linux_dsm_epyc7002/drivers/mailbox/bcm-pdc-mailbox.c
Rob Rice a24532f8d1 mailbox: Add Broadcom PDC mailbox driver
The Broadcom PDC mailbox driver is a mailbox controller that
manages data transfers to and from one or more offload engines.

Signed-off-by: Rob Rice <rob.rice@broadcom.com>
Reviewed-by: Scott Branden <scott.branden@broadcom.com>
Reviewed-by: Ray Jui <ray.jui@broadcom.com>
Signed-off-by: Jassi Brar <jaswinder.singh@linaro.org>
2016-07-28 09:34:47 +05:30

1532 lines
45 KiB
C

/*
* Copyright 2016 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation (the "GPL").
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 (GPLv2) for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 (GPLv2) along with this source code.
*/
/*
* Broadcom PDC Mailbox Driver
* The PDC provides a ring based programming interface to one or more hardware
* offload engines. For example, the PDC driver works with both SPU-M and SPU2
* cryptographic offload hardware. In some chips the PDC is referred to as MDE.
*
* The PDC driver registers with the Linux mailbox framework as a mailbox
* controller, once for each PDC instance. Ring 0 for each PDC is registered as
* a mailbox channel. The PDC driver uses interrupts to determine when data
* transfers to and from an offload engine are complete. The PDC driver uses
* threaded IRQs so that response messages are handled outside of interrupt
* context.
*
* The PDC driver allows multiple messages to be pending in the descriptor
* rings. The tx_msg_start descriptor index indicates where the last message
* starts. The txin_numd value at this index indicates how many descriptor
* indexes make up the message. Similar state is kept on the receive side. When
* an rx interrupt indicates a response is ready, the PDC driver processes numd
* descriptors from the tx and rx ring, thus processing one response at a time.
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/mailbox_controller.h>
#include <linux/mailbox/brcm-message.h>
#include <linux/scatterlist.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#define PDC_SUCCESS 0
#define RING_ENTRY_SIZE sizeof(struct dma64dd)
/* # entries in PDC dma ring */
#define PDC_RING_ENTRIES 128
#define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
/* Rings are 8k aligned */
#define RING_ALIGN_ORDER 13
#define RING_ALIGN BIT(RING_ALIGN_ORDER)
#define RX_BUF_ALIGN_ORDER 5
#define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER)
/* descriptor bumping macros */
#define XXD(x, max_mask) ((x) & (max_mask))
#define TXD(x, max_mask) XXD((x), (max_mask))
#define RXD(x, max_mask) XXD((x), (max_mask))
#define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask))
#define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask))
#define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask))
#define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask))
#define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask))
#define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask))
/* Length of BCM header at start of SPU msg, in bytes */
#define BCM_HDR_LEN 8
/*
* PDC driver reserves ringset 0 on each SPU for its own use. The driver does
* not currently support use of multiple ringsets on a single PDC engine.
*/
#define PDC_RINGSET 0
/*
* Interrupt mask and status definitions. Enable interrupts for tx and rx on
* ring 0
*/
#define PDC_XMTINT_0 (24 + PDC_RINGSET)
#define PDC_RCVINT_0 (16 + PDC_RINGSET)
#define PDC_XMTINTEN_0 BIT(PDC_XMTINT_0)
#define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0)
#define PDC_INTMASK (PDC_XMTINTEN_0 | PDC_RCVINTEN_0)
#define PDC_LAZY_FRAMECOUNT 1
#define PDC_LAZY_TIMEOUT 10000
#define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
#define PDC_INTMASK_OFFSET 0x24
#define PDC_INTSTATUS_OFFSET 0x20
#define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET)
/*
* For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
* before frame
*/
#define PDC_SPU2_RESP_HDR_LEN 17
#define PDC_CKSUM_CTRL BIT(27)
#define PDC_CKSUM_CTRL_OFFSET 0x400
#define PDC_SPUM_RESP_HDR_LEN 32
/*
* Sets the following bits for write to transmit control reg:
* 0 - XmtEn - enable activity on the tx channel
* 11 - PtyChkDisable - parity check is disabled
* 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
*/
#define PDC_TX_CTL 0x000C0801
/*
* Sets the following bits for write to receive control reg:
* 0 - RcvEn - enable activity on the rx channel
* 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf
* 9 - SepRxHdrDescEn - place start of new frames only in descriptors
* that have StartOfFrame set
* 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
* remaining bytes in current frame, report error
* in rx frame status for current frame
* 11 - PtyChkDisable - parity check is disabled
* 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
*/
#define PDC_RX_CTL 0x000C0E01
#define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
/* descriptor flags */
#define D64_CTRL1_EOT BIT(28) /* end of descriptor table */
