linux_dsm_epyc7002/drivers/net/wireless/adm8211.c
Alexey Dobriyan a3aa18842a drivers/net/: use DEFINE_PCI_DEVICE_TABLE()
Use DEFINE_PCI_DEVICE_TABLE() so we get place PCI ids table into correct section
in every case.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-01-07 23:54:26 -08:00

2025 lines
55 KiB
C

/*
* Linux device driver for ADMtek ADM8211 (IEEE 802.11b MAC/BBP)
*
* Copyright (c) 2003, Jouni Malinen <j@w1.fi>
* Copyright (c) 2004-2007, Michael Wu <flamingice@sourmilk.net>
* Some parts copyright (c) 2003 by David Young <dyoung@pobox.com>
* and used with permission.
*
* Much thanks to Infineon-ADMtek for their support of this driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*/
#include <linux/init.h>
#include <linux/if.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/eeprom_93cx6.h>
#include <net/mac80211.h>
#include "adm8211.h"
MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
MODULE_AUTHOR("Jouni Malinen <j@w1.fi>");
MODULE_DESCRIPTION("Driver for IEEE 802.11b wireless cards based on ADMtek ADM8211");
MODULE_SUPPORTED_DEVICE("ADM8211");
MODULE_LICENSE("GPL");
static unsigned int tx_ring_size __read_mostly = 16;
static unsigned int rx_ring_size __read_mostly = 16;
module_param(tx_ring_size, uint, 0);
module_param(rx_ring_size, uint, 0);
static DEFINE_PCI_DEVICE_TABLE(adm8211_pci_id_table) = {
/* ADMtek ADM8211 */
{ PCI_DEVICE(0x10B7, 0x6000) }, /* 3Com 3CRSHPW796 */
{ PCI_DEVICE(0x1200, 0x8201) }, /* ? */
{ PCI_DEVICE(0x1317, 0x8201) }, /* ADM8211A */
{ PCI_DEVICE(0x1317, 0x8211) }, /* ADM8211B/C */
{ 0 }
};
static struct ieee80211_rate adm8211_rates[] = {
{ .bitrate = 10, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 220, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, /* XX ?? */
};
static const struct ieee80211_channel adm8211_channels[] = {
{ .center_freq = 2412},
{ .center_freq = 2417},
{ .center_freq = 2422},
{ .center_freq = 2427},
{ .center_freq = 2432},
{ .center_freq = 2437},
{ .center_freq = 2442},
{ .center_freq = 2447},
{ .center_freq = 2452},
{ .center_freq = 2457},
{ .center_freq = 2462},
{ .center_freq = 2467},
{ .center_freq = 2472},
{ .center_freq = 2484},
};
static void adm8211_eeprom_register_read(struct eeprom_93cx6 *eeprom)
{
struct adm8211_priv *priv = eeprom->data;
u32 reg = ADM8211_CSR_READ(SPR);
eeprom->reg_data_in = reg & ADM8211_SPR_SDI;
eeprom->reg_data_out = reg & ADM8211_SPR_SDO;
eeprom->reg_data_clock = reg & ADM8211_SPR_SCLK;
eeprom->reg_chip_select = reg & ADM8211_SPR_SCS;
}
static void adm8211_eeprom_register_write(struct eeprom_93cx6 *eeprom)
{
struct adm8211_priv *priv = eeprom->data;
u32 reg = 0x4000 | ADM8211_SPR_SRS;
if (eeprom->reg_data_in)
reg |= ADM8211_SPR_SDI;
if (eeprom->reg_data_out)
reg |= ADM8211_SPR_SDO;
if (eeprom->reg_data_clock)
reg |= ADM8211_SPR_SCLK;
if (eeprom->reg_chip_select)
reg |= ADM8211_SPR_SCS;
ADM8211_CSR_WRITE(SPR, reg);
ADM8211_CSR_READ(SPR); /* eeprom_delay */
}
static int adm8211_read_eeprom(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
unsigned int words, i;
struct ieee80211_chan_range chan_range;
u16 cr49;
struct eeprom_93cx6 eeprom = {
.data = priv,
.register_read = adm8211_eeprom_register_read,
.register_write = adm8211_eeprom_register_write
};
if (ADM8211_CSR_READ(CSR_TEST0) & ADM8211_CSR_TEST0_EPTYP) {
/* 256 * 16-bit = 512 bytes */
eeprom.width = PCI_EEPROM_WIDTH_93C66;
words = 256;
} else {
/* 64 * 16-bit = 128 bytes */
eeprom.width = PCI_EEPROM_WIDTH_93C46;
words = 64;
}
priv->eeprom_len = words * 2;
priv->eeprom = kmalloc(priv->eeprom_len, GFP_KERNEL);
if (!priv->eeprom)
return -ENOMEM;
eeprom_93cx6_multiread(&eeprom, 0, (__le16 *)priv->eeprom, words);
cr49 = le16_to_cpu(priv->eeprom->cr49);
priv->rf_type = (cr49 >> 3) & 0x7;
switch (priv->rf_type) {
case ADM8211_TYPE_INTERSIL:
case ADM8211_TYPE_RFMD:
case ADM8211_TYPE_MARVEL:
case ADM8211_TYPE_AIROHA:
case ADM8211_TYPE_ADMTEK:
break;
default:
if (priv->pdev->revision < ADM8211_REV_CA)
priv->rf_type = ADM8211_TYPE_RFMD;
else
priv->rf_type = ADM8211_TYPE_AIROHA;
printk(KERN_WARNING "%s (adm8211): Unknown RFtype %d\n",
pci_name(priv->pdev), (cr49 >> 3) & 0x7);
}
priv->bbp_type = cr49 & 0x7;
switch (priv->bbp_type) {
case ADM8211_TYPE_INTERSIL:
case ADM8211_TYPE_RFMD:
case ADM8211_TYPE_MARVEL:
case ADM8211_TYPE_AIROHA:
case ADM8211_TYPE_ADMTEK:
break;
default:
if (priv->pdev->revision < ADM8211_REV_CA)
priv->bbp_type = ADM8211_TYPE_RFMD;
else
priv->bbp_type = ADM8211_TYPE_ADMTEK;
printk(KERN_WARNING "%s (adm8211): Unknown BBPtype: %d\n",
pci_name(priv->pdev), cr49 >> 3);
}
if (priv->eeprom->country_code >= ARRAY_SIZE(cranges)) {
printk(KERN_WARNING "%s (adm8211): Invalid country code (%d)\n",
pci_name(priv->pdev), priv->eeprom->country_code);
chan_range = cranges[2];
} else
chan_range = cranges[priv->eeprom->country_code];
printk(KERN_DEBUG "%s (adm8211): Channel range: %d - %d\n",
pci_name(priv->pdev), (int)chan_range.min, (int)chan_range.max);
BUILD_BUG_ON(sizeof(priv->channels) != sizeof(adm8211_channels));
memcpy(priv->channels, adm8211_channels, sizeof(priv->channels));
priv->band.channels = priv->channels;
priv->band.n_channels = ARRAY_SIZE(adm8211_channels);
priv->band.bitrates = adm8211_rates;
priv->band.n_bitrates = ARRAY_SIZE(adm8211_rates);
for (i = 1; i <= ARRAY_SIZE(adm8211_channels); i++)
if (i < chan_range.min || i > chan_range.max)
priv->channels[i - 1].flags |= IEEE80211_CHAN_DISABLED;
switch (priv->eeprom->specific_bbptype) {
case ADM8211_BBP_RFMD3000:
case ADM8211_BBP_RFMD3002:
case ADM8211_BBP_ADM8011:
priv->specific_bbptype = priv->eeprom->specific_bbptype;
break;
default:
if (priv->pdev->revision < ADM8211_REV_CA)
priv->specific_bbptype = ADM8211_BBP_RFMD3000;
else
priv->specific_bbptype = ADM8211_BBP_ADM8011;
printk(KERN_WARNING "%s (adm8211): Unknown specific BBP: %d\n",
pci_name(priv->pdev), priv->eeprom->specific_bbptype);
}
switch (priv->eeprom->specific_rftype) {
case ADM8211_RFMD2948:
case ADM8211_RFMD2958:
case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
case ADM8211_MAX2820:
case ADM8211_AL2210L:
priv->transceiver_type = priv->eeprom->specific_rftype;
break;
default:
if (priv->pdev->revision == ADM8211_REV_BA)
priv->transceiver_type = ADM8211_RFMD2958_RF3000_CONTROL_POWER;
else if (priv->pdev->revision == ADM8211_REV_CA)
priv->transceiver_type = ADM8211_AL2210L;
else if (priv->pdev->revision == ADM8211_REV_AB)
priv->transceiver_type = ADM8211_RFMD2948;
printk(KERN_WARNING "%s (adm8211): Unknown transceiver: %d\n",
pci_name(priv->pdev), priv->eeprom->specific_rftype);
break;
}
printk(KERN_DEBUG "%s (adm8211): RFtype=%d BBPtype=%d Specific BBP=%d "
"Transceiver=%d\n", pci_name(priv->pdev), priv->rf_type,
priv->bbp_type, priv->specific_bbptype, priv->transceiver_type);
return 0;
}
static inline void adm8211_write_sram(struct ieee80211_hw *dev,
u32 addr, u32 data)
{
struct adm8211_priv *priv = dev->priv;
ADM8211_CSR_WRITE(WEPCTL, addr | ADM8211_WEPCTL_TABLE_WR |
(priv->pdev->revision < ADM8211_REV_BA ?
