi->napi);
return IRQ_HANDLED;
}
static int ena_enable_msix(struct ena_adapter *adapter, int num_queues)
{
int msix_vecs, rc;
/* Reserved the max msix vectors we might need */
msix_vecs = ENA_MAX_MSIX_VEC(num_queues);
netif_dbg(adapter, probe, adapter->netdev,
"trying to enable MSI-X, vectors %d\n", msix_vecs);
rc = pci_alloc_irq_vectors(adapter->pdev, msix_vecs, msix_vecs,
PCI_IRQ_MSIX);
if (rc < 0) {
netif_err(adapter, probe, adapter->netdev,
"Failed to enable MSI-X, vectors %d rc %d\n",
msix_vecs, rc);
return -ENOSPC;
}
netif_dbg(adapter, probe, adapter->netdev, "enable MSI-X, vectors %d\n",
msix_vecs);
if (msix_vecs >= 1) {
if (ena_init_rx_cpu_rmap(adapter))
netif_warn(adapter, probe, adapter->netdev,
"Failed to map IRQs to CPUs\n");
}
adapter->msix_vecs = msix_vecs;
return 0;
}
static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
{
u32 cpu;
snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
pci_name(adapter->pdev));
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
ena_intr_msix_mgmnt;
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
cpu = cpumask_first(cpu_online_mask);
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
cpumask_set_cpu(cpu,
&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
}
static void ena_setup_io_intr(struct ena_adapter *adapter)
{
struct net_device *netdev;
int irq_idx, i, cpu;
netdev = adapter->netdev;
for (i = 0; i < adapter->num_queues; i++) {
irq_idx = ENA_IO_IRQ_IDX(i);
cpu = i % num_online_cpus();
snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
"%s-Tx-Rx-%d", netdev->name, i);
adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
adapter->irq_tbl[irq_idx].vector =
pci_irq_vector(adapter->pdev, irq_idx);
adapter->irq_tbl[irq_idx].cpu = cpu;
cpumask_set_cpu(cpu,
&adapter->irq_tbl[irq_idx].affinity_hint_mask);
}
}
static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
{
unsigned long flags = 0;
struct ena_irq *irq;
int rc;
irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
irq->data);
if (rc) {
netif_err(adapter, probe, adapter->netdev,
"failed to request admin irq\n");
return rc;
}
netif_dbg(adapter, probe, adapter->netdev,
"set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
irq->affinity_hint_mask.bits[0], irq->vector);
irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
return rc;
}
static int ena_request_io_irq(struct ena_adapter *adapter)
{
unsigned long flags = 0;
struct ena_irq *irq;
int rc = 0, i, k;
for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
irq = &adapter->irq_tbl[i];
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
irq->data);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to request I/O IRQ. index %d rc %d\n",
i, rc);
goto err;
}
netif_dbg(adapter, ifup, adapter->netdev,
"set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
i, irq->affinity_hint_mask.bits[0], irq->vector);
irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
}
return rc;
err:
for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
irq = &adapter->irq_tbl[k];
free_irq(irq->vector, irq->data);
}
return rc;
}
static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
{
struct ena_irq *irq;
irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
synchronize_irq(irq->vector);
irq_set_affinity_hint(irq->vector, NULL);
free_irq(irq->vector, irq->data);
}
static void ena_free_io_irq(struct ena_adapter *adapter)
{
struct ena_irq *irq;
int i;
#ifdef CONFIG_RFS_ACCEL
if (adapter->msix_vecs >= 1) {
free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
adapter->netdev->rx_cpu_rmap = NULL;
}
#endif /* CONFIG_RFS_ACCEL */
for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
irq = &adapter->irq_tbl[i];
irq_set_affinity_hint(irq->vector, NULL);
free_irq(irq->vector, irq->data);
}
}
static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
{
int i;
if (!netif_running(adapter->netdev))
return;
for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
synchronize_irq(adapter->irq_tbl[i].vector);
}
static void ena_del_napi(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
netif_napi_del(&adapter->ena_napi[i].napi);
}
static void ena_init_napi(struct ena_adapter *adapter)
{
struct ena_napi *napi;
int i;
for (i = 0; i < adapter->num_queues; i++) {
napi = &adapter->ena_napi[i];
netif_napi_add(adapter->netdev,
&adapter->ena_napi[i].napi,
ena_io_poll,
ENA_NAPI_BUDGET);
napi->rx_ring = &adapter->rx_ring[i];
napi->tx_ring = &adapter->tx_ring[i];
napi->qid = i;
}
}
static void ena_napi_disable_all(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
napi_disable(&adapter->ena_napi[i].napi);
}
static void ena_napi_enable_all(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
napi_enable(&adapter->ena_napi[i].napi);
}
static void ena_restore_ethtool_params(struct ena_adapter *adapter)
{
adapter->tx_usecs = 0;
adapter->rx_usecs = 0;
adapter->tx_frames = 1;
adapter->rx_frames = 1;
}
/* Configure the Rx forwarding */
static int ena_rss_configure(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
int rc;
/* In case the RSS table wasn't initialized by probe */
if (!ena_dev->rss.tbl_log_size) {
rc = ena_rss_init_default(adapter);
if (rc && (rc != -EPERM)) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to init RSS rc: %d\n", rc);
return rc;
}
}
/* Set indirect table */
rc = ena_com_indirect_table_set(ena_dev);
if (unlikely(rc && rc != -EPERM))
return rc;
/* Configure hash function (if supported) */
rc = ena_com_set_hash_function(ena_dev);
if (unlikely(rc && (rc != -EPERM)))
return rc;
/* Configure hash inputs (if supported) */
rc = ena_com_set_hash_ctrl(ena_dev);
if (unlikely(rc && (rc != -EPERM)))
return rc;
return 0;
}
static int ena_up_complete(struct ena_adapter *adapter)
{
int rc, i;
rc = ena_rss_configure(adapter);
if (rc)
return rc;
ena_init_napi(adapter);
ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
ena_refill_all_rx_bufs(adapter);
/* enable transmits */
netif_tx_start_all_queues(adapter->netdev);
ena_restore_ethtool_params(adapter);
ena_napi_enable_all(adapter);
/* Enable completion queues interrupt */
for (i = 0; i < adapter->num_queues; i++)
ena_unmask_interrupt(&adapter->tx_ring[i],
&adapter->rx_ring[i]);
/* schedule napi in case we had pending packets
* from the last time we disable napi
*/
for (i = 0; i < adapter->num_queues; i++)
napi_schedule(&adapter->ena_napi[i].napi);