#define D64_CTRL1_IOC BIT(29) /* interrupt on complete */
#define D64_CTRL1_EOF BIT(30) /* end of frame */
#define D64_CTRL1_SOF BIT(31) /* start of frame */
#define RX_STATUS_OVERFLOW 0x00800000
#define RX_STATUS_LEN 0x0000FFFF
#define PDC_TXREGS_OFFSET 0x200
#define PDC_RXREGS_OFFSET 0x220
/* Maximum size buffer the DMA engine can handle */
#define PDC_DMA_BUF_MAX 16384
struct pdc_dma_map {
void *ctx; /* opaque context associated with frame */
};
/* dma descriptor */
struct dma64dd {
u32 ctrl1; /* misc control bits */
u32 ctrl2; /* buffer count and address extension */
u32 addrlow; /* memory address of the date buffer, bits 31:0 */
u32 addrhigh; /* memory address of the date buffer, bits 63:32 */
};
/* dma registers per channel(xmt or rcv) */
struct dma64_regs {
u32 control; /* enable, et al */
u32 ptr; /* last descriptor posted to chip */
u32 addrlow; /* descriptor ring base address low 32-bits */
u32 addrhigh; /* descriptor ring base address bits 63:32 */
u32 status0; /* last rx descriptor written by hw */
u32 status1; /* driver does not use */
};
/* cpp contortions to concatenate w/arg prescan */
#ifndef PAD
#define _PADLINE(line) pad ## line
#define _XSTR(line) _PADLINE(line)
#define PAD _XSTR(__LINE__)
#endif /* PAD */
/* dma registers. matches hw layout. */
struct dma64 {
struct dma64_regs dmaxmt; /* dma tx */
u32 PAD[2];
struct dma64_regs dmarcv; /* dma rx */
u32 PAD[2];
};
/* PDC registers */
struct pdc_regs {
u32 devcontrol; /* 0x000 */
u32 devstatus; /* 0x004 */
u32 PAD;
u32 biststatus; /* 0x00c */
u32 PAD[4];
u32 intstatus; /* 0x020 */
u32 intmask; /* 0x024 */
u32 gptimer; /* 0x028 */
u32 PAD;
u32 intrcvlazy_0; /* 0x030 */
u32 intrcvlazy_1; /* 0x034 */
u32 intrcvlazy_2; /* 0x038 */
u32 intrcvlazy_3; /* 0x03c */
u32 PAD[48];
u32 removed_intrecvlazy; /* 0x100 */
u32 flowctlthresh; /* 0x104 */
u32 wrrthresh; /* 0x108 */
u32 gmac_idle_cnt_thresh; /* 0x10c */
u32 PAD[4];
u32 ifioaccessaddr; /* 0x120 */
u32 ifioaccessbyte; /* 0x124 */
u32 ifioaccessdata; /* 0x128 */
u32 PAD[21];
u32 phyaccess; /* 0x180 */
u32 PAD;
u32 phycontrol; /* 0x188 */
u32 txqctl; /* 0x18c */
u32 rxqctl; /* 0x190 */
u32 gpioselect; /* 0x194 */
u32 gpio_output_en; /* 0x198 */
u32 PAD; /* 0x19c */
u32 txq_rxq_mem_ctl; /* 0x1a0 */
u32 memory_ecc_status; /* 0x1a4 */
u32 serdes_ctl; /* 0x1a8 */
u32 serdes_status0; /* 0x1ac */
u32 serdes_status1; /* 0x1b0 */
u32 PAD[11]; /* 0x1b4-1dc */
u32 clk_ctl_st; /* 0x1e0 */
u32 hw_war; /* 0x1e4 */
u32 pwrctl; /* 0x1e8 */
u32 PAD[5];
#define PDC_NUM_DMA_RINGS 4
struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */
/* more registers follow, but we don't use them */
};
/* structure for allocating/freeing DMA rings */
struct pdc_ring_alloc {
dma_addr_t dmabase; /* DMA address of start of ring */
void *vbase; /* base kernel virtual address of ring */
u32 size; /* ring allocation size in bytes */
};
/* PDC state structure */
struct pdc_state {
/* synchronize access to this PDC state structure */
spinlock_t pdc_lock;
/* Index of the PDC whose state is in this structure instance */
u8 pdc_idx;
/* Platform device for this PDC instance */
struct platform_device *pdev;
/*
* Each PDC instance has a mailbox controller. PDC receives request
* messages through mailboxes, and sends response messages through the
* mailbox framework.
*/
struct mbox_controller mbc;
unsigned int pdc_irq;
/*
* Last interrupt status read from PDC device. Saved in interrupt
* handler so the handler can clear the interrupt in the device,
* and the interrupt thread called later can know which interrupt
* bits are active.
*/
unsigned long intstatus;
/* Number of bytes of receive status prior to each rx frame */
u32 rx_status_len;
/* Whether a BCM header is prepended to each frame */
bool use_bcm_hdr;
/* Sum of length of BCM header and rx status header */
u32 pdc_resp_hdr_len;
/* The base virtual address of DMA hw registers */
void __iomem *pdc_reg_vbase;
/* Pool for allocation of DMA rings */
struct dma_pool *ring_pool;
/* Pool for allocation of metadata buffers for response messages */
struct dma_pool *rx_buf_pool;
/*
* The base virtual address of DMA tx/rx descriptor rings. Corresponding
* DMA address and size of ring allocation.
*/
struct pdc_ring_alloc tx_ring_alloc;
struct pdc_ring_alloc rx_ring_alloc;
struct pdc_regs *regs; /* start of PDC registers */
struct dma64_regs *txregs_64; /* dma tx engine registers */
struct dma64_regs *rxregs_64; /* dma rx engine registers */
/*
* Arrays of PDC_RING_ENTRIES descriptors
* To use multiple ringsets, this needs to be extended
*/
struct dma64dd *txd_64; /* tx descriptor ring */
struct dma64dd *rxd_64; /* rx descriptor ring */
/* descriptor ring sizes */
u32 ntxd; /* # tx descriptors */
u32 nrxd; /* # rx descriptors */
u32 nrxpost; /* # rx buffers to keep posted */
u32 ntxpost; /* max number of tx buffers that can be posted */
/*
* Index of next tx descriptor to reclaim. That is, the descriptor
* index of the oldest tx buffer for which the host has yet to process
* the corresponding response.