0 : ADM8211_WEPCTL_SEL_WEPTABLE ));
ADM8211_CSR_READ(WEPCTL);
msleep(1);
ADM8211_CSR_WRITE(WESK, data);
ADM8211_CSR_READ(WESK);
msleep(1);
}
static void adm8211_write_sram_bytes(struct ieee80211_hw *dev,
unsigned int addr, u8 *buf,
unsigned int len)
{
struct adm8211_priv *priv = dev->priv;
u32 reg = ADM8211_CSR_READ(WEPCTL);
unsigned int i;
if (priv->pdev->revision < ADM8211_REV_BA) {
for (i = 0; i < len; i += 2) {
u16 val = buf[i] | (buf[i + 1] << 8);
adm8211_write_sram(dev, addr + i / 2, val);
}
} else {
for (i = 0; i < len; i += 4) {
u32 val = (buf[i + 0] << 0 ) | (buf[i + 1] << 8 ) |
(buf[i + 2] << 16) | (buf[i + 3] << 24);
adm8211_write_sram(dev, addr + i / 4, val);
}
}
ADM8211_CSR_WRITE(WEPCTL, reg);
}
static void adm8211_clear_sram(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
u32 reg = ADM8211_CSR_READ(WEPCTL);
unsigned int addr;
for (addr = 0; addr < ADM8211_SRAM_SIZE; addr++)
adm8211_write_sram(dev, addr, 0);
ADM8211_CSR_WRITE(WEPCTL, reg);
}
static int adm8211_get_stats(struct ieee80211_hw *dev,
struct ieee80211_low_level_stats *stats)
{
struct adm8211_priv *priv = dev->priv;
memcpy(stats, &priv->stats, sizeof(*stats));
return 0;
}
static int adm8211_get_tx_stats(struct ieee80211_hw *dev,
struct ieee80211_tx_queue_stats *stats)
{
struct adm8211_priv *priv = dev->priv;
stats[0].len = priv->cur_tx - priv->dirty_tx;
stats[0].limit = priv->tx_ring_size - 2;
stats[0].count = priv->dirty_tx;
return 0;
}
static void adm8211_interrupt_tci(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
unsigned int dirty_tx;
spin_lock(&priv->lock);
for (dirty_tx = priv->dirty_tx; priv->cur_tx - dirty_tx; dirty_tx++) {
unsigned int entry = dirty_tx % priv->tx_ring_size;
u32 status = le32_to_cpu(priv->tx_ring[entry].status);
struct ieee80211_tx_info *txi;
struct adm8211_tx_ring_info *info;
struct sk_buff *skb;
if (status & TDES0_CONTROL_OWN ||
!(status & TDES0_CONTROL_DONE))
break;
info = &priv->tx_buffers[entry];
skb = info->skb;
txi = IEEE80211_SKB_CB(skb);
/* TODO: check TDES0_STATUS_TUF and TDES0_STATUS_TRO */
pci_unmap_single(priv->pdev, info->mapping,
info->skb->len, PCI_DMA_TODEVICE);
ieee80211_tx_info_clear_status(txi);
skb_pull(skb, sizeof(struct adm8211_tx_hdr));
memcpy(skb_push(skb, info->hdrlen), skb->cb, info->hdrlen);
if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) &&
!(status & TDES0_STATUS_ES))
txi->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(dev, skb);
info->skb = NULL;
}
if (priv->cur_tx - dirty_tx < priv->tx_ring_size - 2)
ieee80211_wake_queue(dev, 0);
priv->dirty_tx = dirty_tx;
spin_unlock(&priv->lock);
}
static void adm8211_interrupt_rci(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
unsigned int entry = priv->cur_rx % priv->rx_ring_size;
u32 status;
unsigned int pktlen;
struct sk_buff *skb, *newskb;
unsigned int limit = priv->rx_ring_size;
u8 rssi, rate;
while (!(priv->rx_ring[entry].status & cpu_to_le32(RDES0_STATUS_OWN))) {
if (!limit--)
break;
status = le32_to_cpu(priv->rx_ring[entry].status);
rate = (status & RDES0_STATUS_RXDR) >> 12;
rssi = le32_to_cpu(priv->rx_ring[entry].length) &
RDES1_STATUS_RSSI;
pktlen = status & RDES0_STATUS_FL;
if (pktlen > RX_PKT_SIZE) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: frame too long (%d)\n",
wiphy_name(dev->wiphy), pktlen);
pktlen = RX_PKT_SIZE;
}
if (!priv->soft_rx_crc && status & RDES0_STATUS_ES) {
skb = NULL; /* old buffer will be reused */
/* TODO: update RX error stats */
/* TODO: check RDES0_STATUS_CRC*E */
} else if (pktlen < RX_COPY_BREAK) {
skb = dev_alloc_skb(pktlen);
if (skb) {
pci_dma_sync_single_for_cpu(
priv->pdev,
priv->rx_buffers[entry].mapping,
pktlen, PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, pktlen),
skb_tail_pointer(priv->rx_buffers[entry].skb),
pktlen);
pci_dma_sync_single_for_device(
priv->pdev,
priv->rx_buffers[entry].mapping,
RX_PKT_SIZE, PCI_DMA_FROMDEVICE);
}
} else {
newskb = dev_alloc_skb(RX_PKT_SIZE);
if (newskb) {
skb = priv->rx_buffers[entry].skb;
skb_put(skb, pktlen);
pci_unmap_single(
priv->pdev,
priv->rx_buffers[entry].mapping,
RX_PKT_SIZE, PCI_DMA_FROMDEVICE);
priv->rx_buffers[entry].skb = newskb;
priv->rx_buffers[entry].mapping =
pci_map_single(priv->pdev,
skb_tail_pointer(newskb),
RX_PKT_SIZE,
PCI_DMA_FROMDEVICE);
} else {
skb = NULL;
/* TODO: update rx dropped stats */
}
priv->rx_ring[entry].buffer1 =
cpu_to_le32(priv->rx_buffers[entry].mapping);
}
priv->rx_ring[entry].status = cpu_to_le32(RDES0_STATUS_OWN |
RDES0_STATUS_SQL);
priv->rx_ring[entry].length =
cpu_to_le32(RX_PKT_SIZE |
(entry == priv->rx_ring_size - 1 ?