return 0;
}
static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
{
struct ena_com_create_io_ctx ctx = { 0 };
struct ena_com_dev *ena_dev;
struct ena_ring *tx_ring;
u32 msix_vector;
u16 ena_qid;
int rc;
ena_dev = adapter->ena_dev;
tx_ring = &adapter->tx_ring[qid];
msix_vector = ENA_IO_IRQ_IDX(qid);
ena_qid = ENA_IO_TXQ_IDX(qid);
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
ctx.qid = ena_qid;
ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
ctx.msix_vector = msix_vector;
ctx.queue_size = adapter->tx_ring_size;
ctx.numa_node = cpu_to_node(tx_ring->cpu);
rc = ena_com_create_io_queue(ena_dev, &ctx);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to create I/O TX queue num %d rc: %d\n",
qid, rc);
return rc;
}
rc = ena_com_get_io_handlers(ena_dev, ena_qid,
&tx_ring->ena_com_io_sq,
&tx_ring->ena_com_io_cq);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to get TX queue handlers. TX queue num %d rc: %d\n",
qid, rc);
ena_com_destroy_io_queue(ena_dev, ena_qid);
return rc;
}
ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
return rc;
}
static int ena_create_all_io_tx_queues(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
int rc, i;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_create_io_tx_queue(adapter, i);
if (rc)
goto create_err;
}
return 0;
create_err:
while (i--)
ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
return rc;
}
static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
{
struct ena_com_dev *ena_dev;
struct ena_com_create_io_ctx ctx = { 0 };
struct ena_ring *rx_ring;
u32 msix_vector;
u16 ena_qid;
int rc;
ena_dev = adapter->ena_dev;
rx_ring = &adapter->rx_ring[qid];
msix_vector = ENA_IO_IRQ_IDX(qid);
ena_qid = ENA_IO_RXQ_IDX(qid);
ctx.qid = ena_qid;
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
ctx.msix_vector = msix_vector;
ctx.queue_size = adapter->rx_ring_size;
ctx.numa_node = cpu_to_node(rx_ring->cpu);
rc = ena_com_create_io_queue(ena_dev, &ctx);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to create I/O RX queue num %d rc: %d\n",
qid, rc);
return rc;
}
rc = ena_com_get_io_handlers(ena_dev, ena_qid,
&rx_ring->ena_com_io_sq,
&rx_ring->ena_com_io_cq);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to get RX queue handlers. RX queue num %d rc: %d\n",
qid, rc);
ena_com_destroy_io_queue(ena_dev, ena_qid);
return rc;
}
ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
return rc;
}
static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
int rc, i;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_create_io_rx_queue(adapter, i);
if (rc)
goto create_err;
}
return 0;
create_err:
while (i--)
ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
return rc;
}
static int ena_up(struct ena_adapter *adapter)
{
int rc;
netdev_dbg(adapter->netdev, "%s\n", __func__);
ena_setup_io_intr(adapter);
rc = ena_request_io_irq(adapter);
if (rc)
goto err_req_irq;
/* allocate transmit descriptors */
rc = ena_setup_all_tx_resources(adapter);
if (rc)
goto err_setup_tx;
/* allocate receive descriptors */
rc = ena_setup_all_rx_resources(adapter);
if (rc)
goto err_setup_rx;
/* Create TX queues */
rc = ena_create_all_io_tx_queues(adapter);
if (rc)
goto err_create_tx_queues;
/* Create RX queues */
rc = ena_create_all_io_rx_queues(adapter);
if (rc)
goto err_create_rx_queues;
rc = ena_up_complete(adapter);
if (rc)
goto err_up;
if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
netif_carrier_on(adapter->netdev);
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.interface_up++;
u64_stats_update_end(&adapter->syncp);
set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
return rc;
err_up:
ena_destroy_all_rx_queues(adapter);
err_create_rx_queues:
ena_destroy_all_tx_queues(adapter);
err_create_tx_queues:
ena_free_all_io_rx_resources(adapter);
err_setup_rx:
ena_free_all_io_tx_resources(adapter);
err_setup_tx:
ena_free_io_irq(adapter);
err_req_irq:
return rc;
}
static void ena_down(struct ena_adapter *adapter)
{
netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.interface_down++;
u64_stats_update_end(&adapter->syncp);
netif_carrier_off(adapter->netdev);
netif_tx_disable(adapter->netdev);
/* After this point the napi handler won't enable the tx queue */
ena_napi_disable_all(adapter);
/* After destroy the queue there won't be any new interrupts */
if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
int rc;
rc = ena_com_dev_reset(adapter->ena_dev);
if (rc)
dev_err(&adapter->pdev->dev, "Device reset failed\n");
}
ena_destroy_all_io_queues(adapter);
ena_disable_io_intr_sync(adapter);
ena_free_io_irq(adapter);
ena_del_napi(adapter);
ena_free_all_tx_bufs(adapter);
ena_free_all_rx_bufs(adapter);
ena_free_all_io_tx_resources(adapter);
ena_free_all_io_rx_resources(adapter);
}
/* ena_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int ena_open(struct net_device *netdev)
{
struct ena_adapter *adapter = netdev_priv(netdev);
int rc;
/* Notify the stack of the actual queue counts. */
rc = netif_set_real_num_tx_queues(netdev, adapter->num_queues);
if (rc) {
netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
return rc;
}
rc = netif_set_real_num_rx_queues(netdev, adapter->num_queues);
if (rc) {
netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
return rc;
}
rc = ena_up(adapter);
if (rc)
return rc;
return rc;
}
/* ena_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int ena_close(struct net_device *netdev)
{
struct ena_adapter *adapter = netdev_priv(netdev);
netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
ena_down(adapter);
return 0;
}
static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
{
u32 mss = skb_shinfo(skb)->gso_size;
struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
u8 l4_protocol = 0;
if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
ena_tx_ctx->l4_csum_enable = 1;
if (mss) {
ena_tx_ctx->tso_enable = 1;
ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
ena_tx_ctx->l4_csum_partial = 0;
} else {
ena_tx_ctx->tso_enable = 0;
ena_meta->l4_hdr_len = 0;
ena_tx_ctx->l4_csum_partial = 1;
}
switch (ip_hdr(skb)->version) {
case IPVERSION:
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
if (ip_hdr(skb)->frag_off & htons(IP_DF))
ena_tx_ctx->df = 1;
if (mss)
ena_tx_ctx->l3_csum_enable = 1;
l4_protocol = ip_hdr(skb)->protocol;
break;
case 6:
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
l4_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
break;
}
if (l4_protocol == IPPROTO_TCP)
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
else
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
ena_meta->mss = mss;
ena_meta->l3_hdr_len = skb_network_header_len(skb);
ena_meta->l3_hdr_offset = skb_network_offset(skb);
ena_tx_ctx->meta_valid = 1;
} else {
ena_tx_ctx->meta_valid = 0;
}
}
static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
struct sk_buff *skb)
{
int num_frags, header_len, rc;
num_frags = skb_shinfo(skb)->nr_frags;
header_len = skb_headlen(skb);
if (num_frags < tx_ring->sgl_size)
return 0;
if ((num_frags == tx_ring->sgl_size) &&
(header_len < tx_ring->tx_max_header_size))
return 0;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.linearize++;
u64_stats_update_end(&tx_ring->syncp);
rc = skb_linearize(skb);
if (unlikely(rc)) {
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.linearize_failed++;
u64_stats_update_end(&tx_ring->syncp);
}
return rc;
}
/* Called with netif_tx_lock. */
static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ena_adapter *adapter = netdev_priv(dev);
struct ena_tx_buffer *tx_info;
struct ena_com_tx_ctx ena_tx_ctx;
struct ena_ring *tx_ring;
struct netdev_queue *txq;
struct ena_com_buf *ena_buf;
void *push_hdr;
u32 len, last_frag;
u16 next_to_use;
u16 req_id;
u16 push_len;
u16 header_len;
dma_addr_t dma;
int qid, rc, nb_hw_desc;
int i = -1;
netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
/* Determine which tx ring we will be placed on */
qid = skb_get_queue_mapping(skb);
tx_ring = &adapter->tx_ring[qid];
txq = netdev_get_tx_queue(dev, qid);
rc = ena_check_and_linearize_skb(tx_ring, skb);
if (unlikely(rc))
goto error_drop_packet;
skb_tx_timestamp(skb);
len = skb_headlen(skb);
next_to_use = tx_ring->next_to_use;
req_id = tx_ring->free_tx_ids[next_to_use];
tx_info = &tx_ring->tx_buffer_info[req_id];
tx_info->num_of_bufs = 0;
WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
ena_buf = tx_info->bufs;
tx_info->skb = skb;
if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
/* prepared the push buffer */
push_len = min_t(u32, len, tx_ring->tx_max_header_size);
header_len = push_len;
push_hdr = skb->data;
} else {
push_len = 0;
header_len = min_t(u32, len, tx_ring->tx_max_header_size);
push_hdr = NULL;
}
netif_dbg(adapter, tx_queued, dev,
"skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
push_hdr, push_len);
if (len > push_len) {
dma = dma_map_single(tx_ring->dev, skb->data + push_len,
len - push_len, DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
goto error_report_dma_error;
ena_buf->paddr = dma;
ena_buf->len = len - push_len;
ena_buf++;
tx_info->num_of_bufs++;
}
last_frag = skb_shinfo(skb)->nr_frags;
for (i = 0; i < last_frag; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = skb_frag_size(frag);
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
goto error_report_dma_error;
ena_buf->paddr = dma;
ena_buf->len = len;
ena_buf++;
}
tx_info->num_of_bufs += last_frag;
memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
ena_tx_ctx.ena_bufs = tx_info->bufs;
ena_tx_ctx.push_header = push_hdr;
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
ena_tx_ctx.req_id = req_id;
ena_tx_ctx.header_len = header_len;
/* set flags and meta data */
ena_tx_csum(&ena_tx_ctx, skb);
/* prepare the packet's descriptors to dma engine */
rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
&nb_hw_desc);
if (unlikely(rc)) {
netif_err(adapter, tx_queued, dev,
"failed to prepare tx bufs\n");
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_stop++;
tx_ring->tx_stats.prepare_ctx_err++;
u64_stats_update_end(&tx_ring->syncp);
netif_tx_stop_queue(txq);
goto error_unmap_dma;
}
netdev_tx_sent_queue(txq, skb->len);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.cnt++;
tx_ring->tx_stats.bytes += skb->len;
u64_stats_update_end(&tx_ring->syncp);
tx_info->tx_descs = nb_hw_desc;
tx_info->last_jiffies = jiffies;
tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
tx_ring->ring_size);
/* This WMB is aimed to:
* 1 - perform smp barrier before reading next_to_completion
* 2 - make sure the desc were written before trigger DB
*/
wmb();
/* stop the queue when no more space available, the packet can have up
* to sgl_size + 2. one for the meta descriptor and one for header
* (if the header is larger than tx_max_header_size).
*/
if (unlikely(ena_com_sq_empty_space(tx_ring->ena_com_io_sq) <
(tx_ring->sgl_size + 2))) {
netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
__func__, qid);
netif_tx_stop_queue(txq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_stop++;
u64_stats_update_end(&tx_ring->syncp);
/* There is a rare condition where this function decide to
* stop the queue but meanwhile clean_tx_irq updates
* next_to_completion and terminates.
* The queue will remain stopped forever.
* To solve this issue this function perform rmb, check
* the wakeup condition and wake up the queue if needed.
*/
smp_rmb();
if (ena_com_sq_empty_space(tx_ring->ena_com_io_sq)
> ENA_TX_WAKEUP_THRESH) {
netif_tx_wake_queue(txq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_wakeup++;
u64_stats_update_end(&tx_ring->syncp);
}
}
if (netif_xmit_stopped(txq) || !skb->xmit_more) {
/* trigger the dma engine */
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.doorbells++;
u64_stats_update_end(&tx_ring->syncp);
}
return NETDEV_TX_OK;
error_report_dma_error:
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.dma_mapping_err++;
u64_stats_update_end(&tx_ring->syncp);
netdev_warn(adapter->netdev, "failed to map skb\n");
tx_info->skb = NULL;
error_unmap_dma:
if (i >= 0) {
/* save value of frag that failed */
last_frag = i;
/* start back at beginning and unmap skb */
tx_info->skb = NULL;
ena_buf = tx_info->bufs;
dma_unmap_single(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
/* unmap remaining mapped pages */
for (i = 0; i < last_frag; i++) {
ena_buf++;
dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
}
}
error_drop_packet:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void ena_netpoll(struct net_device *netdev)
{
struct ena_adapter *adapter = netdev_priv(netdev);
int i;
/* Dont schedule NAPI if the driver is in the middle of reset
* or netdev is down.