*/
u32 txin;
/*
* Index of the first receive descriptor for the sequence of
* message fragments currently under construction. Used to build up
* the rxin_numd count for a message. Updated to rxout when the host
* starts a new sequence of rx buffers for a new message.
*/
u32 tx_msg_start;
/* Index of next tx descriptor to post. */
u32 txout;
/*
* Number of tx descriptors associated with the message that starts
* at this tx descriptor index.
*/
u32 txin_numd[PDC_RING_ENTRIES];
/*
* Index of next rx descriptor to reclaim. This is the index of
* the next descriptor whose data has yet to be processed by the host.
*/
u32 rxin;
/*
* Index of the first receive descriptor for the sequence of
* message fragments currently under construction. Used to build up
* the rxin_numd count for a message. Updated to rxout when the host
* starts a new sequence of rx buffers for a new message.
*/
u32 rx_msg_start;
/*
* Saved value of current hardware rx descriptor index.
* The last rx buffer written by the hw is the index previous to
* this one.
*/
u32 last_rx_curr;
/* Index of next rx descriptor to post. */
u32 rxout;
/*
* opaque context associated with frame that starts at each
* rx ring index.
*/
void *rxp_ctx[PDC_RING_ENTRIES];
/*
* Scatterlists used to form request and reply frames beginning at a
* given ring index. Retained in order to unmap each sg after reply
* is processed
*/
struct scatterlist *src_sg[PDC_RING_ENTRIES];
struct scatterlist *dst_sg[PDC_RING_ENTRIES];
/*
* Number of rx descriptors associated with the message that starts
* at this descriptor index. Not set for every index. For example,
* if descriptor index i points to a scatterlist with 4 entries, then
* the next three descriptor indexes don't have a value set.
*/
u32 rxin_numd[PDC_RING_ENTRIES];
void *resp_hdr[PDC_RING_ENTRIES];
dma_addr_t resp_hdr_daddr[PDC_RING_ENTRIES];
struct dentry *debugfs_stats; /* debug FS stats file for this PDC */
/* counters */
u32 pdc_requests; /* number of request messages submitted */
u32 pdc_replies; /* number of reply messages received */
u32 txnobuf; /* count of tx ring full */
u32 rxnobuf; /* count of rx ring full */
u32 rx_oflow; /* count of rx overflows */
};
/* Global variables */
struct pdc_globals {
/* Actual number of SPUs in hardware, as reported by device tree */
u32 num_spu;
};
static struct pdc_globals pdcg;
/* top level debug FS directory for PDC driver */
static struct dentry *debugfs_dir;
static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct pdc_state *pdcs;
char *buf;
ssize_t ret, out_offset, out_count;
out_count = 512;
buf = kmalloc(out_count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
pdcs = filp->private_data;
out_offset = 0;
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"SPU %u stats:\n", pdcs->pdc_idx);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"PDC requests............%u\n",
pdcs->pdc_requests);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"PDC responses...........%u\n",
pdcs->pdc_replies);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Tx err ring full........%u\n",
pdcs->txnobuf);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Rx err ring full........%u\n",
pdcs->rxnobuf);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Receive overflow........%u\n",
pdcs->rx_oflow);
if (out_offset > out_count)
out_offset = out_count;
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
kfree(buf);
return ret;
}
static const struct file_operations pdc_debugfs_stats = {
.owner = THIS_MODULE,
.open = simple_open,
.read = pdc_debugfs_read,
};
/**
* pdc_setup_debugfs() - Create the debug FS directories. If the top-level
* directory has not yet been created, create it now. Create a stats file in
* this directory for a SPU.
* @pdcs: PDC state structure
*/
void pdc_setup_debugfs(struct pdc_state *pdcs)
{
char spu_stats_name[16];
if (!debugfs_initialized())
return;
snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
if (!debugfs_dir)
debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, S_IRUSR,
debugfs_dir, pdcs,
&pdc_debugfs_stats);
}
void pdc_free_debugfs(void)
{
if (debugfs_dir && simple_empty(debugfs_dir)) {
debugfs_remove_recursive(debugfs_dir);
debugfs_dir = NULL;
}
}
/**
* pdc_build_rxd() - Build DMA descriptor to receive SPU result.
* @pdcs: PDC state for SPU that will generate result
* @dma_addr: DMA address of buffer that descriptor is being built for
* @buf_len: Length of the receive buffer, in bytes
* @flags: Flags to be stored in descriptor
*/
static inline void
pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
u32 buf_len, u32 flags)
{
struct device *dev = &pdcs->pdev->dev;
dev_dbg(dev,
"Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
iowrite32(lower_32_bits(dma_addr),
(void *)&pdcs->rxd_64[pdcs->rxout].addrlow);
iowrite32(upper_32_bits(dma_addr),
(void *)&pdcs->rxd_64[pdcs->rxout].addrhigh);
iowrite32(flags, (void *)&pdcs->rxd_64[pdcs->rxout].ctrl1);
iowrite32(buf_len, (void *)&pdcs->rxd_64[pdcs->rxout].ctrl2);
/* bump ring index and return */
pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
}
/**
* pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
* hardware.