RDES1_CONTROL_RER : 0));
if (skb) {
struct ieee80211_rx_status rx_status = {0};
if (priv->pdev->revision < ADM8211_REV_CA)
rx_status.signal = rssi;
else
rx_status.signal = 100 - rssi;
rx_status.rate_idx = rate;
rx_status.freq = adm8211_channels[priv->channel - 1].center_freq;
rx_status.band = IEEE80211_BAND_2GHZ;
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(dev, skb);
}
entry = (++priv->cur_rx) % priv->rx_ring_size;
}
/* TODO: check LPC and update stats? */
}
static irqreturn_t adm8211_interrupt(int irq, void *dev_id)
{
#define ADM8211_INT(x) \
do { \
if (unlikely(stsr & ADM8211_STSR_ ## x)) \
printk(KERN_DEBUG "%s: " #x "\n", wiphy_name(dev->wiphy)); \
} while (0)
struct ieee80211_hw *dev = dev_id;
struct adm8211_priv *priv = dev->priv;
u32 stsr = ADM8211_CSR_READ(STSR);
ADM8211_CSR_WRITE(STSR, stsr);
if (stsr == 0xffffffff)
return IRQ_HANDLED;
if (!(stsr & (ADM8211_STSR_NISS | ADM8211_STSR_AISS)))
return IRQ_HANDLED;
if (stsr & ADM8211_STSR_RCI)
adm8211_interrupt_rci(dev);
if (stsr & ADM8211_STSR_TCI)
adm8211_interrupt_tci(dev);
ADM8211_INT(PCF);
ADM8211_INT(BCNTC);
ADM8211_INT(GPINT);
ADM8211_INT(ATIMTC);
ADM8211_INT(TSFTF);
ADM8211_INT(TSCZ);
ADM8211_INT(SQL);
ADM8211_INT(WEPTD);
ADM8211_INT(ATIME);
ADM8211_INT(TEIS);
ADM8211_INT(FBE);
ADM8211_INT(REIS);
ADM8211_INT(GPTT);
ADM8211_INT(RPS);
ADM8211_INT(RDU);
ADM8211_INT(TUF);
ADM8211_INT(TPS);
return IRQ_HANDLED;
#undef ADM8211_INT
}
#define WRITE_SYN(name,v_mask,v_shift,a_mask,a_shift,bits,prewrite,postwrite)\
static void adm8211_rf_write_syn_ ## name (struct ieee80211_hw *dev, \
u16 addr, u32 value) { \
struct adm8211_priv *priv = dev->priv; \
unsigned int i; \
u32 reg, bitbuf; \
\
value &= v_mask; \
addr &= a_mask; \
bitbuf = (value << v_shift) | (addr << a_shift); \
\
ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_IF_SELECT_1); \
ADM8211_CSR_READ(SYNRF); \
ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_IF_SELECT_0); \
ADM8211_CSR_READ(SYNRF); \
\
if (prewrite) { \
ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_WRITE_SYNDATA_0); \
ADM8211_CSR_READ(SYNRF); \
} \
\
for (i = 0; i <= bits; i++) { \
if (bitbuf & (1 << (bits - i))) \
reg = ADM8211_SYNRF_WRITE_SYNDATA_1; \
else \
reg = ADM8211_SYNRF_WRITE_SYNDATA_0; \
\
ADM8211_CSR_WRITE(SYNRF, reg); \
ADM8211_CSR_READ(SYNRF); \
\
ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_WRITE_CLOCK_1); \
ADM8211_CSR_READ(SYNRF); \
ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_WRITE_CLOCK_0); \
ADM8211_CSR_READ(SYNRF); \
} \
\
if (postwrite == 1) { \
ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_IF_SELECT_0); \
ADM8211_CSR_READ(SYNRF); \
} \
if (postwrite == 2) { \
ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_IF_SELECT_1); \
ADM8211_CSR_READ(SYNRF); \
} \
\
ADM8211_CSR_WRITE(SYNRF, 0); \
ADM8211_CSR_READ(SYNRF); \
}
WRITE_SYN(max2820, 0x00FFF, 0, 0x0F, 12, 15, 1, 1)
WRITE_SYN(al2210l, 0xFFFFF, 4, 0x0F, 0, 23, 1, 1)
WRITE_SYN(rfmd2958, 0x3FFFF, 0, 0x1F, 18, 23, 0, 1)
WRITE_SYN(rfmd2948, 0x0FFFF, 4, 0x0F, 0, 21, 0, 2)
#undef WRITE_SYN
static int adm8211_write_bbp(struct ieee80211_hw *dev, u8 addr, u8 data)
{
struct adm8211_priv *priv = dev->priv;
unsigned int timeout;
u32 reg;
timeout = 10;
while (timeout > 0) {
reg = ADM8211_CSR_READ(BBPCTL);
if (!(reg & (ADM8211_BBPCTL_WR | ADM8211_BBPCTL_RD)))
break;
timeout--;
msleep(2);
}
if (timeout == 0) {
printk(KERN_DEBUG "%s: adm8211_write_bbp(%d,%d) failed"
" prewrite (reg=0x%08x)\n",
wiphy_name(dev->wiphy), addr, data, reg);
return -ETIMEDOUT;
}
switch (priv->bbp_type) {
case ADM8211_TYPE_INTERSIL:
reg = ADM8211_BBPCTL_MMISEL; /* three wire interface */
break;
case ADM8211_TYPE_RFMD:
reg = (0x20 << 24) | ADM8211_BBPCTL_TXCE | ADM8211_BBPCTL_CCAP |
(0x01 << 18);
break;
case ADM8211_TYPE_ADMTEK:
reg = (0x20 << 24) | ADM8211_BBPCTL_TXCE | ADM8211_BBPCTL_CCAP |
(0x05 << 18);
break;
}
reg |= ADM8211_BBPCTL_WR | (addr << 8) | data;
ADM8211_CSR_WRITE(BBPCTL, reg);
timeout = 10;
while (timeout > 0) {
reg = ADM8211_CSR_READ(BBPCTL);
if (!(reg & ADM8211_BBPCTL_WR))
break;
timeout--;
msleep(2);
}
if (timeout == 0) {
ADM8211_CSR_WRITE(BBPCTL, ADM8211_CSR_READ(BBPCTL) &
~ADM8211_BBPCTL_WR);
printk(KERN_DEBUG "%s: adm8211_write_bbp(%d,%d) failed"
" postwrite (reg=0x%08x)\n",
wiphy_name(dev->wiphy), addr, data, reg);
return -ETIMEDOUT;
}
return 0;
}
static int adm8211_rf_set_channel(struct ieee80211_hw *dev, unsigned int chan)
{
static const u32 adm8211_rfmd2958_reg5[] =
{0x22BD, 0x22D2, 0x22E8, 0x22FE, 0x2314, 0x232A, 0x2340,
0x2355, 0x236B, 0x2381, 0x2397, 0x23AD, 0x23C2, 0x23F7};
static const u32 adm8211_rfmd2958_reg6[] =
{0x05D17, 0x3A2E8, 0x2E8BA, 0x22E8B, 0x1745D, 0x0BA2E, 0x00000,
0x345D1, 0x28BA2, 0x1D174, 0x11745, 0x05D17, 0x3A2E8, 0x11745};
struct adm8211_priv *priv = dev->priv;
u8 ant_power = priv->ant_power > 0x3F ?
priv->eeprom->antenna_power[chan - 1] : priv->ant_power;
u8 tx_power = priv->tx_power > 0x3F ?
priv->eeprom->tx_power[chan - 1] : priv->tx_power;
u8 lpf_cutoff = priv->lpf_cutoff == 0xFF ?
priv->eeprom->lpf_cutoff[chan - 1] : priv->lpf_cutoff;
u8 lnags_thresh = priv->lnags_threshold == 0xFF ?
priv->eeprom->lnags_threshold[chan - 1] : priv->lnags_threshold;
u32 reg;
ADM8211_IDLE();
/* Program synthesizer to new channel */
switch (priv->transceiver_type) {
case ADM8211_RFMD2958:
case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
adm8211_rf_write_syn_rfmd2958(dev, 0x00, 0x04007);
adm8211_rf_write_syn_rfmd2958(dev, 0x02, 0x00033);
adm8211_rf_write_syn_rfmd2958(dev, 0x05,
adm8211_rfmd2958_reg5[chan - 1]);
adm8211_rf_write_syn_rfmd2958(dev, 0x06,
adm8211_rfmd2958_reg6[chan - 1]);
break;
case ADM8211_RFMD2948:
adm8211_rf_write_syn_rfmd2948(dev, SI4126_MAIN_CONF,
SI4126_MAIN_XINDIV2);
adm8211_rf_write_syn_rfmd2948(dev, SI4126_POWERDOWN,
SI4126_POWERDOWN_PDIB |
SI4126_POWERDOWN_PDRB);
adm8211_rf_write_syn_rfmd2948(dev, SI4126_PHASE_DET_GAIN, 0);
adm8211_rf_write_syn_rfmd2948(dev, SI4126_RF2_N_DIV,
(chan == 14 ?
2110 : (2033 + (chan * 5))));
adm8211_rf_write_syn_rfmd2948(dev, SI4126_IF_N_DIV, 1496);
adm8211_rf_write_syn_rfmd2948(dev, SI4126_RF2_R_DIV, 44);
adm8211_rf_write_syn_rfmd2948(dev, SI4126_IF_R_DIV, 44);
break;
case ADM8211_MAX2820:
adm8211_rf_write_syn_max2820(dev, 0x3,
(chan == 14 ? 0x054 : (0x7 + (chan * 5))));
break;
case ADM8211_AL2210L:
adm8211_rf_write_syn_al2210l(dev, 0x0,
(chan == 14 ? 0x229B4 : (0x22967 + (chan * 5))));
break;
default:
printk(KERN_DEBUG "%s: unsupported transceiver type %d\n",
wiphy_name(dev->wiphy), priv->transceiver_type);
break;
}
/* write BBP regs */
if (priv->bbp_type == ADM8211_TYPE_RFMD) {
/* SMC 2635W specific? adm8211b doesn't use the 2948 though.. */
/* TODO: remove if SMC 2635W doesn't need this */
if (priv->transceiver_type == ADM8211_RFMD2948) {
reg = ADM8211_CSR_READ(GPIO);
reg &= 0xfffc0000;
reg |= ADM8211_CSR_GPIO_EN0;
if (chan != 14)
reg |= ADM8211_CSR_GPIO_O0;
ADM8211_CSR_WRITE(GPIO, reg);
}
if (priv->transceiver_type == ADM8211_RFMD2958) {
/* set PCNT2 */
adm8211_rf_write_syn_rfmd2958(dev, 0x0B, 0x07100);
/* set PCNT1 P_DESIRED/MID_BIAS */
reg = le16_to_cpu(priv->eeprom->cr49);
reg >>= 13;
reg <<= 15;
reg |= ant_power << 9;
adm8211_rf_write_syn_rfmd2958(dev, 0x0A, reg);
/* set TXRX TX_GAIN */
adm8211_rf_write_syn_rfmd2958(dev, 0x09, 0x00050 |
(priv->pdev->revision < ADM8211_REV_CA ? tx_power : 0));
} else {
reg = ADM8211_CSR_READ(PLCPHD);
reg &= 0xff00ffff;
reg |= tx_power << 18;
ADM8211_CSR_WRITE(PLCPHD, reg);
}
ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_SELRF |
ADM8211_SYNRF_PE1 | ADM8211_SYNRF_PHYRST);
ADM8211_CSR_READ(SYNRF);
msleep(30);
/* RF3000 BBP */
if (priv->transceiver_type != ADM8211_RFMD2958)
adm8211_write_bbp(dev, RF3000_TX_VAR_GAIN__TX_LEN_EXT,
tx_power<<2);
adm8211_write_bbp(dev, RF3000_LOW_GAIN_CALIB, lpf_cutoff);
adm8211_write_bbp(dev, RF3000_HIGH_GAIN_CALIB, lnags_thresh);
adm8211_write_bbp(dev, 0x1c, priv->pdev->revision == ADM8211_REV_BA ?