*/
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags) ||
test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
for (i = 0; i < adapter->num_queues; i++)
napi_schedule(&adapter->ena_napi[i].napi);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
void *accel_priv, select_queue_fallback_t fallback)
{
u16 qid;
/* we suspect that this is good for in--kernel network services that
* want to loop incoming skb rx to tx in normal user generated traffic,
* most probably we will not get to this
*/
if (skb_rx_queue_recorded(skb))
qid = skb_get_rx_queue(skb);
else
qid = fallback(dev, skb);
return qid;
}
static void ena_config_host_info(struct ena_com_dev *ena_dev)
{
struct ena_admin_host_info *host_info;
int rc;
/* Allocate only the host info */
rc = ena_com_allocate_host_info(ena_dev);
if (rc) {
pr_err("Cannot allocate host info\n");
return;
}
host_info = ena_dev->host_attr.host_info;
host_info->os_type = ENA_ADMIN_OS_LINUX;
host_info->kernel_ver = LINUX_VERSION_CODE;
strncpy(host_info->kernel_ver_str, utsname()->version,
sizeof(host_info->kernel_ver_str) - 1);
host_info->os_dist = 0;
strncpy(host_info->os_dist_str, utsname()->release,
sizeof(host_info->os_dist_str) - 1);
host_info->driver_version =
(DRV_MODULE_VER_MAJOR) |
(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
rc = ena_com_set_host_attributes(ena_dev);
if (rc) {
if (rc == -EPERM)
pr_warn("Cannot set host attributes\n");
else
pr_err("Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_host_info(ena_dev);
}
static void ena_config_debug_area(struct ena_adapter *adapter)
{
u32 debug_area_size;
int rc, ss_count;
ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
if (ss_count <= 0) {
netif_err(adapter, drv, adapter->netdev,
"SS count is negative\n");
return;
}
/* allocate 32 bytes for each string and 64bit for the value */
debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
if (rc) {
pr_err("Cannot allocate debug area\n");
return;
}
rc = ena_com_set_host_attributes(adapter->ena_dev);
if (rc) {
if (rc == -EPERM)
netif_warn(adapter, drv, adapter->netdev,
"Cannot set host attributes\n");
else
netif_err(adapter, drv, adapter->netdev,
"Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_debug_area(adapter->ena_dev);
}
static void ena_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct ena_adapter *adapter = netdev_priv(netdev);
struct ena_ring *rx_ring, *tx_ring;
unsigned int start;
u64 rx_drops;
int i;
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
return;
for (i = 0; i < adapter->num_queues; i++) {
u64 bytes, packets;
tx_ring = &adapter->tx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
packets = tx_ring->tx_stats.cnt;
bytes = tx_ring->tx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
stats->tx_packets += packets;
stats->tx_bytes += bytes;
rx_ring = &adapter->rx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
packets = rx_ring->rx_stats.cnt;
bytes = rx_ring->rx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
}
do {
start = u64_stats_fetch_begin_irq(&adapter->syncp);
rx_drops = adapter->dev_stats.rx_drops;
} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
stats->rx_dropped = rx_drops;
stats->multicast = 0;
stats->collisions = 0;
stats->rx_length_errors = 0;
stats->rx_crc_errors = 0;
stats->rx_frame_errors = 0;
stats->rx_fifo_errors = 0;
stats->rx_missed_errors = 0;
stats->tx_window_errors = 0;
stats->rx_errors = 0;
stats->tx_errors = 0;
}
static const struct net_device_ops ena_netdev_ops = {
.ndo_open = ena_open,
.ndo_stop = ena_close,
.ndo_start_xmit = ena_start_xmit,
.ndo_select_queue = ena_select_queue,
.ndo_get_stats64 = ena_get_stats64,
.ndo_tx_timeout = ena_tx_timeout,
.ndo_change_mtu = ena_change_mtu,
.ndo_set_mac_address = NULL,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ena_netpoll,
#endif /* CONFIG_NET_POLL_CONTROLLER */
};
static void ena_device_io_suspend(struct work_struct *work)
{
struct ena_adapter *adapter =
container_of(work, struct ena_adapter, suspend_io_task);
struct net_device *netdev = adapter->netdev;
/* ena_napi_disable_all disables only the IO handling.
* We are still subject to AENQ keep alive watchdog.