* @pdcs: PDC state for the SPU that will process this request
* @dma_addr: DMA address of packet to be transmitted
* @buf_len: Length of tx buffer, in bytes
* @flags: Flags to be stored in descriptor
*/
static inline void
pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
u32 flags)
{
struct device *dev = &pdcs->pdev->dev;
dev_dbg(dev,
"Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
pdcs->pdc_idx, pdcs->txout, buf_len, flags);
iowrite32(lower_32_bits(dma_addr),
(void *)&pdcs->txd_64[pdcs->txout].addrlow);
iowrite32(upper_32_bits(dma_addr),
(void *)&pdcs->txd_64[pdcs->txout].addrhigh);
iowrite32(flags, (void *)&pdcs->txd_64[pdcs->txout].ctrl1);
iowrite32(buf_len, (void *)&pdcs->txd_64[pdcs->txout].ctrl2);
/* bump ring index and return */
pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
}
/**
* pdc_receive() - Receive a response message from a given SPU.
* @pdcs: PDC state for the SPU to receive from
* @mssg: mailbox message to be returned to client
*
* When the return code indicates success, the response message is available in
* the receive buffers provided prior to submission of the request.
*
* Input:
* pdcs - PDC state structure for the SPU to be polled
* mssg - mailbox message to be returned to client. This function sets the
* context pointer on the message to help the client associate the
* response with a request.
*
* Return: PDC_SUCCESS if one or more receive descriptors was processed
* -EAGAIN indicates that no response message is available
* -EIO an error occurred
*/
static int
pdc_receive(struct pdc_state *pdcs, struct brcm_message *mssg)
{
struct device *dev = &pdcs->pdev->dev;
u32 len, rx_status;
u32 num_frags;
int i;
u8 *resp_hdr; /* virtual addr of start of resp message DMA header */
u32 frags_rdy; /* number of fragments ready to read */
u32 rx_idx; /* ring index of start of receive frame */
dma_addr_t resp_hdr_daddr;
spin_lock(&pdcs->pdc_lock);
/*
* return if a complete response message is not yet ready.
* rxin_numd[rxin] is the number of fragments in the next msg
* to read.
*/
frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
if ((frags_rdy == 0) || (frags_rdy < pdcs->rxin_numd[pdcs->rxin])) {
/* See if the hw has written more fragments than we know */
pdcs->last_rx_curr =
(ioread32((void *)&pdcs->rxregs_64->status0) &
CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
pdcs->nrxpost);
if ((frags_rdy == 0) ||
(frags_rdy < pdcs->rxin_numd[pdcs->rxin])) {
/* No response ready */
spin_unlock(&pdcs->pdc_lock);
return -EAGAIN;
}
/* can't read descriptors/data until write index is read */
rmb();
}
num_frags = pdcs->txin_numd[pdcs->txin];
dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
for (i = 0; i < num_frags; i++)
pdcs->txin = NEXTTXD(pdcs->txin, pdcs->ntxpost);
dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
pdcs->pdc_idx, num_frags);
rx_idx = pdcs->rxin;
num_frags = pdcs->rxin_numd[rx_idx];
/* Return opaque context with result */
mssg->ctx = pdcs->rxp_ctx[rx_idx];
pdcs->rxp_ctx[rx_idx] = NULL;
resp_hdr = pdcs->resp_hdr[rx_idx];
resp_hdr_daddr = pdcs->resp_hdr_daddr[rx_idx];
dma_unmap_sg(dev, pdcs->dst_sg[rx_idx],
sg_nents(pdcs->dst_sg[rx_idx]), DMA_FROM_DEVICE);
for (i = 0; i < num_frags; i++)
pdcs->rxin = NEXTRXD(pdcs->rxin, pdcs->nrxpost);
spin_unlock(&pdcs->pdc_lock);
dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
pdcs->pdc_idx, num_frags);
dev_dbg(dev,
"PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
pdcs->rxout, pdcs->last_rx_curr);
if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
/*
* For SPU-M, get length of response msg and rx overflow status.
*/
rx_status = *((u32 *)resp_hdr);
len = rx_status & RX_STATUS_LEN;
dev_dbg(dev,
"SPU response length %u bytes", len);
if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
if (rx_status & RX_STATUS_OVERFLOW) {
dev_err_ratelimited(dev,
"crypto receive overflow");
pdcs->rx_oflow++;
} else {
dev_info_ratelimited(dev, "crypto rx len = 0");
}
return -EIO;
}
}
dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
pdcs->pdc_replies++;
/* if we read one or more rx descriptors, claim success */
if (num_frags > 0)
return PDC_SUCCESS;
else
return -EIO;
}
/**
* pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
* descriptors for a given SPU. The scatterlist buffers contain the data for a
* SPU request message.
* @spu_idx: The index of the SPU to submit the request to, [0, max_spu)
* @sg: Scatterlist whose buffers contain part of the SPU request
*
* If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
* are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
*
* Return: PDC_SUCCESS if successful
* < 0 otherwise
*/
static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
{
u32 flags = 0;
u32 eot;
u32 tx_avail;
/*
* Num descriptors needed. Conservatively assume we need a descriptor
* for every entry in sg.