priv->eeprom->cr28 : 0);
adm8211_write_bbp(dev, 0x1d, priv->eeprom->cr29);
ADM8211_CSR_WRITE(SYNRF, 0);
/* Nothing to do for ADMtek BBP */
} else if (priv->bbp_type != ADM8211_TYPE_ADMTEK)
printk(KERN_DEBUG "%s: unsupported BBP type %d\n",
wiphy_name(dev->wiphy), priv->bbp_type);
ADM8211_RESTORE();
/* update current channel for adhoc (and maybe AP mode) */
reg = ADM8211_CSR_READ(CAP0);
reg &= ~0xF;
reg |= chan;
ADM8211_CSR_WRITE(CAP0, reg);
return 0;
}
static void adm8211_update_mode(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
ADM8211_IDLE();
priv->soft_rx_crc = 0;
switch (priv->mode) {
case NL80211_IFTYPE_STATION:
priv->nar &= ~(ADM8211_NAR_PR | ADM8211_NAR_EA);
priv->nar |= ADM8211_NAR_ST | ADM8211_NAR_SR;
break;
case NL80211_IFTYPE_ADHOC:
priv->nar &= ~ADM8211_NAR_PR;
priv->nar |= ADM8211_NAR_EA | ADM8211_NAR_ST | ADM8211_NAR_SR;
/* don't trust the error bits on rev 0x20 and up in adhoc */
if (priv->pdev->revision >= ADM8211_REV_BA)
priv->soft_rx_crc = 1;
break;
case NL80211_IFTYPE_MONITOR:
priv->nar &= ~(ADM8211_NAR_EA | ADM8211_NAR_ST);
priv->nar |= ADM8211_NAR_PR | ADM8211_NAR_SR;
break;
}
ADM8211_RESTORE();
}
static void adm8211_hw_init_syn(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
switch (priv->transceiver_type) {
case ADM8211_RFMD2958:
case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
/* comments taken from ADMtek vendor driver */
/* Reset RF2958 after power on */
adm8211_rf_write_syn_rfmd2958(dev, 0x1F, 0x00000);
/* Initialize RF VCO Core Bias to maximum */
adm8211_rf_write_syn_rfmd2958(dev, 0x0C, 0x3001F);
/* Initialize IF PLL */
adm8211_rf_write_syn_rfmd2958(dev, 0x01, 0x29C03);
/* Initialize IF PLL Coarse Tuning */
adm8211_rf_write_syn_rfmd2958(dev, 0x03, 0x1FF6F);
/* Initialize RF PLL */
adm8211_rf_write_syn_rfmd2958(dev, 0x04, 0x29403);
/* Initialize RF PLL Coarse Tuning */
adm8211_rf_write_syn_rfmd2958(dev, 0x07, 0x1456F);
/* Initialize TX gain and filter BW (R9) */
adm8211_rf_write_syn_rfmd2958(dev, 0x09,
(priv->transceiver_type == ADM8211_RFMD2958 ?
0x10050 : 0x00050));
/* Initialize CAL register */
adm8211_rf_write_syn_rfmd2958(dev, 0x08, 0x3FFF8);
break;
case ADM8211_MAX2820:
adm8211_rf_write_syn_max2820(dev, 0x1, 0x01E);
adm8211_rf_write_syn_max2820(dev, 0x2, 0x001);
adm8211_rf_write_syn_max2820(dev, 0x3, 0x054);
adm8211_rf_write_syn_max2820(dev, 0x4, 0x310);
adm8211_rf_write_syn_max2820(dev, 0x5, 0x000);
break;
case ADM8211_AL2210L:
adm8211_rf_write_syn_al2210l(dev, 0x0, 0x0196C);
adm8211_rf_write_syn_al2210l(dev, 0x1, 0x007CB);
adm8211_rf_write_syn_al2210l(dev, 0x2, 0x3582F);
adm8211_rf_write_syn_al2210l(dev, 0x3, 0x010A9);
adm8211_rf_write_syn_al2210l(dev, 0x4, 0x77280);
adm8211_rf_write_syn_al2210l(dev, 0x5, 0x45641);
adm8211_rf_write_syn_al2210l(dev, 0x6, 0xEA130);
adm8211_rf_write_syn_al2210l(dev, 0x7, 0x80000);
adm8211_rf_write_syn_al2210l(dev, 0x8, 0x7850F);
adm8211_rf_write_syn_al2210l(dev, 0x9, 0xF900C);
adm8211_rf_write_syn_al2210l(dev, 0xA, 0x00000);
adm8211_rf_write_syn_al2210l(dev, 0xB, 0x00000);
break;
case ADM8211_RFMD2948:
default:
break;
}
}
static int adm8211_hw_init_bbp(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
u32 reg;
/* write addresses */
if (priv->bbp_type == ADM8211_TYPE_INTERSIL) {
ADM8211_CSR_WRITE(MMIWA, 0x100E0C0A);
ADM8211_CSR_WRITE(MMIRD0, 0x00007C7E);
ADM8211_CSR_WRITE(MMIRD1, 0x00100000);
} else if (priv->bbp_type == ADM8211_TYPE_RFMD ||
priv->bbp_type == ADM8211_TYPE_ADMTEK) {
/* check specific BBP type */
switch (priv->specific_bbptype) {
case ADM8211_BBP_RFMD3000:
case ADM8211_BBP_RFMD3002:
ADM8211_CSR_WRITE(MMIWA, 0x00009101);
ADM8211_CSR_WRITE(MMIRD0, 0x00000301);
break;
case ADM8211_BBP_ADM8011:
ADM8211_CSR_WRITE(MMIWA, 0x00008903);
ADM8211_CSR_WRITE(MMIRD0, 0x00001716);
reg = ADM8211_CSR_READ(BBPCTL);
reg &= ~ADM8211_BBPCTL_TYPE;
reg |= 0x5 << 18;
ADM8211_CSR_WRITE(BBPCTL, reg);
break;
}
switch (priv->pdev->revision) {
case ADM8211_REV_CA:
if (priv->transceiver_type == ADM8211_RFMD2958 ||
priv->transceiver_type == ADM8211_RFMD2958_RF3000_CONTROL_POWER ||
priv->transceiver_type == ADM8211_RFMD2948)
ADM8211_CSR_WRITE(SYNCTL, 0x1 << 22);
else if (priv->transceiver_type == ADM8211_MAX2820 ||
priv->transceiver_type == ADM8211_AL2210L)
ADM8211_CSR_WRITE(SYNCTL, 0x3 << 22);
break;
case ADM8211_REV_BA:
reg = ADM8211_CSR_READ(MMIRD1);
reg &= 0x0000FFFF;
reg |= 0x7e100000;
ADM8211_CSR_WRITE(MMIRD1, reg);
break;
case ADM8211_REV_AB:
case ADM8211_REV_AF:
default:
ADM8211_CSR_WRITE(MMIRD1, 0x7e100000);
break;
}
/* For RFMD */
ADM8211_CSR_WRITE(MACTEST, 0x800);
}
adm8211_hw_init_syn(dev);
/* Set RF Power control IF pin to PE1+PHYRST# */
ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_SELRF |
ADM8211_SYNRF_PE1 | ADM8211_SYNRF_PHYRST);
ADM8211_CSR_READ(SYNRF);
msleep(20);
/* write BBP regs */
if (priv->bbp_type == ADM8211_TYPE_RFMD) {
/* RF3000 BBP */
/* another set:
* 11: c8
* 14: 14
* 15: 50 (chan 1..13; chan 14: d0)
* 1c: 00
* 1d: 84
*/
adm8211_write_bbp(dev, RF3000_CCA_CTRL, 0x80);
/* antenna selection: diversity */
adm8211_write_bbp(dev, RF3000_DIVERSITY__RSSI, 0x80);
adm8211_write_bbp(dev, RF3000_TX_VAR_GAIN__TX_LEN_EXT, 0x74);
adm8211_write_bbp(dev, RF3000_LOW_GAIN_CALIB, 0x38);
adm8211_write_bbp(dev, RF3000_HIGH_GAIN_CALIB, 0x40);
if (priv->eeprom->major_version < 2) {
adm8211_write_bbp(dev, 0x1c, 0x00);
adm8211_write_bbp(dev, 0x1d, 0x80);
} else {
if (priv->pdev->revision == ADM8211_REV_BA)
adm8211_write_bbp(dev, 0x1c, priv->eeprom->cr28);
else
adm8211_write_bbp(dev, 0x1c, 0x00);
adm8211_write_bbp(dev, 0x1d, priv->eeprom->cr29);
}
} else if (priv->bbp_type == ADM8211_TYPE_ADMTEK) {
/* reset baseband */
adm8211_write_bbp(dev, 0x00, 0xFF);
/* antenna selection: diversity */
adm8211_write_bbp(dev, 0x07, 0x0A);
/* TODO: find documentation for this */
switch (priv->transceiver_type) {
case ADM8211_RFMD2958:
case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
adm8211_write_bbp(dev, 0x00, 0x00);
adm8211_write_bbp(dev, 0x01, 0x00);
adm8211_write_bbp(dev, 0x02, 0x00);
adm8211_write_bbp(dev, 0x03, 0x00);
adm8211_write_bbp(dev, 0x06, 0x0f);
adm8211_write_bbp(dev, 0x09, 0x00);
adm8211_write_bbp(dev, 0x0a, 0x00);
adm8211_write_bbp(dev, 0x0b, 0x00);
adm8211_write_bbp(dev, 0x0c, 0x00);
adm8211_write_bbp(dev, 0x0f, 0xAA);
adm8211_write_bbp(dev, 0x10, 0x8c);
adm8211_write_bbp(dev, 0x11, 0x43);
adm8211_write_bbp(dev, 0x18, 0x40);
adm8211_write_bbp(dev, 0x20, 0x23);
adm8211_write_bbp(dev, 0x21, 0x02);
adm8211_write_bbp(dev, 0x22, 0x28);