*/
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.io_suspend++;
u64_stats_update_begin(&adapter->syncp);
ena_napi_disable_all(adapter);
netif_tx_lock(netdev);
netif_device_detach(netdev);
netif_tx_unlock(netdev);
}
static void ena_device_io_resume(struct work_struct *work)
{
struct ena_adapter *adapter =
container_of(work, struct ena_adapter, resume_io_task);
struct net_device *netdev = adapter->netdev;
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.io_resume++;
u64_stats_update_end(&adapter->syncp);
netif_device_attach(netdev);
ena_napi_enable_all(adapter);
}
static int ena_device_validate_params(struct ena_adapter *adapter,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
struct net_device *netdev = adapter->netdev;
int rc;
rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
adapter->mac_addr);
if (!rc) {
netif_err(adapter, drv, netdev,
"Error, mac address are different\n");
return -EINVAL;
}
if ((get_feat_ctx->max_queues.max_cq_num < adapter->num_queues) ||
(get_feat_ctx->max_queues.max_sq_num < adapter->num_queues)) {
netif_err(adapter, drv, netdev,
"Error, device doesn't support enough queues\n");
return -EINVAL;
}
if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
netif_err(adapter, drv, netdev,
"Error, device max mtu is smaller than netdev MTU\n");
return -EINVAL;
}
return 0;
}
static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
struct ena_com_dev_get_features_ctx *get_feat_ctx,
bool *wd_state)
{
struct device *dev = &pdev->dev;
bool readless_supported;
u32 aenq_groups;
int dma_width;
int rc;
rc = ena_com_mmio_reg_read_request_init(ena_dev);
if (rc) {
dev_err(dev, "failed to init mmio read less\n");
return rc;
}
/* The PCIe configuration space revision id indicate if mmio reg
* read is disabled
*/
readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
ena_com_set_mmio_read_mode(ena_dev, readless_supported);
rc = ena_com_dev_reset(ena_dev);
if (rc) {
dev_err(dev, "Can not reset device\n");
goto err_mmio_read_less;
}
rc = ena_com_validate_version(ena_dev);
if (rc) {
dev_err(dev, "device version is too low\n");
goto err_mmio_read_less;
}
dma_width = ena_com_get_dma_width(ena_dev);
if (dma_width < 0) {
dev_err(dev, "Invalid dma width value %d", dma_width);
rc = dma_width;
goto err_mmio_read_less;
}
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
if (rc) {
dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
goto err_mmio_read_less;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
if (rc) {
dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
rc);
goto err_mmio_read_less;
}
/* ENA admin level init */
rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
if (rc) {
dev_err(dev,
"Can not initialize ena admin queue with device\n");
goto err_mmio_read_less;
}
/* To enable the msix interrupts the driver needs to know the number
* of queues. So the driver uses polling mode to retrieve this
* information
*/
ena_com_set_admin_polling_mode(ena_dev, true);
ena_config_host_info(ena_dev);
/* Get Device Attributes*/
rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
if (rc) {
dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
goto err_admin_init;
}
/* Try to turn all the available aenq groups */
aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
BIT(ENA_ADMIN_FATAL_ERROR) |
BIT(ENA_ADMIN_WARNING) |
BIT(ENA_ADMIN_NOTIFICATION) |
BIT(ENA_ADMIN_KEEP_ALIVE);
aenq_groups &= get_feat_ctx->aenq.supported_groups;
rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
if (rc) {
dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
goto err_admin_init;
}
*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
return 0;
err_admin_init:
ena_com_delete_host_info(ena_dev);
ena_com_admin_destroy(ena_dev);
err_mmio_read_less:
ena_com_mmio_reg_read_request_destroy(ena_dev);
return rc;
}
static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
int io_vectors)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
struct device *dev = &adapter->pdev->dev;
int rc;
rc = ena_enable_msix(adapter, io_vectors);
if (rc) {
dev_err(dev, "Can not reserve msix vectors\n");
return rc;
}
ena_setup_mgmnt_intr(adapter);
rc = ena_request_mgmnt_irq(adapter);
if (rc) {
dev_err(dev, "Can not setup management interrupts\n");
goto err_disable_msix;
}
ena_com_set_admin_polling_mode(ena_dev, false);
ena_com_admin_aenq_enable(ena_dev);
return 0;
err_disable_msix:
pci_free_irq_vectors(adapter->pdev);
return rc;
}
static void ena_fw_reset_device(struct work_struct *work)
{
struct ena_com_dev_get_features_ctx get_feat_ctx;
struct ena_adapter *adapter =
container_of(work, struct ena_adapter, reset_task);
struct net_device *netdev = adapter->netdev;
struct ena_com_dev *ena_dev = adapter->ena_dev;
struct pci_dev *pdev = adapter->pdev;
bool dev_up, wd_state;
int rc;
if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
dev_err(&pdev->dev,
"device reset schedule while reset bit is off\n");
return;
}
netif_carrier_off(netdev);
del_timer_sync(&adapter->timer_service);
rtnl_lock();
dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
ena_com_set_admin_running_state(ena_dev, false);
/* After calling ena_close the tx queues and the napi
* are disabled so no one can interfere or touch the
* data structures
*/
ena_close(netdev);
ena_free_mgmnt_irq(adapter);
pci_free_irq_vectors(adapter->pdev);
ena_com_abort_admin_commands(ena_dev);
ena_com_wait_for_abort_completion(ena_dev);
ena_com_admin_destroy(ena_dev);
ena_com_mmio_reg_read_request_destroy(ena_dev);
clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
/* Finish with the destroy part. Start the init part */
rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
if (rc) {
dev_err(&pdev->dev, "Can not initialize device\n");
goto err;
}
adapter->wd_state = wd_state;
rc = ena_device_validate_params(adapter, &get_feat_ctx);
if (rc) {
dev_err(&pdev->dev, "Validation of device parameters failed\n");
goto err_device_destroy;
}
rc = ena_enable_msix_and_set_admin_interrupts(adapter,
adapter->num_queues);
if (rc) {
dev_err(&pdev->dev, "Enable MSI-X failed\n");
goto err_device_destroy;
}
/* If the interface was up before the reset bring it up */
if (dev_up) {
rc = ena_up(adapter);
if (rc) {
dev_err(&pdev->dev, "Failed to create I/O queues\n");
goto err_disable_msix;
}
}
mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
rtnl_unlock();
dev_err(&pdev->dev, "Device reset completed successfully\n");
return;
err_disable_msix:
ena_free_mgmnt_irq(adapter);
pci_free_irq_vectors(adapter->pdev);
err_device_destroy:
ena_com_admin_destroy(ena_dev);
err:
rtnl_unlock();
clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
dev_err(&pdev->dev,
"Reset attempt failed. Can not reset the device\n");
}
static void check_for_missing_tx_completions(struct ena_adapter *adapter)
{
struct ena_tx_buffer *tx_buf;
unsigned long last_jiffies;
struct ena_ring *tx_ring;
int i, j, budget;
u32 missed_tx;
/* Make sure the driver doesn't turn the device in other process */
smp_rmb();
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
return;
if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
budget = ENA_MONITORED_TX_QUEUES;
for (i = adapter->last_monitored_tx_qid; i < adapter->num_queues; i++) {
tx_ring = &adapter->tx_ring[i];
for (j = 0; j < tx_ring->ring_size; j++) {
tx_buf = &tx_ring->tx_buffer_info[j];
last_jiffies = tx_buf->last_jiffies;
if (unlikely(last_jiffies && time_is_before_jiffies(last_jiffies + TX_TIMEOUT))) {
netif_notice(adapter, tx_err, adapter->netdev,
"Found a Tx that wasn't completed on time, qid %d, index %d.\n",
tx_ring->qid, j);
u64_stats_update_begin(&tx_ring->syncp);
missed_tx = tx_ring->tx_stats.missing_tx_comp++;
u64_stats_update_end(&tx_ring->syncp);
/* Clear last jiffies so the lost buffer won't
* be counted twice.