*/
u32 num_desc;
u32 desc_w = 0; /* Number of tx descriptors written */
u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
dma_addr_t databufptr; /* DMA address to put in descriptor */
num_desc = (u32)sg_nents(sg);
/* check whether enough tx descriptors are available */
tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
pdcs->ntxpost);
if (unlikely(num_desc > tx_avail)) {
pdcs->txnobuf++;
return -ENOSPC;
}
/* build tx descriptors */
if (pdcs->tx_msg_start == pdcs->txout) {
/* Start of frame */
pdcs->txin_numd[pdcs->tx_msg_start] = 0;
pdcs->src_sg[pdcs->txout] = sg;
flags = D64_CTRL1_SOF;
}
while (sg) {
if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
eot = D64_CTRL1_EOT;
else
eot = 0;
/*
* If sg buffer larger than PDC limit, split across
* multiple descriptors
*/
bufcnt = sg_dma_len(sg);
databufptr = sg_dma_address(sg);
while (bufcnt > PDC_DMA_BUF_MAX) {
pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
flags | eot);
desc_w++;
bufcnt -= PDC_DMA_BUF_MAX;
databufptr += PDC_DMA_BUF_MAX;
if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
eot = D64_CTRL1_EOT;
else
eot = 0;
}
sg = sg_next(sg);
if (!sg)
/* Writing last descriptor for frame */
flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
desc_w++;
/* Clear start of frame after first descriptor */
flags &= ~D64_CTRL1_SOF;
}
pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
return PDC_SUCCESS;
}
/**
* pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
* ring.
* @pdcs: PDC state for SPU to process the request
*
* Sets the index of the last descriptor written in both the rx and tx ring.
*
* Return: PDC_SUCCESS
*/
static int pdc_tx_list_final(struct pdc_state *pdcs)
{
/*
* write barrier to ensure all register writes are complete
* before chip starts to process new request
*/
wmb();
iowrite32(pdcs->rxout << 4, (void *)&pdcs->rxregs_64->ptr);
iowrite32(pdcs->txout << 4, (void *)&pdcs->txregs_64->ptr);
pdcs->pdc_requests++;
return PDC_SUCCESS;
}
/**
* pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
* @pdcs: PDC state for SPU handling request
* @dst_sg: scatterlist providing rx buffers for response to be returned to
* mailbox client
* @ctx: Opaque context for this request
*
* Posts a single receive descriptor to hold the metadata that precedes a
* response. For example, with SPU-M, the metadata is a 32-byte DMA header and
* an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
* rx to indicate the start of a new message.
*
* Return: PDC_SUCCESS if successful
* < 0 if an error (e.g., rx ring is full)
*/
static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
void *ctx)
{
u32 flags = 0;
u32 rx_avail;
u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */
dma_addr_t daddr;
void *vaddr;
rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
pdcs->nrxpost);
if (unlikely(rx_pkt_cnt > rx_avail)) {
pdcs->rxnobuf++;
return -ENOSPC;
}
/* allocate a buffer for the dma rx status */
vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
if (!vaddr)
return -ENOMEM;
/*
* Update msg_start indexes for both tx and rx to indicate the start
* of a new sequence of descriptor indexes that contain the fragments
* of the same message.
*/
pdcs->rx_msg_start = pdcs->rxout;
pdcs->tx_msg_start = pdcs->txout;
/* This is always the first descriptor in the receive sequence */
flags = D64_CTRL1_SOF;
pdcs->rxin_numd[pdcs->rx_msg_start] = 1;
if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
flags |= D64_CTRL1_EOT;
pdcs->rxp_ctx[pdcs->rxout] = ctx;
pdcs->dst_sg[pdcs->rxout] = dst_sg;
pdcs->resp_hdr[pdcs->rxout] = vaddr;
pdcs->resp_hdr_daddr[pdcs->rxout] = daddr;
pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
return PDC_SUCCESS;
}
/**
* pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
* descriptors for a given SPU. The caller must have already DMA mapped the
* scatterlist.
* @spu_idx: Indicates which SPU the buffers are for
* @sg: Scatterlist whose buffers are added to the receive ring
*
* If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
* multiple receive descriptors are written, each with a buffer <=
* PDC_DMA_BUF_MAX.
*
* Return: PDC_SUCCESS if successful
* < 0 otherwise (e.g., receive ring is full)
*/
static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
{
u32 flags = 0;
u32 rx_avail;
/*
* Num descriptors needed. Conservatively assume we need a descriptor
* for every entry from our starting point in the scatterlist.
*/
u32 num_desc;
u32 desc_w = 0; /* Number of tx descriptors written */
u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
dma_addr_t databufptr; /* DMA address to put in descriptor */
num_desc = (u32)sg_nents(sg);
rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
pdcs->nrxpost);
if (unlikely(num_desc > rx_avail)) {
pdcs->rxnobuf++;
return -ENOSPC;
}
while (sg) {
if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
flags = D64_CTRL1_EOT;
else
flags = 0;
/*
* If sg buffer larger than PDC limit, split across
* multiple descriptors
*/
bufcnt = sg_dma_len(sg);
databufptr = sg_dma_address(sg);
while (bufcnt > PDC_DMA_BUF_MAX) {
pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
desc_w++;
bufcnt -= PDC_DMA_BUF_MAX;
databufptr += PDC_DMA_BUF_MAX;
if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
flags = D64_CTRL1_EOT;
else
flags = 0;
}
pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
desc_w++;
sg = sg_next(sg);
}
pdcs->rxin_numd[pdcs->rx_msg_start] += desc_w;
return PDC_SUCCESS;
}
/**
* pdc_irq_handler() - Interrupt handler called in interrupt context.
* @irq: Interrupt number that has fired
* @cookie: PDC state for DMA engine that generated the interrupt
*
* We have to clear the device interrupt status flags here. So cache the
* status for later use in the thread function. Other than that, just return
* WAKE_THREAD to invoke the thread function.