adm8211_write_bbp(dev, 0x23, 0x30);
adm8211_write_bbp(dev, 0x24, 0x2d);
adm8211_write_bbp(dev, 0x28, 0x35);
adm8211_write_bbp(dev, 0x2a, 0x8c);
adm8211_write_bbp(dev, 0x2b, 0x81);
adm8211_write_bbp(dev, 0x2c, 0x44);
adm8211_write_bbp(dev, 0x2d, 0x0A);
adm8211_write_bbp(dev, 0x29, 0x40);
adm8211_write_bbp(dev, 0x60, 0x08);
adm8211_write_bbp(dev, 0x64, 0x01);
break;
case ADM8211_MAX2820:
adm8211_write_bbp(dev, 0x00, 0x00);
adm8211_write_bbp(dev, 0x01, 0x00);
adm8211_write_bbp(dev, 0x02, 0x00);
adm8211_write_bbp(dev, 0x03, 0x00);
adm8211_write_bbp(dev, 0x06, 0x0f);
adm8211_write_bbp(dev, 0x09, 0x05);
adm8211_write_bbp(dev, 0x0a, 0x02);
adm8211_write_bbp(dev, 0x0b, 0x00);
adm8211_write_bbp(dev, 0x0c, 0x0f);
adm8211_write_bbp(dev, 0x0f, 0x55);
adm8211_write_bbp(dev, 0x10, 0x8d);
adm8211_write_bbp(dev, 0x11, 0x43);
adm8211_write_bbp(dev, 0x18, 0x4a);
adm8211_write_bbp(dev, 0x20, 0x20);
adm8211_write_bbp(dev, 0x21, 0x02);
adm8211_write_bbp(dev, 0x22, 0x23);
adm8211_write_bbp(dev, 0x23, 0x30);
adm8211_write_bbp(dev, 0x24, 0x2d);
adm8211_write_bbp(dev, 0x2a, 0x8c);
adm8211_write_bbp(dev, 0x2b, 0x81);
adm8211_write_bbp(dev, 0x2c, 0x44);
adm8211_write_bbp(dev, 0x29, 0x4a);
adm8211_write_bbp(dev, 0x60, 0x2b);
adm8211_write_bbp(dev, 0x64, 0x01);
break;
case ADM8211_AL2210L:
adm8211_write_bbp(dev, 0x00, 0x00);
adm8211_write_bbp(dev, 0x01, 0x00);
adm8211_write_bbp(dev, 0x02, 0x00);
adm8211_write_bbp(dev, 0x03, 0x00);
adm8211_write_bbp(dev, 0x06, 0x0f);
adm8211_write_bbp(dev, 0x07, 0x05);
adm8211_write_bbp(dev, 0x08, 0x03);
adm8211_write_bbp(dev, 0x09, 0x00);
adm8211_write_bbp(dev, 0x0a, 0x00);
adm8211_write_bbp(dev, 0x0b, 0x00);
adm8211_write_bbp(dev, 0x0c, 0x10);
adm8211_write_bbp(dev, 0x0f, 0x55);
adm8211_write_bbp(dev, 0x10, 0x8d);
adm8211_write_bbp(dev, 0x11, 0x43);
adm8211_write_bbp(dev, 0x18, 0x4a);
adm8211_write_bbp(dev, 0x20, 0x20);
adm8211_write_bbp(dev, 0x21, 0x02);
adm8211_write_bbp(dev, 0x22, 0x23);
adm8211_write_bbp(dev, 0x23, 0x30);
adm8211_write_bbp(dev, 0x24, 0x2d);
adm8211_write_bbp(dev, 0x2a, 0xaa);
adm8211_write_bbp(dev, 0x2b, 0x81);
adm8211_write_bbp(dev, 0x2c, 0x44);
adm8211_write_bbp(dev, 0x29, 0xfa);
adm8211_write_bbp(dev, 0x60, 0x2d);
adm8211_write_bbp(dev, 0x64, 0x01);
break;
case ADM8211_RFMD2948:
break;
default:
printk(KERN_DEBUG "%s: unsupported transceiver %d\n",
wiphy_name(dev->wiphy), priv->transceiver_type);
break;
}
} else
printk(KERN_DEBUG "%s: unsupported BBP %d\n",
wiphy_name(dev->wiphy), priv->bbp_type);
ADM8211_CSR_WRITE(SYNRF, 0);
/* Set RF CAL control source to MAC control */
reg = ADM8211_CSR_READ(SYNCTL);
reg |= ADM8211_SYNCTL_SELCAL;
ADM8211_CSR_WRITE(SYNCTL, reg);
return 0;
}
/* configures hw beacons/probe responses */
static int adm8211_set_rate(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
u32 reg;
int i = 0;
u8 rate_buf[12] = {0};
/* write supported rates */
if (priv->pdev->revision != ADM8211_REV_BA) {
rate_buf[0] = ARRAY_SIZE(adm8211_rates);
for (i = 0; i < ARRAY_SIZE(adm8211_rates); i++)
rate_buf[i + 1] = (adm8211_rates[i].bitrate / 5) | 0x80;
} else {
/* workaround for rev BA specific bug */
rate_buf[0] = 0x04;
rate_buf[1] = 0x82;
rate_buf[2] = 0x04;
rate_buf[3] = 0x0b;
rate_buf[4] = 0x16;
}
adm8211_write_sram_bytes(dev, ADM8211_SRAM_SUPP_RATE, rate_buf,
ARRAY_SIZE(adm8211_rates) + 1);
reg = ADM8211_CSR_READ(PLCPHD) & 0x00FFFFFF; /* keep bits 0-23 */
reg |= 1 << 15; /* short preamble */
reg |= 110 << 24;
ADM8211_CSR_WRITE(PLCPHD, reg);
/* MTMLT = 512 TU (max TX MSDU lifetime)
* BCNTSIG = plcp_signal (beacon, probe resp, and atim TX rate)
* SRTYLIM = 224 (short retry limit, TX header value is default) */
ADM8211_CSR_WRITE(TXLMT, (512 << 16) | (110 << 8) | (224 << 0));
return 0;
}
static void adm8211_hw_init(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
u32 reg;
u8 cline;
reg = ADM8211_CSR_READ(PAR);
reg |= ADM8211_PAR_MRLE | ADM8211_PAR_MRME;
reg &= ~(ADM8211_PAR_BAR | ADM8211_PAR_CAL);
if (!pci_set_mwi(priv->pdev)) {
reg |= 0x1 << 24;
pci_read_config_byte(priv->pdev, PCI_CACHE_LINE_SIZE, &cline);
switch (cline) {
case 0x8: reg |= (0x1 << 14);
break;
case 0x16: reg |= (0x2 << 14);
break;
case 0x32: reg |= (0x3 << 14);
break;
default: reg |= (0x0 << 14);
break;
}
}
ADM8211_CSR_WRITE(PAR, reg);
reg = ADM8211_CSR_READ(CSR_TEST1);
reg &= ~(0xF << 28);
reg |= (1 << 28) | (1 << 31);
ADM8211_CSR_WRITE(CSR_TEST1, reg);
/* lose link after 4 lost beacons */
reg = (0x04 << 21) | ADM8211_WCSR_TSFTWE | ADM8211_WCSR_LSOE;
ADM8211_CSR_WRITE(WCSR, reg);
/* Disable APM, enable receive FIFO threshold, and set drain receive
* threshold to store-and-forward */
reg = ADM8211_CSR_READ(CMDR);
reg &= ~(ADM8211_CMDR_APM | ADM8211_CMDR_DRT);
reg |= ADM8211_CMDR_RTE | ADM8211_CMDR_DRT_SF;
ADM8211_CSR_WRITE(CMDR, reg);
adm8211_set_rate(dev);
/* 4-bit values:
* PWR1UP = 8 * 2 ms
* PWR0PAPE = 8 us or 5 us
* PWR1PAPE = 1 us or 3 us
* PWR0TRSW = 5 us
* PWR1TRSW = 12 us
* PWR0PE2 = 13 us
* PWR1PE2 = 1 us
* PWR0TXPE = 8 or 6 */
if (priv->pdev->revision < ADM8211_REV_CA)
ADM8211_CSR_WRITE(TOFS2, 0x8815cd18);
else
ADM8211_CSR_WRITE(TOFS2, 0x8535cd16);
/* Enable store and forward for transmit */
priv->nar = ADM8211_NAR_SF | ADM8211_NAR_PB;
ADM8211_CSR_WRITE(NAR, priv->nar);
/* Reset RF */
ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_RADIO);
ADM8211_CSR_READ(SYNRF);
msleep(10);
ADM8211_CSR_WRITE(SYNRF, 0);
ADM8211_CSR_READ(SYNRF);
msleep(5);
/* Set CFP Max Duration to 0x10 TU */
reg = ADM8211_CSR_READ(CFPP);
reg &= ~(0xffff << 8);
reg |= 0x0010 << 8;
ADM8211_CSR_WRITE(CFPP, reg);
/* USCNT = 0x16 (number of system clocks, 22 MHz, in 1us
* TUCNT = 0x3ff - Tu counter 1024 us */
ADM8211_CSR_WRITE(TOFS0, (0x16 << 24) | 0x3ff);
/* SLOT=20 us, SIFS=110 cycles of 22 MHz (5 us),
* DIFS=50 us, EIFS=100 us */
if (priv->pdev->revision < ADM8211_REV_CA)
ADM8211_CSR_WRITE(IFST, (20 << 23) | (110 << 15) |
(50 << 9) | 100);
else
ADM8211_CSR_WRITE(IFST, (20 << 23) | (24 << 15) |
(50 << 9) | 100);
/* PCNT = 1 (MAC idle time awake/sleep, unit S)
* RMRD = 2346 * 8 + 1 us (max RX duration) */
ADM8211_CSR_WRITE(RMD, (1 << 16) | 18769);
/* MART=65535 us, MIRT=256 us, TSFTOFST=0 us */
ADM8211_CSR_WRITE(RSPT, 0xffffff00);
/* Initialize BBP (and SYN) */
adm8211_hw_init_bbp(dev);
/* make sure interrupts are off */
ADM8211_CSR_WRITE(IER, 0);
/* ACK interrupts */
ADM8211_CSR_WRITE(STSR, ADM8211_CSR_READ(STSR));
/* Setup WEP (turns it off for now) */
reg = ADM8211_CSR_READ(MACTEST);
reg &= ~(7 << 20);
ADM8211_CSR_WRITE(MACTEST, reg);
