mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-13 23:16:40 +07:00
a25a23cc85
When midi function is created, 'id' attribute is initialized with SNDRV_DEFAULT_STR1, which is NULL pointer. Trying to read this attribute before filling it ends up with segmentation fault. This commit fix this issue by preventing null pointer dereference. Now f_midi_opts_id_show() returns empty string when id is a null pointer. Reproduction path: $ mkdir functions/midi.0 $ cat functions/midi.0/id [ 53.130132] Unable to handle kernel NULL pointer dereference at virtual address 00000000 [ 53.132630] pgd = ec6cc000 [ 53.135308] [00000000] *pgd=6b759831, *pte=00000000, *ppte=00000000 [ 53.141530] Internal error: Oops: 17 [#1] PREEMPT SMP ARM [ 53.146904] Modules linked in: usb_f_midi snd_rawmidi libcomposite [ 53.153071] CPU: 1 PID: 2936 Comm: cat Not tainted 3.19.0-00041-gcf4b216 #7 [ 53.160010] Hardware name: SAMSUNG EXYNOS (Flattened Device Tree) [ 53.166088] task: ee234c80 ti: ec764000 task.ti: ec764000 [ 53.171482] PC is at strlcpy+0x8/0x60 [ 53.175128] LR is at f_midi_opts_id_show+0x28/0x3c [usb_f_midi] [ 53.181019] pc : [<c0222a9c>] lr : [<bf01bed0>] psr: 60000053 [ 53.181019] sp : ec765ef8 ip : 00000141 fp : 00000000 [ 53.192474] r10: 00019000 r9 : ed7546c0 r8 : 00010000 [ 53.197682] r7 : ec765f80 r6 : eb46a000 r5 : eb46a000 r4 : ed754734 [ 53.204192] r3 : ee234c80 r2 : 00001000 r1 : 00000000 r0 : eb46a000 [ 53.210704] Flags: nZCv IRQs on FIQs off Mode SVC_32 ISA ARM Segment user [ 53.217907] Control: 10c5387d Table: 6c6cc04a DAC: 00000015 [ 53.223636] Process cat (pid: 2936, stack limit = 0xec764238) [ 53.229364] Stack: (0xec765ef8 to 0xec766000) [ 53.233706] 5ee0: ed754734 ed7546c0 [ 53.241866] 5f00: eb46a000 bf01bed0 eb753b80 bf01cc44 eb753b98 bf01b0a4 bf01b08c c0125dd0 [ 53.250025] 5f20: 00002f19 00000000 ec432e00 bf01cce8 c0530c00 00019000 00010000 ec765f80 [ 53.258184] 5f40: 00010000 ec764000 00019000 c00cc4ac ec432e00 c00cc55c 00000017 000081a4 [ 53.266343] 5f60: 00000001 00000000 00000000 ec432e00 ec432e00 00010000 00019000 c00cc620 [ 53.274502] 5f80: 00000000 00000000 00000000 00010000 ffff1000 00019000 00000003 c000e9a8 [ 53.282662] 5fa0: 00000000 c000e7e0 00010000 ffff1000 00000003 00019000 00010000 00019000 [ 53.290821] 5fc0: 00010000 ffff1000 00019000 00000003 7fffe000 00000001 00000000 00000000 [ 53.298980] 5fe0: 00000000 be8c68d4 0000b995 b6f0e3e6 40000070 00000003 00000000 00000000 [ 53.307157] [<c0222a9c>] (strlcpy) from [<bf01bed0>] (f_midi_opts_id_show+0x28/0x3c [usb_f_midi]) [ 53.316006] [<bf01bed0>] (f_midi_opts_id_show [usb_f_midi]) from [<bf01b0a4>] (f_midi_opts_attr_show+0x18/0x24 ) [ 53.327209] [<bf01b0a4>] (f_midi_opts_attr_show [usb_f_midi]) from [<c0125dd0>] (configfs_read_file+0x9c/0xec) [ 53.337180] [<c0125dd0>] (configfs_read_file) from [<c00cc4ac>] (__vfs_read+0x18/0x4c) [ 53.345073] [<c00cc4ac>] (__vfs_read) from [<c00cc55c>] (vfs_read+0x7c/0x100) [ 53.352190] [<c00cc55c>] (vfs_read) from [<c00cc620>] (SyS_read+0x40/0x8c) [ 53.359056] [<c00cc620>] (SyS_read) from [<c000e7e0>] (ret_fast_syscall+0x0/0x34) [ 53.366513] Code: ebffe3d3 e8bd8008 e92d4070 e1a05000 (e5d14000) [ 53.372641] ---[ end trace e4f53a4e233d98d0 ]--- Signed-off-by: Pawel Szewczyk <p.szewczyk@samsung.com> Signed-off-by: Felipe Balbi <balbi@ti.com> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
common | ||
core | ||
dwc2 | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
isp1760 | ||
misc | ||
mon | ||
musb | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
usbip | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("hub_wq"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.