*
* Return: IRQ_WAKE_THREAD if interrupt is ours
* IRQ_NONE otherwise
*/
static irqreturn_t pdc_irq_handler(int irq, void *cookie)
{
struct pdc_state *pdcs = cookie;
u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
if (intstatus & PDC_XMTINTEN_0)
set_bit(PDC_XMTINT_0, &pdcs->intstatus);
if (intstatus & PDC_RCVINTEN_0)
set_bit(PDC_RCVINT_0, &pdcs->intstatus);
/* Clear interrupt flags in device */
iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
/* Wakeup IRQ thread */
if (pdcs && (irq == pdcs->pdc_irq) && (intstatus & PDC_INTMASK))
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
/**
* pdc_irq_thread() - Function invoked on deferred thread when a DMA tx has
* completed or data is available to receive.
* @irq: Interrupt number
* @cookie: PDC state for PDC that generated the interrupt
*
* On DMA tx complete, notify the mailbox client. On DMA rx complete, process
* as many SPU response messages as are available and send each to the mailbox
* client.
*
* Return: IRQ_HANDLED if we recognized and handled the interrupt
* IRQ_NONE otherwise
*/
static irqreturn_t pdc_irq_thread(int irq, void *cookie)
{
struct pdc_state *pdcs = cookie;
struct mbox_controller *mbc;
struct mbox_chan *chan;
bool tx_int;
bool rx_int;
int rx_status;
struct brcm_message mssg;
tx_int = test_and_clear_bit(PDC_XMTINT_0, &pdcs->intstatus);
rx_int = test_and_clear_bit(PDC_RCVINT_0, &pdcs->intstatus);
if (pdcs && (tx_int || rx_int)) {
dev_dbg(&pdcs->pdev->dev,
"%s() got irq %d with tx_int %s, rx_int %s",
__func__, irq,
tx_int ? "set" : "clear", rx_int ? "set" : "clear");
mbc = &pdcs->mbc;
chan = &mbc->chans[0];
if (tx_int) {
dev_dbg(&pdcs->pdev->dev, "%s(): tx done", __func__);
/* only one frame in flight at a time */
mbox_chan_txdone(chan, PDC_SUCCESS);
}
if (rx_int) {
while (1) {
/* Could be many frames ready */
memset(&mssg, 0, sizeof(mssg));
mssg.type = BRCM_MESSAGE_SPU;
rx_status = pdc_receive(pdcs, &mssg);
if (rx_status >= 0) {
dev_dbg(&pdcs->pdev->dev,
"%s(): invoking client rx cb",
__func__);
mbox_chan_received_data(chan, &mssg);
} else {
dev_dbg(&pdcs->pdev->dev,
"%s(): no SPU response available",
__func__);
break;
}
}
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/**
* pdc_ring_init() - Allocate DMA rings and initialize constant fields of
* descriptors in one ringset.
* @pdcs: PDC instance state
* @ringset: index of ringset being used
*
* Return: PDC_SUCCESS if ring initialized
* < 0 otherwise
*/
static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
{
int i;
int err = PDC_SUCCESS;
struct dma64 *dma_reg;
struct device *dev = &pdcs->pdev->dev;
struct pdc_ring_alloc tx;
struct pdc_ring_alloc rx;
/* Allocate tx ring */
tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
if (!tx.vbase) {
err = -ENOMEM;
goto done;
}
/* Allocate rx ring */
rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
if (!rx.vbase) {
err = -ENOMEM;
goto fail_dealloc;
}
dev_dbg(dev, " - base DMA addr of tx ring %#llx", tx.dmabase);
dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase);
dev_dbg(dev, " - base DMA addr of rx ring %#llx", rx.dmabase);
dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase);
/* lock after ring allocation to avoid scheduling while atomic */
spin_lock(&pdcs->pdc_lock);
memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
pdcs->rxin = 0;
pdcs->rx_msg_start = 0;
pdcs->last_rx_curr = 0;
pdcs->rxout = 0;
pdcs->txin = 0;
pdcs->tx_msg_start = 0;
pdcs->txout = 0;
/* Set descriptor array base addresses */
pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
/* Tell device the base DMA address of each ring */
dma_reg = &pdcs->regs->dmaregs[ringset];
iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
(void *)&dma_reg->dmaxmt.addrlow);
iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
(void *)&dma_reg->dmaxmt.addrhigh);
iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
(void *)&dma_reg->dmarcv.addrlow);
iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
(void *)&dma_reg->dmarcv.addrhigh);
/* Initialize descriptors */
for (i = 0; i < PDC_RING_ENTRIES; i++) {
/* Every tx descriptor can be used for start of frame. */
if (i != pdcs->ntxpost) {
iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
(void *)&pdcs->txd_64[i].ctrl1);
} else {
/* Last descriptor in ringset. Set End of Table. */
iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
D64_CTRL1_EOT,
(void *)&pdcs->txd_64[i].ctrl1);
}
/* Every rx descriptor can be used for start of frame */
if (i != pdcs->nrxpost) {
iowrite32(D64_CTRL1_SOF,
(void *)&pdcs->rxd_64[i].ctrl1);
} else {
/* Last descriptor in ringset. Set End of Table. */
iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
(void *)&pdcs->rxd_64[i].ctrl1);
}
}
spin_unlock(&pdcs->pdc_lock);
return PDC_SUCCESS;
fail_dealloc:
dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
done:
return err;
}
static void pdc_ring_free(struct pdc_state *pdcs)
{
if (pdcs->tx_ring_alloc.vbase) {
dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
pdcs->tx_ring_alloc.dmabase);
pdcs->tx_ring_alloc.vbase = NULL;
}
if (pdcs->rx_ring_alloc.vbase) {
dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
pdcs->rx_ring_alloc.dmabase);
pdcs->rx_ring_alloc.vbase = NULL;
}
}
/**
* pdc_send_data() - mailbox send_data function
* @chan: The mailbox channel on which the data is sent. The channel
* corresponds to a DMA ringset.