*/
tx_buf->last_jiffies = 0;
if (unlikely(missed_tx > MAX_NUM_OF_TIMEOUTED_PACKETS)) {
netif_err(adapter, tx_err, adapter->netdev,
"The number of lost tx completion is above the threshold (%d > %d). Reset the device\n",
missed_tx, MAX_NUM_OF_TIMEOUTED_PACKETS);
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
}
}
}
budget--;
if (!budget)
break;
}
adapter->last_monitored_tx_qid = i % adapter->num_queues;
}
/* trigger napi schedule after 2 consecutive detections */
#define EMPTY_RX_REFILL 2
/* For the rare case where the device runs out of Rx descriptors and the
* napi handler failed to refill new Rx descriptors (due to a lack of memory
* for example).
* This case will lead to a deadlock:
* The device won't send interrupts since all the new Rx packets will be dropped
* The napi handler won't allocate new Rx descriptors so the device will be
* able to send new packets.
*
* This scenario can happen when the kernel's vm.min_free_kbytes is too small.
* It is recommended to have at least 512MB, with a minimum of 128MB for
* constrained environment).
*
* When such a situation is detected - Reschedule napi
*/
static void check_for_empty_rx_ring(struct ena_adapter *adapter)
{
struct ena_ring *rx_ring;
int i, refill_required;
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
return;
if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
for (i = 0; i < adapter->num_queues; i++) {
rx_ring = &adapter->rx_ring[i];
refill_required =
ena_com_sq_empty_space(rx_ring->ena_com_io_sq);
if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
rx_ring->empty_rx_queue++;
if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.empty_rx_ring++;
u64_stats_update_end(&rx_ring->syncp);
netif_err(adapter, drv, adapter->netdev,
"trigger refill for ring %d\n", i);
napi_schedule(rx_ring->napi);
rx_ring->empty_rx_queue = 0;
}
} else {
rx_ring->empty_rx_queue = 0;
}
}
}
/* Check for keep alive expiration */
static void check_for_missing_keep_alive(struct ena_adapter *adapter)
{
unsigned long keep_alive_expired;
if (!adapter->wd_state)
return;
keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies
+ ENA_DEVICE_KALIVE_TIMEOUT);
if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
netif_err(adapter, drv, adapter->netdev,
"Keep alive watchdog timeout.\n");
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.wd_expired++;
u64_stats_update_end(&adapter->syncp);
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
}
}
static void check_for_admin_com_state(struct ena_adapter *adapter)
{
if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
netif_err(adapter, drv, adapter->netdev,
"ENA admin queue is not in running state!\n");
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.admin_q_pause++;
u64_stats_update_end(&adapter->syncp);
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
}
}
static void ena_update_host_info(struct ena_admin_host_info *host_info,
struct net_device *netdev)
{
host_info->supported_network_features[0] =
netdev->features & GENMASK_ULL(31, 0);
host_info->supported_network_features[1] =
(netdev->features & GENMASK_ULL(63, 32)) >> 32;
}
static void ena_timer_service(unsigned long data)
{
struct ena_adapter *adapter = (struct ena_adapter *)data;
u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
struct ena_admin_host_info *host_info =
adapter->ena_dev->host_attr.host_info;
check_for_missing_keep_alive(adapter);
check_for_admin_com_state(adapter);
check_for_missing_tx_completions(adapter);
check_for_empty_rx_ring(adapter);
if (debug_area)
ena_dump_stats_to_buf(adapter, debug_area);
if (host_info)
ena_update_host_info(host_info, adapter->netdev);
if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
netif_err(adapter, drv, adapter->netdev,
"Trigger reset is on\n");
ena_dump_stats_to_dmesg(adapter);
queue_work(ena_wq, &adapter->reset_task);
return;
}
/* Reset the timer */
mod_timer(&adapter->timer_service, jiffies + HZ);
}
static int ena_calc_io_queue_num(struct pci_dev *pdev,
struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
int io_sq_num, io_queue_num;
/* In case of LLQ use the llq number in the get feature cmd */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
io_sq_num = get_feat_ctx->max_queues.max_llq_num;
if (io_sq_num == 0) {
dev_err(&pdev->dev,
"Trying to use LLQ but llq_num is 0. Fall back into regular queues\n");
ena_dev->tx_mem_queue_type =
ENA_ADMIN_PLACEMENT_POLICY_HOST;
io_sq_num = get_feat_ctx->max_queues.max_sq_num;
}
} else {
io_sq_num = get_feat_ctx->max_queues.max_sq_num;
}
io_queue_num = min_t(int, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
io_queue_num = min_t(int, io_queue_num, io_sq_num);
io_queue_num = min_t(int, io_queue_num,
get_feat_ctx->max_queues.max_cq_num);
/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
io_queue_num = min_t(int, io_queue_num, pci_msix_vec_count(pdev) - 1);
if (unlikely(!io_queue_num)) {
dev_err(&pdev->dev, "The device doesn't have io queues\n");
return -EFAULT;
}
return io_queue_num;
}
static void ena_set_push_mode(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
bool has_mem_bar;
has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
/* Enable push mode if device supports LLQ */
if (has_mem_bar && (get_feat_ctx->max_queues.max_llq_num > 0))
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_DEV;
else
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