reg = ADM8211_CSR_READ(WEPCTL);
reg &= ~ADM8211_WEPCTL_WEPENABLE;
reg |= ADM8211_WEPCTL_WEPRXBYP;
ADM8211_CSR_WRITE(WEPCTL, reg);
/* Clear the missed-packet counter. */
ADM8211_CSR_READ(LPC);
}
static int adm8211_hw_reset(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
u32 reg, tmp;
int timeout = 100;
/* Power-on issue */
/* TODO: check if this is necessary */
ADM8211_CSR_WRITE(FRCTL, 0);
/* Reset the chip */
tmp = ADM8211_CSR_READ(PAR);
ADM8211_CSR_WRITE(PAR, ADM8211_PAR_SWR);
while ((ADM8211_CSR_READ(PAR) & ADM8211_PAR_SWR) && timeout--)
msleep(50);
if (timeout <= 0)
return -ETIMEDOUT;
ADM8211_CSR_WRITE(PAR, tmp);
if (priv->pdev->revision == ADM8211_REV_BA &&
(priv->transceiver_type == ADM8211_RFMD2958_RF3000_CONTROL_POWER ||
priv->transceiver_type == ADM8211_RFMD2958)) {
reg = ADM8211_CSR_READ(CSR_TEST1);
reg |= (1 << 4) | (1 << 5);
ADM8211_CSR_WRITE(CSR_TEST1, reg);
} else if (priv->pdev->revision == ADM8211_REV_CA) {
reg = ADM8211_CSR_READ(CSR_TEST1);
reg &= ~((1 << 4) | (1 << 5));
ADM8211_CSR_WRITE(CSR_TEST1, reg);
}
ADM8211_CSR_WRITE(FRCTL, 0);
reg = ADM8211_CSR_READ(CSR_TEST0);
reg |= ADM8211_CSR_TEST0_EPRLD; /* EEPROM Recall */
ADM8211_CSR_WRITE(CSR_TEST0, reg);
adm8211_clear_sram(dev);
return 0;
}
static u64 adm8211_get_tsft(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
u32 tsftl;
u64 tsft;
tsftl = ADM8211_CSR_READ(TSFTL);
tsft = ADM8211_CSR_READ(TSFTH);
tsft <<= 32;
tsft |= tsftl;
return tsft;
}
static void adm8211_set_interval(struct ieee80211_hw *dev,
unsigned short bi, unsigned short li)
{
struct adm8211_priv *priv = dev->priv;
u32 reg;
/* BP (beacon interval) = data->beacon_interval
* LI (listen interval) = data->listen_interval (in beacon intervals) */
reg = (bi << 16) | li;
ADM8211_CSR_WRITE(BPLI, reg);
}
static void adm8211_set_bssid(struct ieee80211_hw *dev, const u8 *bssid)
{
struct adm8211_priv *priv = dev->priv;
u32 reg;
ADM8211_CSR_WRITE(BSSID0, le32_to_cpu(*(__le32 *)bssid));
reg = ADM8211_CSR_READ(ABDA1);
reg &= 0x0000ffff;
reg |= (bssid[4] << 16) | (bssid[5] << 24);
ADM8211_CSR_WRITE(ABDA1, reg);
}
static int adm8211_config(struct ieee80211_hw *dev, u32 changed)
{
struct adm8211_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
int channel = ieee80211_frequency_to_channel(conf->channel->center_freq);
if (channel != priv->channel) {
priv->channel = channel;
adm8211_rf_set_channel(dev, priv->channel);
}
return 0;
}
static void adm8211_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *conf,
u32 changes)
{
struct adm8211_priv *priv = dev->priv;
if (!(changes & BSS_CHANGED_BSSID))
return;
if (memcmp(conf->bssid, priv->bssid, ETH_ALEN)) {
adm8211_set_bssid(dev, conf->bssid);
memcpy(priv->bssid, conf->bssid, ETH_ALEN);
}
}
static u64 adm8211_prepare_multicast(struct ieee80211_hw *hw,
int mc_count, struct dev_addr_list *mclist)
{
unsigned int bit_nr, i;
u32 mc_filter[2];
mc_filter[1] = mc_filter[0] = 0;
for (i = 0; i < mc_count; i++) {
if (!mclist)
break;
bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
bit_nr &= 0x3F;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
mclist = mclist->next;
}
return mc_filter[0] | ((u64)(mc_filter[1]) << 32);
}
static void adm8211_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
static const u8 bcast[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
struct adm8211_priv *priv = dev->priv;
unsigned int new_flags;
u32 mc_filter[2];
mc_filter[0] = multicast;
mc_filter[1] = multicast >> 32;
new_flags = 0;
if (*total_flags & FIF_PROMISC_IN_BSS) {
new_flags |= FIF_PROMISC_IN_BSS;
priv->nar |= ADM8211_NAR_PR;
priv->nar &= ~ADM8211_NAR_MM;
mc_filter[1] = mc_filter[0] = ~0;
} else if (*total_flags & FIF_ALLMULTI || multicast == ~(0ULL)) {
new_flags |= FIF_ALLMULTI;
priv->nar &= ~ADM8211_NAR_PR;
priv->nar |= ADM8211_NAR_MM;
mc_filter[1] = mc_filter[0] = ~0;
} else {
priv->nar &= ~(ADM8211_NAR_MM | ADM8211_NAR_PR);
}
ADM8211_IDLE_RX();
ADM8211_CSR_WRITE(MAR0, mc_filter[0]);
ADM8211_CSR_WRITE(MAR1, mc_filter[1]);
ADM8211_CSR_READ(NAR);
if (priv->nar & ADM8211_NAR_PR)
dev->flags |= IEEE80211_HW_RX_INCLUDES_FCS;
else
dev->flags &= ~IEEE80211_HW_RX_INCLUDES_FCS;
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
adm8211_set_bssid(dev, bcast);
else
adm8211_set_bssid(dev, priv->bssid);
ADM8211_RESTORE();
*total_flags = new_flags;
}
static int adm8211_add_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct adm8211_priv *priv = dev->priv;
if (priv->mode != NL80211_IFTYPE_MONITOR)
return -EOPNOTSUPP;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
priv->mode = vif->type;
break;
default:
return -EOPNOTSUPP;
}
ADM8211_IDLE();
ADM8211_CSR_WRITE(PAR0, le32_to_cpu(*(__le32 *)vif->addr));
ADM8211_CSR_WRITE(PAR1, le16_to_cpu(*(__le16 *)(vif->addr + 4)));
adm8211_update_mode(dev);
ADM8211_RESTORE();
return 0;
}
static void adm8211_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct adm8211_priv *priv = dev->priv;
priv->mode = NL80211_IFTYPE_MONITOR;
}
static int adm8211_init_rings(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
struct adm8211_desc *desc = NULL;
struct adm8211_rx_ring_info *rx_info;
struct adm8211_tx_ring_info *tx_info;
unsigned int i;
for (i = 0; i < priv->rx_ring_size; i++) {
desc = &priv->rx_ring[i];
desc->status = 0;
desc->length = cpu_to_le32(RX_PKT_SIZE);
priv->rx_buffers[i].skb = NULL;
}
/* Mark the end of RX ring; hw returns to base address after this
* descriptor */
desc->length |= cpu_to_le32(RDES1_CONTROL_RER);
for (i = 0; i < priv->rx_ring_size; i++) {
desc = &priv->rx_ring[i];
rx_info = &priv->rx_buffers[i];
rx_info->skb = dev_alloc_skb(RX_PKT_SIZE);
if (rx_info->skb == NULL)
break;
rx_info->mapping = pci_map_single(priv->pdev,
skb_tail_pointer(rx_info->skb),
RX_PKT_SIZE,
PCI_DMA_FROMDEVICE);
desc->buffer1 = cpu_to_le32(rx_info->mapping);
desc->status = cpu_to_le32(RDES0_STATUS_OWN | RDES0_STATUS_SQL);
}
/* Setup TX ring. TX buffers descriptors will be filled in as needed */
for (i = 0; i < priv->tx_ring_size; i++) {
desc = &priv->tx_ring[i];
tx_info = &priv->tx_buffers[i];
tx_info->skb = NULL;
tx_info->mapping = 0;
desc->status = 0;
}
desc->length = cpu_to_le32(TDES1_CONTROL_TER);
priv->cur_rx = priv->cur_tx = priv->dirty_tx = 0;
ADM8211_CSR_WRITE(RDB, priv->rx_ring_dma);
ADM8211_CSR_WRITE(TDBD, priv->tx_ring_dma);
return 0;
}
static void adm8211_free_rings(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
unsigned int i;
for (i = 0; i < priv->rx_ring_size; i++) {
if (!priv->rx_buffers[i].skb)