* @data: The mailbox message to be sent. The message must be a
* brcm_message structure.
*
* This function is registered as the send_data function for the mailbox
* controller. From the destination scatterlist in the mailbox message, it
* creates a sequence of receive descriptors in the rx ring. From the source
* scatterlist, it creates a sequence of transmit descriptors in the tx ring.
* After creating the descriptors, it writes the rx ptr and tx ptr registers to
* initiate the DMA transfer.
*
* This function does the DMA map and unmap of the src and dst scatterlists in
* the mailbox message.
*
* Return: 0 if successful
* -ENOTSUPP if the mailbox message is a type this driver does not
* support
* < 0 if an error
*/
static int pdc_send_data(struct mbox_chan *chan, void *data)
{
struct pdc_state *pdcs = chan->con_priv;
struct device *dev = &pdcs->pdev->dev;
struct brcm_message *mssg = data;
int err = PDC_SUCCESS;
int src_nent;
int dst_nent;
int nent;
if (mssg->type != BRCM_MESSAGE_SPU)
return -ENOTSUPP;
src_nent = sg_nents(mssg->spu.src);
if (src_nent) {
nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
if (nent == 0)
return -EIO;
}
dst_nent = sg_nents(mssg->spu.dst);
if (dst_nent) {
nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
DMA_FROM_DEVICE);
if (nent == 0) {
dma_unmap_sg(dev, mssg->spu.src, src_nent,
DMA_TO_DEVICE);
return -EIO;
}
}
spin_lock(&pdcs->pdc_lock);
/* Create rx descriptors to SPU catch response */
err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
/* Create tx descriptors to submit SPU request */
err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
err |= pdc_tx_list_final(pdcs); /* initiate transfer */
spin_unlock(&pdcs->pdc_lock);
if (err)
dev_err(&pdcs->pdev->dev,
"%s failed with error %d", __func__, err);
return err;
}
static int pdc_startup(struct mbox_chan *chan)
{
return pdc_ring_init(chan->con_priv, PDC_RINGSET);
}
static void pdc_shutdown(struct mbox_chan *chan)
{
struct pdc_state *pdcs = chan->con_priv;
if (pdcs)
dev_dbg(&pdcs->pdev->dev,
"Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
pdc_ring_free(pdcs);
}
/**
* pdc_hw_init() - Use the given initialization parameters to initialize the
* state for one of the PDCs.
* @pdcs: state of the PDC
*/
static
void pdc_hw_init(struct pdc_state *pdcs)
{
struct platform_device *pdev;
struct device *dev;
struct dma64 *dma_reg;
int ringset = PDC_RINGSET;
pdev = pdcs->pdev;
dev = &pdev->dev;
dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
dev_dbg(dev, "state structure: %p",
pdcs);
dev_dbg(dev, " - base virtual addr of hw regs %p",
pdcs->pdc_reg_vbase);
/* initialize data structures */
pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
pdcs->txregs_64 = (struct dma64_regs *)
(void *)(((u8 *)pdcs->pdc_reg_vbase) +
PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
pdcs->rxregs_64 = (struct dma64_regs *)
(void *)(((u8 *)pdcs->pdc_reg_vbase) +
PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
pdcs->ntxd = PDC_RING_ENTRIES;
pdcs->nrxd = PDC_RING_ENTRIES;
pdcs->ntxpost = PDC_RING_ENTRIES - 1;
pdcs->nrxpost = PDC_RING_ENTRIES - 1;
pdcs->regs->intmask = 0;
dma_reg = &pdcs->regs->dmaregs[ringset];
iowrite32(0, (void *)&dma_reg->dmaxmt.ptr);
iowrite32(0, (void *)&dma_reg->dmarcv.ptr);
iowrite32(PDC_TX_CTL, (void *)&dma_reg->dmaxmt.control);
iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
(void *)&dma_reg->dmarcv.control);
if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
iowrite32(PDC_CKSUM_CTRL,
pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
}
/**
* pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
* header returned with each response message.
* @pdcs: PDC state structure
*
* The metadata is not returned to the mailbox client. So the PDC driver
* manages these buffers.
*
* Return: PDC_SUCCESS
* -ENOMEM if pool creation fails
*/
static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
{
struct platform_device *pdev;
struct device *dev;
pdev = pdcs->pdev;
dev = &pdev->dev;
pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
if (pdcs->use_bcm_hdr)
pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
pdcs->pdc_resp_hdr_len,
RX_BUF_ALIGN, 0);
if (!pdcs->rx_buf_pool)
return -ENOMEM;
return PDC_SUCCESS;
}
/**
* pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
* specify a threaded IRQ handler for deferred handling of interrupts outside of
* interrupt context.
* @pdcs: PDC state
*
* Set the interrupt mask for transmit and receive done.
* Set the lazy interrupt frame count to generate an interrupt for just one pkt.