}
static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
struct net_device *netdev)
{
netdev_features_t dev_features = 0;
/* Set offload features */
if (feat->offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
dev_features |= NETIF_F_IP_CSUM;
if (feat->offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
dev_features |= NETIF_F_IPV6_CSUM;
if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
dev_features |= NETIF_F_TSO;
if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
dev_features |= NETIF_F_TSO6;
if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
dev_features |= NETIF_F_TSO_ECN;
if (feat->offload.rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
dev_features |= NETIF_F_RXCSUM;
if (feat->offload.rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
dev_features |= NETIF_F_RXCSUM;
netdev->features =
dev_features |
NETIF_F_SG |
NETIF_F_RXHASH |
NETIF_F_HIGHDMA;
netdev->hw_features |= netdev->features;
netdev->vlan_features |= netdev->features;
}
static void ena_set_conf_feat_params(struct ena_adapter *adapter,
struct ena_com_dev_get_features_ctx *feat)
{
struct net_device *netdev = adapter->netdev;
/* Copy mac address */
if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
eth_hw_addr_random(netdev);
ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
} else {
ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
}
/* Set offload features */
ena_set_dev_offloads(feat, netdev);
adapter->max_mtu = feat->dev_attr.max_mtu;
netdev->max_mtu = adapter->max_mtu;
netdev->min_mtu = ENA_MIN_MTU;
}
static int ena_rss_init_default(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
struct device *dev = &adapter->pdev->dev;
int rc, i;
u32 val;
rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
if (unlikely(rc)) {
dev_err(dev, "Cannot init indirect table\n");
goto err_rss_init;
}
for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
val = ethtool_rxfh_indir_default(i, adapter->num_queues);
rc = ena_com_indirect_table_fill_entry(ena_dev, i,
ENA_IO_RXQ_IDX(val));
if (unlikely(rc && (rc != -EPERM))) {
dev_err(dev, "Cannot fill indirect table\n");
goto err_fill_indir;
}
}
rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
if (unlikely(rc && (rc != -EPERM))) {
dev_err(dev, "Cannot fill hash function\n");
goto err_fill_indir;
}
rc = ena_com_set_default_hash_ctrl(ena_dev);
if (unlikely(rc && (rc != -EPERM))) {
dev_err(dev, "Cannot fill hash control\n");
goto err_fill_indir;
}
return 0;
err_fill_indir:
ena_com_rss_destroy(ena_dev);
err_rss_init:
return rc;
}
static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
{
int release_bars;
if (ena_dev->mem_bar)
devm_iounmap(&pdev->dev, ena_dev->mem_bar);
devm_iounmap(&pdev->dev, ena_dev->reg_bar);
release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
pci_release_selected_regions(pdev, release_bars);
}
static int ena_calc_queue_size(struct pci_dev *pdev,
struct ena_com_dev *ena_dev,
u16 *max_tx_sgl_size,
u16 *max_rx_sgl_size,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
u32 queue_size = ENA_DEFAULT_RING_SIZE;
queue_size = min_t(u32, queue_size,
get_feat_ctx->max_queues.max_cq_depth);
queue_size = min_t(u32, queue_size,
get_feat_ctx->max_queues.max_sq_depth);
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
queue_size = min_t(u32, queue_size,
get_feat_ctx->max_queues.max_llq_depth);
queue_size = rounddown_pow_of_two(queue_size);
if (unlikely(!queue_size)) {
dev_err(&pdev->dev, "Invalid queue size\n");
return -EFAULT;
}
*max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
get_feat_ctx->max_queues.max_packet_tx_descs);
*max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
get_feat_ctx->max_queues.max_packet_rx_descs);
return queue_size;
}
/* ena_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in ena_pci_tbl
*
* Returns 0 on success, negative on failure
*
* ena_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct ena_com_dev_get_features_ctx get_feat_ctx;
static int version_printed;
struct net_device *netdev;
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev = NULL;
static int adapters_found;
int io_queue_num, bars, rc;
int queue_size;
u16 tx_sgl_size = 0;
u16 rx_sgl_size = 0;
bool wd_state;
dev_dbg(&pdev->dev, "%s\n", __func__);
if (version_printed++ == 0)
dev_info(&pdev->dev, "%s", version);
rc = pci_enable_device_mem(pdev);
if (rc) {
dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
return rc;
}
pci_set_master(pdev);
ena_dev = vzalloc(sizeof(*ena_dev));
if (!ena_dev) {
rc = -ENOMEM;
goto err_disable_device;
}
bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
rc);
goto err_free_ena_dev;
}
ena_dev->reg_bar = devm_ioremap(&pdev->dev,
pci_resource_start(pdev, ENA_REG_BAR),
pci_resource_len(pdev, ENA_REG_BAR));
if (!ena_dev->reg_bar) {
dev_err(&pdev->dev, "failed to remap regs bar\n");
rc = -EFAULT;
goto err_free_region;
}
ena_dev->dmadev = &pdev->dev;
rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
if (rc) {
dev_err(&pdev->dev, "ena device init failed\n");
if (rc == -ETIME)
rc = -EPROBE_DEFER;
goto err_free_region;
}
ena_set_push_mode(pdev, ena_dev, &get_feat_ctx);
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
pci_resource_start(pdev, ENA_MEM_BAR),
pci_resource_len(pdev, ENA_MEM_BAR));
if (!ena_dev->mem_bar) {
rc = -EFAULT;
goto err_device_destroy;
}
}
/* initial Tx interrupt delay, Assumes 1 usec granularity.