continue;
pci_unmap_single(
priv->pdev,
priv->rx_buffers[i].mapping,
RX_PKT_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(priv->rx_buffers[i].skb);
}
for (i = 0; i < priv->tx_ring_size; i++) {
if (!priv->tx_buffers[i].skb)
continue;
pci_unmap_single(priv->pdev,
priv->tx_buffers[i].mapping,
priv->tx_buffers[i].skb->len,
PCI_DMA_TODEVICE);
dev_kfree_skb(priv->tx_buffers[i].skb);
}
}
static int adm8211_start(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
int retval;
/* Power up MAC and RF chips */
retval = adm8211_hw_reset(dev);
if (retval) {
printk(KERN_ERR "%s: hardware reset failed\n",
wiphy_name(dev->wiphy));
goto fail;
}
retval = adm8211_init_rings(dev);
if (retval) {
printk(KERN_ERR "%s: failed to initialize rings\n",
wiphy_name(dev->wiphy));
goto fail;
}
/* Init hardware */
adm8211_hw_init(dev);
adm8211_rf_set_channel(dev, priv->channel);
retval = request_irq(priv->pdev->irq, adm8211_interrupt,
IRQF_SHARED, "adm8211", dev);
if (retval) {
printk(KERN_ERR "%s: failed to register IRQ handler\n",
wiphy_name(dev->wiphy));
goto fail;
}
ADM8211_CSR_WRITE(IER, ADM8211_IER_NIE | ADM8211_IER_AIE |
ADM8211_IER_RCIE | ADM8211_IER_TCIE |
ADM8211_IER_TDUIE | ADM8211_IER_GPTIE);
priv->mode = NL80211_IFTYPE_MONITOR;
adm8211_update_mode(dev);
ADM8211_CSR_WRITE(RDR, 0);
adm8211_set_interval(dev, 100, 10);
return 0;
fail:
return retval;
}
static void adm8211_stop(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
priv->mode = NL80211_IFTYPE_UNSPECIFIED;
priv->nar = 0;
ADM8211_CSR_WRITE(NAR, 0);
ADM8211_CSR_WRITE(IER, 0);
ADM8211_CSR_READ(NAR);
free_irq(priv->pdev->irq, dev);
adm8211_free_rings(dev);
}
static void adm8211_calc_durations(int *dur, int *plcp, size_t payload_len, int len,
int plcp_signal, int short_preamble)
{
/* Alternative calculation from NetBSD: */
/* IEEE 802.11b durations for DSSS PHY in microseconds */
#define IEEE80211_DUR_DS_LONG_PREAMBLE 144
#define IEEE80211_DUR_DS_SHORT_PREAMBLE 72
#define IEEE80211_DUR_DS_FAST_PLCPHDR 24
#define IEEE80211_DUR_DS_SLOW_PLCPHDR 48
#define IEEE80211_DUR_DS_SLOW_ACK 112
#define IEEE80211_DUR_DS_FAST_ACK 56
#define IEEE80211_DUR_DS_SLOW_CTS 112
#define IEEE80211_DUR_DS_FAST_CTS 56
#define IEEE80211_DUR_DS_SLOT 20
#define IEEE80211_DUR_DS_SIFS 10
int remainder;
*dur = (80 * (24 + payload_len) + plcp_signal - 1)
/ plcp_signal;
if (plcp_signal <= PLCP_SIGNAL_2M)
/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
*dur += 3 * (IEEE80211_DUR_DS_SIFS +
IEEE80211_DUR_DS_SHORT_PREAMBLE +
IEEE80211_DUR_DS_FAST_PLCPHDR) +
IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
else
/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
*dur += 3 * (IEEE80211_DUR_DS_SIFS +
IEEE80211_DUR_DS_SHORT_PREAMBLE +
IEEE80211_DUR_DS_FAST_PLCPHDR) +
IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
/* lengthen duration if long preamble */
if (!short_preamble)
*dur += 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
IEEE80211_DUR_DS_FAST_PLCPHDR);
*plcp = (80 * len) / plcp_signal;
remainder = (80 * len) % plcp_signal;
if (plcp_signal == PLCP_SIGNAL_11M &&
remainder <= 30 && remainder > 0)
*plcp = (*plcp | 0x8000) + 1;
else if (remainder)
(*plcp)++;
}
/* Transmit skb w/adm8211_tx_hdr (802.11 header created by hardware) */
static void adm8211_tx_raw(struct ieee80211_hw *dev, struct sk_buff *skb,
u16 plcp_signal,
size_t hdrlen)
{
struct adm8211_priv *priv = dev->priv;
unsigned long flags;
dma_addr_t mapping;
unsigned int entry;
u32 flag;
mapping = pci_map_single(priv->pdev, skb->data, skb->len,
PCI_DMA_TODEVICE);
spin_lock_irqsave(&priv->lock, flags);
if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size / 2)
flag = TDES1_CONTROL_IC | TDES1_CONTROL_LS | TDES1_CONTROL_FS;
else
flag = TDES1_CONTROL_LS | TDES1_CONTROL_FS;
if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size - 2)
ieee80211_stop_queue(dev, 0);
entry = priv->cur_tx % priv->tx_ring_size;
priv->tx_buffers[entry].skb = skb;
priv->tx_buffers[entry].mapping = mapping;
priv->tx_buffers[entry].hdrlen = hdrlen;
priv->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
if (entry == priv->tx_ring_size - 1)
flag |= TDES1_CONTROL_TER;
priv->tx_ring[entry].length = cpu_to_le32(flag | skb->len);
/* Set TX rate (SIGNAL field in PLCP PPDU format) */
flag = TDES0_CONTROL_OWN | (plcp_signal << 20) | 8 /* ? */;
priv->tx_ring[entry].status = cpu_to_le32(flag);
priv->cur_tx++;
spin_unlock_irqrestore(&priv->lock, flags);
/* Trigger transmit poll */
ADM8211_CSR_WRITE(TDR, 0);
}
/* Put adm8211_tx_hdr on skb and transmit */
static int adm8211_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct adm8211_tx_hdr *txhdr;
size_t payload_len, hdrlen;
int plcp, dur, len, plcp_signal, short_preamble;
struct ieee80211_hdr *hdr;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_rate *txrate = ieee80211_get_tx_rate(dev, info);
u8 rc_flags;
rc_flags = info->control.rates[0].flags;
short_preamble = !!(rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
plcp_signal = txrate->bitrate;
hdr = (struct ieee80211_hdr *)skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb->cb, skb->data, hdrlen);
hdr = (struct ieee80211_hdr *)skb->cb;
skb_pull(skb, hdrlen);
payload_len = skb->len;
txhdr = (struct adm8211_tx_hdr *) skb_push(skb, sizeof(*txhdr));
memset(txhdr, 0, sizeof(*txhdr));
memcpy(txhdr->da, ieee80211_get_DA(hdr), ETH_ALEN);
txhdr->signal = plcp_signal;
txhdr->frame_body_size = cpu_to_le16(payload_len);
txhdr->frame_control = hdr->frame_control;
len = hdrlen + payload_len + FCS_LEN;
txhdr->frag = cpu_to_le16(0x0FFF);
adm8211_calc_durations(&dur, &plcp, payload_len,
len, plcp_signal, short_preamble);
txhdr->plcp_frag_head_len = cpu_to_le16(plcp);
txhdr->plcp_frag_tail_len = cpu_to_le16(plcp);
txhdr->dur_frag_head = cpu_to_le16(dur);
txhdr->dur_frag_tail = cpu_to_le16(dur);
txhdr->header_control = cpu_to_le16(ADM8211_TXHDRCTL_ENABLE_EXTEND_HEADER);
if (short_preamble)
txhdr->header_control |= cpu_to_le16(ADM8211_TXHDRCTL_SHORT_PREAMBLE);
if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
txhdr->header_control |= cpu_to_le16(ADM8211_TXHDRCTL_ENABLE_RTS);
txhdr->retry_limit = info->control.rates[0].count;
adm8211_tx_raw(dev, skb, plcp_signal, hdrlen);
return NETDEV_TX_OK;
}
static int adm8211_alloc_rings(struct ieee80211_hw *dev)
{
struct adm8211_priv *priv = dev->priv;
unsigned int ring_size;
priv->rx_buffers = kmalloc(sizeof(*priv->rx_buffers) * priv->rx_ring_size +
sizeof(*priv->tx_buffers) * priv->tx_ring_size, GFP_KERNEL);