*
* Return: PDC_SUCCESS
* <0 if threaded irq request fails
*/
static int pdc_interrupts_init(struct pdc_state *pdcs)
{
struct platform_device *pdev = pdcs->pdev;
struct device *dev = &pdev->dev;
struct device_node *dn = pdev->dev.of_node;
int err;
pdcs->intstatus = 0;
/* interrupt configuration */
iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + PDC_RCVLAZY0_OFFSET);
/* read irq from device tree */
pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
dev_name(dev), pdcs->pdc_irq, pdcs);
err = devm_request_threaded_irq(dev, pdcs->pdc_irq,
pdc_irq_handler,
pdc_irq_thread, 0, dev_name(dev), pdcs);
if (err) {
dev_err(dev, "threaded tx IRQ %u request failed with err %d\n",
pdcs->pdc_irq, err);
return err;
}
return PDC_SUCCESS;
}
static const struct mbox_chan_ops pdc_mbox_chan_ops = {
.send_data = pdc_send_data,
.startup = pdc_startup,
.shutdown = pdc_shutdown
};
/**
* pdc_mb_init() - Initialize the mailbox controller.
* @pdcs: PDC state
*
* Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
* driver only uses one ringset and thus one mb channel. PDC uses the transmit
* complete interrupt to determine when a mailbox message has successfully been
* transmitted.
*
* Return: 0 on success
* < 0 if there is an allocation or registration failure
*/
static int pdc_mb_init(struct pdc_state *pdcs)
{
struct device *dev = &pdcs->pdev->dev;
struct mbox_controller *mbc;
int chan_index;
int err;
mbc = &pdcs->mbc;
mbc->dev = dev;
mbc->ops = &pdc_mbox_chan_ops;
mbc->num_chans = 1;
mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
GFP_KERNEL);
if (!mbc->chans)
return -ENOMEM;
mbc->txdone_irq = true;
mbc->txdone_poll = false;
for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
mbc->chans[chan_index].con_priv = pdcs;
/* Register mailbox controller */
err = mbox_controller_register(mbc);
if (err) {
dev_crit(dev,
"Failed to register PDC mailbox controller. Error %d.",
err);
return err;
}
return 0;
}
/**
* pdc_dt_read() - Read application-specific data from device tree.
* @pdev: Platform device
* @pdcs: PDC state
*
* Reads the number of bytes of receive status that precede each received frame.
* Reads whether transmit and received frames should be preceded by an 8-byte
* BCM header.
*
* Return: 0 if successful
* -ENODEV if device not available
*/
static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
{
struct device *dev = &pdev->dev;
struct device_node *dn = pdev->dev.of_node;
int err;
err = of_property_read_u32(dn, "brcm,rx-status-len",
&pdcs->rx_status_len);
if (err < 0)
dev_err(dev,
"%s failed to get DMA receive status length from device tree",
__func__);
pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
return 0;
}
/**
* pdc_probe() - Probe function for PDC driver.
* @pdev: PDC platform device
*
* Reserve and map register regions defined in device tree.
* Allocate and initialize tx and rx DMA rings.
* Initialize a mailbox controller for each PDC.
*
* Return: 0 if successful
* < 0 if an error
*/
static int pdc_probe(struct platform_device *pdev)
{
int err = 0;
struct device *dev = &pdev->dev;
struct resource *pdc_regs;
struct pdc_state *pdcs;
/* PDC state for one SPU */
pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
if (!pdcs) {
err = -ENOMEM;
goto cleanup;
}
spin_lock_init(&pdcs->pdc_lock);
pdcs->pdev = pdev;
platform_set_drvdata(pdev, pdcs);
pdcs->pdc_idx = pdcg.num_spu;
pdcg.num_spu++;
err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (err) {
dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
goto cleanup;
}
/* Create DMA pool for tx ring */
pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
RING_ALIGN, 0);
if (!pdcs->ring_pool) {
err = -ENOMEM;
goto cleanup;
}
err = pdc_dt_read(pdev, pdcs);
if (err)
goto cleanup_ring_pool;
pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!pdc_regs) {
err = -ENODEV;
goto cleanup_ring_pool;
}
dev_dbg(dev, "PDC register region res.start = %#llx, res.end = %#llx",
pdc_regs->start, pdc_regs->end);
pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
if (IS_ERR(pdcs->pdc_reg_vbase)) {
err = PTR_ERR(pdcs->pdc_reg_vbase);
dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
goto cleanup_ring_pool;
}
/* create rx buffer pool after dt read to know how big buffers are */
err = pdc_rx_buf_pool_create(pdcs);
if (err)
goto cleanup_ring_pool;
pdc_hw_init(pdcs);
err = pdc_interrupts_init(pdcs);
if (err)
goto cleanup_buf_pool;
/* Initialize mailbox controller */
err = pdc_mb_init(pdcs);
if (err)
goto cleanup_buf_pool;
pdcs->debugfs_stats = NULL;
pdc_setup_debugfs(pdcs);
dev_dbg(dev, "pdc_probe() successful");
return PDC_SUCCESS;
cleanup_buf_pool:
dma_pool_destroy(pdcs->rx_buf_pool);
cleanup_ring_pool:
dma_pool_destroy(pdcs->ring_pool);
cleanup:
return err;
}
static int pdc_remove(struct platform_device *pdev)
{
struct pdc_state *pdcs = platform_get_drvdata(pdev);
pdc_free_debugfs();
mbox_controller_unregister(&pdcs->mbc);
dma_pool_destroy(pdcs->rx_buf_pool);
dma_pool_destroy(pdcs->ring_pool);
return 0;
}
static const struct of_device_id pdc_mbox_of_match[] = {
{.compatible = "brcm,iproc-pdc-mbox"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
static struct platform_driver pdc_mbox_driver = {
.probe = pdc_probe,
.remove = pdc_remove,
.driver = {
.name = "brcm-iproc-pdc-mbox",
.of_match_table = of_match_ptr(pdc_mbox_of_match),
},
};
module_platform_driver(pdc_mbox_driver);
MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
MODULE_LICENSE("GPL v2");