mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-02-21 17:19:48 +07:00
![]() When a hot reset fails on a USB 3.0 port, the current port reset code recursively calls hub_port_reset inside hub_port_wait_reset. This isn't ideal, since we should avoid recursive calls in the kernel, and it also doesn't allow us to issue multiple warm resets on reset failures. Rip out the recursive call. Instead, add code to hub_port_reset to issue a warm reset if the hot reset fails, and try multiple warm resets before giving up on the port. In hub_port_wait_reset, remove the recursive call and re-indent. The code is basically the same, except: 1. It bails out early if the port has transitioned to Inactive or Compliance Mode after the reset completed. 2. It doesn't consider a connect status change to be a failed reset. If multiple warm resets needed to be issued, the connect status may have changed, so we need to ignore that and look at the port link state instead. hub_port_reset will now do that. 3. It unconditionally sets udev->speed on all types of successful resets. The old recursive code would set the port speed when the second hub_port_reset returned. The old code did not handle connected devices needing a warm reset well. There were only two situations that the old code handled correctly: an empty port needing a warm reset, and a hot reset that migrated to a warm reset. When an empty port needed a warm reset, hub_port_reset was called with the warm variable set. The code in hub_port_finish_reset would skip telling the USB core and the xHC host that the device was reset, because otherwise that would result in a NULL pointer dereference. When a USB 3.0 device reset migrated to a warm reset, the recursive call made the call stack look like this: hub_port_reset(warm = false) hub_wait_port_reset(warm = false) hub_port_reset(warm = true) hub_wait_port_reset(warm = true) hub_port_finish_reset(warm = true) (return up the call stack to the first wait) hub_port_finish_reset(warm = false) The old code didn't want to notify the USB core or the xHC host of device reset twice, so it only did it in the second call to hub_port_finish_reset, when warm was set to false. This was necessary because before patch two ("USB: Ignore xHCI Reset Device status."), the USB core would pay attention to the xHC Reset Device command error status, and the second call would always fail. Now that we no longer have the recursive call, and warm can change from false to true in hub_port_reset, we need to have hub_port_finish_reset unconditionally notify the USB core and the xHC of the device reset. In hub_port_finish_reset, unconditionally clear the connect status change (CSC) bit for USB 3.0 hubs when the port reset is done. If we had to issue multiple warm resets for a device, that bit may have been set if the device went into SS.Inactive and then was successfully warm reset. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Acked-by: Alan Stern <stern@rowland.harvard.edu> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
core | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
otg | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-common.c | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.