* Updated during device initialization with the real granularity
*/
ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx);
queue_size = ena_calc_queue_size(pdev, ena_dev, &tx_sgl_size,
&rx_sgl_size, &get_feat_ctx);
if ((queue_size <= 0) || (io_queue_num <= 0)) {
rc = -EFAULT;
goto err_device_destroy;
}
dev_info(&pdev->dev, "creating %d io queues. queue size: %d\n",
io_queue_num, queue_size);
/* dev zeroed in init_etherdev */
netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num);
if (!netdev) {
dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
rc = -ENOMEM;
goto err_device_destroy;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
adapter = netdev_priv(netdev);
pci_set_drvdata(pdev, adapter);
adapter->ena_dev = ena_dev;
adapter->netdev = netdev;
adapter->pdev = pdev;
ena_set_conf_feat_params(adapter, &get_feat_ctx);
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
adapter->tx_ring_size = queue_size;
adapter->rx_ring_size = queue_size;
adapter->max_tx_sgl_size = tx_sgl_size;
adapter->max_rx_sgl_size = rx_sgl_size;
adapter->num_queues = io_queue_num;
adapter->last_monitored_tx_qid = 0;
adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
adapter->wd_state = wd_state;
snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
if (rc) {
dev_err(&pdev->dev,
"Failed to query interrupt moderation feature\n");
goto err_netdev_destroy;
}
ena_init_io_rings(adapter);
netdev->netdev_ops = &ena_netdev_ops;
netdev->watchdog_timeo = TX_TIMEOUT;
ena_set_ethtool_ops(netdev);
netdev->priv_flags |= IFF_UNICAST_FLT;
u64_stats_init(&adapter->syncp);
rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
if (rc) {
dev_err(&pdev->dev,
"Failed to enable and set the admin interrupts\n");
goto err_worker_destroy;
}
rc = ena_rss_init_default(adapter);
if (rc && (rc != -EPERM)) {
dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
goto err_free_msix;
}
ena_config_debug_area(adapter);
memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
netif_carrier_off(netdev);
rc = register_netdev(netdev);
if (rc) {
dev_err(&pdev->dev, "Cannot register net device\n");
goto err_rss;
}
INIT_WORK(&adapter->suspend_io_task, ena_device_io_suspend);
INIT_WORK(&adapter->resume_io_task, ena_device_io_resume);
INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
adapter->last_keep_alive_jiffies = jiffies;
setup_timer(&adapter->timer_service, ena_timer_service,
(unsigned long)adapter);
mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
dev_info(&pdev->dev, "%s found at mem %lx, mac addr %pM Queues %d\n",
DEVICE_NAME, (long)pci_resource_start(pdev, 0),
netdev->dev_addr, io_queue_num);
set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
adapters_found++;
return 0;
err_rss:
ena_com_delete_debug_area(ena_dev);
ena_com_rss_destroy(ena_dev);
err_free_msix:
ena_com_dev_reset(ena_dev);
ena_free_mgmnt_irq(adapter);
pci_free_irq_vectors(adapter->pdev);
err_worker_destroy:
ena_com_destroy_interrupt_moderation(ena_dev);
del_timer(&adapter->timer_service);
cancel_work_sync(&adapter->suspend_io_task);
cancel_work_sync(&adapter->resume_io_task);
err_netdev_destroy:
free_netdev(netdev);
err_device_destroy:
ena_com_delete_host_info(ena_dev);
ena_com_admin_destroy(ena_dev);
err_free_region:
ena_release_bars(ena_dev, pdev);
err_free_ena_dev:
vfree(ena_dev);
err_disable_device:
pci_disable_device(pdev);
return rc;
}
/*****************************************************************************/
static int ena_sriov_configure(struct pci_dev *dev, int numvfs)
{
int rc;
if (numvfs > 0) {
rc = pci_enable_sriov(dev, numvfs);
if (rc != 0) {
dev_err(&dev->dev,
"pci_enable_sriov failed to enable: %d vfs with the error: %d\n",
numvfs, rc);
return rc;
}
return numvfs;
}
if (numvfs == 0) {
pci_disable_sriov(dev);
return 0;
}
return -EINVAL;
}
/*****************************************************************************/
/*****************************************************************************/
/* ena_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* ena_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device.
*/
static void ena_remove(struct pci_dev *pdev)
{
struct ena_adapter *adapter = pci_get_drvdata(pdev);
struct ena_com_dev *ena_dev;
struct net_device *netdev;
ena_dev = adapter->ena_dev;
netdev = adapter->netdev;
#ifdef CONFIG_RFS_ACCEL
if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
free_irq_cpu_rmap(netdev->rx_cpu_rmap);
netdev->rx_cpu_rmap = NULL;
}
#endif /* CONFIG_RFS_ACCEL */
unregister_netdev(netdev);
del_timer_sync(&adapter->timer_service);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->suspend_io_task);
cancel_work_sync(&adapter->resume_io_task);
/* Reset the device only if the device is running. */
if (test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
ena_com_dev_reset(ena_dev);
ena_free_mgmnt_irq(adapter);
pci_free_irq_vectors(adapter->pdev);
free_netdev(netdev);
ena_com_mmio_reg_read_request_destroy(ena_dev);
ena_com_abort_admin_commands(ena_dev);
ena_com_wait_for_abort_completion(ena_dev);
ena_com_admin_destroy(ena_dev);
ena_com_rss_destroy(ena_dev);
ena_com_delete_debug_area(ena_dev);
ena_com_delete_host_info(ena_dev);
ena_release_bars(ena_dev, pdev);
pci_disable_device(pdev);
ena_com_destroy_interrupt_moderation(ena_dev);
vfree(ena_dev);
}
static struct pci_driver ena_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = ena_pci_tbl,
.probe = ena_probe,
.remove = ena_remove,
.sriov_configure = ena_sriov_configure,
};
static int __init ena_init(void)
{
pr_info("%s", version);
ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
if (!ena_wq) {
pr_err("Failed to create workqueue\n");
return -ENOMEM;
}
return pci_register_driver(&ena_pci_driver);
}
static void __exit ena_cleanup(void)
{
pci_unregister_driver(&ena_pci_driver);
if (ena_wq) {
destroy_workqueue(ena_wq);
ena_wq = NULL;
}
}
/******************************************************************************
******************************** AENQ Handlers *******************************
*****************************************************************************/
/* ena_update_on_link_change:
* Notify the network interface about the change in link status
*/
static void ena_update_on_link_change(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
struct ena_admin_aenq_link_change_desc *aenq_desc =
(struct ena_admin_aenq_link_change_desc *)aenq_e;
int status = aenq_desc->flags &
ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
if (status) {
netdev_dbg(adapter->netdev, "%s\n", __func__);
set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
netif_carrier_on(adapter->netdev);
} else {
clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
netif_carrier_off(adapter->netdev);
}
}
static void ena_keep_alive_wd(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
adapter->last_keep_alive_jiffies = jiffies;
}
static void ena_notification(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
"Invalid group(%x) expected %x\n",
aenq_e->aenq_common_desc.group,
ENA_ADMIN_NOTIFICATION);
switch (aenq_e->aenq_common_desc.syndrom) {
case ENA_ADMIN_SUSPEND:
/* Suspend just the IO queues.
* We deliberately don't suspend admin so the timer and
* the keep_alive events should remain.
*/
queue_work(ena_wq, &adapter->suspend_io_task);
break;
case ENA_ADMIN_RESUME:
queue_work(ena_wq, &adapter->resume_io_task);
break;
default:
netif_err(adapter, drv, adapter->netdev,
"Invalid aenq notification link state %d\n",
aenq_e->aenq_common_desc.syndrom);
}
}
/* This handler will called for unknown event group or unimplemented handlers*/
static void unimplemented_aenq_handler(void *data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)data;
netif_err(adapter, drv, adapter->netdev,
"Unknown event was received or event with unimplemented handler\n");
}
static struct ena_aenq_handlers aenq_handlers = {
.handlers = {
[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
[ENA_ADMIN_NOTIFICATION] = ena_notification,
[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
},
.unimplemented_handler = unimplemented_aenq_handler
};
module_init(ena_init);
module_exit(ena_cleanup);