if (!priv->rx_buffers)
return -ENOMEM;
priv->tx_buffers = (void *)priv->rx_buffers +
sizeof(*priv->rx_buffers) * priv->rx_ring_size;
/* Allocate TX/RX descriptors */
ring_size = sizeof(struct adm8211_desc) * priv->rx_ring_size +
sizeof(struct adm8211_desc) * priv->tx_ring_size;
priv->rx_ring = pci_alloc_consistent(priv->pdev, ring_size,
&priv->rx_ring_dma);
if (!priv->rx_ring) {
kfree(priv->rx_buffers);
priv->rx_buffers = NULL;
priv->tx_buffers = NULL;
return -ENOMEM;
}
priv->tx_ring = (struct adm8211_desc *)(priv->rx_ring +
priv->rx_ring_size);
priv->tx_ring_dma = priv->rx_ring_dma +
sizeof(struct adm8211_desc) * priv->rx_ring_size;
return 0;
}
static const struct ieee80211_ops adm8211_ops = {
.tx = adm8211_tx,
.start = adm8211_start,
.stop = adm8211_stop,
.add_interface = adm8211_add_interface,
.remove_interface = adm8211_remove_interface,
.config = adm8211_config,
.bss_info_changed = adm8211_bss_info_changed,
.prepare_multicast = adm8211_prepare_multicast,
.configure_filter = adm8211_configure_filter,
.get_stats = adm8211_get_stats,
.get_tx_stats = adm8211_get_tx_stats,
.get_tsf = adm8211_get_tsft
};
static int __devinit adm8211_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *dev;
struct adm8211_priv *priv;
unsigned long mem_addr, mem_len;
unsigned int io_addr, io_len;
int err;
u32 reg;
u8 perm_addr[ETH_ALEN];
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR "%s (adm8211): Cannot enable new PCI device\n",
pci_name(pdev));
return err;
}
io_addr = pci_resource_start(pdev, 0);
io_len = pci_resource_len(pdev, 0);
mem_addr = pci_resource_start(pdev, 1);
mem_len = pci_resource_len(pdev, 1);
if (io_len < 256 || mem_len < 1024) {
printk(KERN_ERR "%s (adm8211): Too short PCI resources\n",
pci_name(pdev));
goto err_disable_pdev;
}
/* check signature */
pci_read_config_dword(pdev, 0x80 /* CR32 */, &reg);
if (reg != ADM8211_SIG1 && reg != ADM8211_SIG2) {
printk(KERN_ERR "%s (adm8211): Invalid signature (0x%x)\n",
pci_name(pdev), reg);
goto err_disable_pdev;
}
err = pci_request_regions(pdev, "adm8211");
if (err) {
printk(KERN_ERR "%s (adm8211): Cannot obtain PCI resources\n",
pci_name(pdev));
return err; /* someone else grabbed it? don't disable it */
}
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
printk(KERN_ERR "%s (adm8211): No suitable DMA available\n",
pci_name(pdev));
goto err_free_reg;
}
pci_set_master(pdev);
dev = ieee80211_alloc_hw(sizeof(*priv), &adm8211_ops);
if (!dev) {
printk(KERN_ERR "%s (adm8211): ieee80211 alloc failed\n",
pci_name(pdev));
err = -ENOMEM;
goto err_free_reg;
}
priv = dev->priv;
priv->pdev = pdev;
spin_lock_init(&priv->lock);
SET_IEEE80211_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
priv->map = pci_iomap(pdev, 1, mem_len);
if (!priv->map)
priv->map = pci_iomap(pdev, 0, io_len);
if (!priv->map) {
printk(KERN_ERR "%s (adm8211): Cannot map device memory\n",
pci_name(pdev));
goto err_free_dev;
}
priv->rx_ring_size = rx_ring_size;
priv->tx_ring_size = tx_ring_size;
if (adm8211_alloc_rings(dev)) {
printk(KERN_ERR "%s (adm8211): Cannot allocate TX/RX ring\n",
pci_name(pdev));
goto err_iounmap;
}
*(__le32 *)perm_addr = cpu_to_le32(ADM8211_CSR_READ(PAR0));
*(__le16 *)&perm_addr[4] =
cpu_to_le16(ADM8211_CSR_READ(PAR1) & 0xFFFF);
if (!is_valid_ether_addr(perm_addr)) {
printk(KERN_WARNING "%s (adm8211): Invalid hwaddr in EEPROM!\n",
pci_name(pdev));
random_ether_addr(perm_addr);
}
SET_IEEE80211_PERM_ADDR(dev, perm_addr);
dev->extra_tx_headroom = sizeof(struct adm8211_tx_hdr);
/* dev->flags = IEEE80211_HW_RX_INCLUDES_FCS in promisc mode */
dev->flags = IEEE80211_HW_SIGNAL_UNSPEC;
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
dev->channel_change_time = 1000;
dev->max_signal = 100; /* FIXME: find better value */
dev->queues = 1; /* ADM8211C supports more, maybe ADM8211B too */
priv->retry_limit = 3;
priv->ant_power = 0x40;
priv->tx_power = 0x40;
priv->lpf_cutoff = 0xFF;
priv->lnags_threshold = 0xFF;
priv->mode = NL80211_IFTYPE_UNSPECIFIED;
/* Power-on issue. EEPROM won't read correctly without */
if (pdev->revision >= ADM8211_REV_BA) {
ADM8211_CSR_WRITE(FRCTL, 0);
ADM8211_CSR_READ(FRCTL);
ADM8211_CSR_WRITE(FRCTL, 1);
ADM8211_CSR_READ(FRCTL);
msleep(100);
}
err = adm8211_read_eeprom(dev);
if (err) {
printk(KERN_ERR "%s (adm8211): Can't alloc eeprom buffer\n",
pci_name(pdev));
goto err_free_desc;
}
priv->channel = 1;
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
err = ieee80211_register_hw(dev);
if (err) {
printk(KERN_ERR "%s (adm8211): Cannot register device\n",
pci_name(pdev));
goto err_free_desc;
}
printk(KERN_INFO "%s: hwaddr %pM, Rev 0x%02x\n",
wiphy_name(dev->wiphy), dev->wiphy->perm_addr,
pdev->revision);
return 0;
err_free_desc:
pci_free_consistent(pdev,
sizeof(struct adm8211_desc) * priv->rx_ring_size +
sizeof(struct adm8211_desc) * priv->tx_ring_size,
priv->rx_ring, priv->rx_ring_dma);
kfree(priv->rx_buffers);
err_iounmap:
pci_iounmap(pdev, priv->map);
err_free_dev:
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(dev);
err_free_reg:
pci_release_regions(pdev);
err_disable_pdev:
pci_disable_device(pdev);
return err;
}
static void __devexit adm8211_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *dev = pci_get_drvdata(pdev);
struct adm8211_priv *priv;
if (!dev)
return;
ieee80211_unregister_hw(dev);
priv = dev->priv;
pci_free_consistent(pdev,
sizeof(struct adm8211_desc) * priv->rx_ring_size +
sizeof(struct adm8211_desc) * priv->tx_ring_size,
priv->rx_ring, priv->rx_ring_dma);
kfree(priv->rx_buffers);
kfree(priv->eeprom);
pci_iounmap(pdev, priv->map);
pci_release_regions(pdev);
pci_disable_device(pdev);
ieee80211_free_hw(dev);
}
#ifdef CONFIG_PM
static int adm8211_suspend(struct pci_dev *pdev, pm_message_t state)
{
pci_save_state(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int adm8211_resume(struct pci_dev *pdev)
{
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
return 0;
}
#endif /* CONFIG_PM */
MODULE_DEVICE_TABLE(pci, adm8211_pci_id_table);
/* TODO: implement enable_wake */
static struct pci_driver adm8211_driver = {
.name = "adm8211",
.id_table = adm8211_pci_id_table,
.probe = adm8211_probe,
.remove = __devexit_p(adm8211_remove),
#ifdef CONFIG_PM
.suspend = adm8211_suspend,
.resume = adm8211_resume,
#endif /* CONFIG_PM */
};
static int __init adm8211_init(void)
{
return pci_register_driver(&adm8211_driver);
}
static void __exit adm8211_exit(void)
{
pci_unregister_driver(&adm8211_driver);
}
module_init(adm8211_init);
module_exit(adm8211_exit);