linux_dsm_epyc7002/drivers/net/usb/sr9700.c
Chen Gang 06b19b1b17 net: usb: sr9700: Use 'SR_' prefix for the common register macros
The commone register macors (e.g. RSR) is too commont to drivers, it may
be conflict with the architectures (e.g. xtensa, sh).

The related warnings (with allmodconfig under xtensa):

    CC [M]  drivers/net/usb/sr9700.o
  In file included from drivers/net/usb/sr9700.c:24:0:
  drivers/net/usb/sr9700.h:65:0: warning: "RSR" redefined
   #define RSR   0x06
   ^
  In file included from ./arch/xtensa/include/asm/bitops.h:22:0,
                   from include/linux/bitops.h:36,
                   from include/linux/kernel.h:10,
                   from include/linux/list.h:8,
                   from include/linux/module.h:9,
                   from drivers/net/usb/sr9700.c:13:
  ./arch/xtensa/include/asm/processor.h:190:0: note: this is the location of the previous definition
   #define RSR(v,sr) __asm__ __volatile__ ("rsr %0,"__stringify(sr) : "=a"(v));
   ^

Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 13:53:02 -08:00

560 lines
13 KiB
C

/*
* CoreChip-sz SR9700 one chip USB 1.1 Ethernet Devices
*
* Author : Liu Junliang <liujunliang_ljl@163.com>
*
* Based on dm9601.c
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/stddef.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include "sr9700.h"
static int sr_read(struct usbnet *dev, u8 reg, u16 length, void *data)
{
int err;
err = usbnet_read_cmd(dev, SR_RD_REGS, SR_REQ_RD_REG, 0, reg, data,
length);
if ((err != length) && (err >= 0))
err = -EINVAL;
return err;
}
static int sr_write(struct usbnet *dev, u8 reg, u16 length, void *data)
{
int err;
err = usbnet_write_cmd(dev, SR_WR_REGS, SR_REQ_WR_REG, 0, reg, data,
length);
if ((err >= 0) && (err < length))
err = -EINVAL;
return err;
}
static int sr_read_reg(struct usbnet *dev, u8 reg, u8 *value)
{
return sr_read(dev, reg, 1, value);
}
static int sr_write_reg(struct usbnet *dev, u8 reg, u8 value)
{
return usbnet_write_cmd(dev, SR_WR_REGS, SR_REQ_WR_REG,
value, reg, NULL, 0);
}
static void sr_write_async(struct usbnet *dev, u8 reg, u16 length, void *data)
{
usbnet_write_cmd_async(dev, SR_WR_REGS, SR_REQ_WR_REG,
0, reg, data, length);
}
static void sr_write_reg_async(struct usbnet *dev, u8 reg, u8 value)
{
usbnet_write_cmd_async(dev, SR_WR_REGS, SR_REQ_WR_REG,
value, reg, NULL, 0);
}
static int wait_phy_eeprom_ready(struct usbnet *dev, int phy)
{
int i;
for (i = 0; i < SR_SHARE_TIMEOUT; i++) {
u8 tmp = 0;
int ret;
udelay(1);
ret = sr_read_reg(dev, SR_EPCR, &tmp);
if (ret < 0)
return ret;
/* ready */
if (!(tmp & EPCR_ERRE))
return 0;
}
netdev_err(dev->net, "%s write timed out!\n", phy ? "phy" : "eeprom");
return -EIO;
}
static int sr_share_read_word(struct usbnet *dev, int phy, u8 reg,
__le16 *value)
{
int ret;
mutex_lock(&dev->phy_mutex);
sr_write_reg(dev, SR_EPAR, phy ? (reg | EPAR_PHY_ADR) : reg);
sr_write_reg(dev, SR_EPCR, phy ? (EPCR_EPOS | EPCR_ERPRR) : EPCR_ERPRR);
ret = wait_phy_eeprom_ready(dev, phy);
if (ret < 0)
goto out_unlock;
sr_write_reg(dev, SR_EPCR, 0x0);
ret = sr_read(dev, SR_EPDR, 2, value);
netdev_dbg(dev->net, "read shared %d 0x%02x returned 0x%04x, %d\n",
phy, reg, *value, ret);
out_unlock:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static int sr_share_write_word(struct usbnet *dev, int phy, u8 reg,
__le16 value)
{
int ret;
mutex_lock(&dev->phy_mutex);
ret = sr_write(dev, SR_EPDR, 2, &value);
if (ret < 0)
goto out_unlock;
sr_write_reg(dev, SR_EPAR, phy ? (reg | EPAR_PHY_ADR) : reg);
sr_write_reg(dev, SR_EPCR, phy ? (EPCR_WEP | EPCR_EPOS | EPCR_ERPRW) :
(EPCR_WEP | EPCR_ERPRW));
ret = wait_phy_eeprom_ready(dev, phy);
if (ret < 0)
goto out_unlock;
sr_write_reg(dev, SR_EPCR, 0x0);
out_unlock:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static int sr_read_eeprom_word(struct usbnet *dev, u8 offset, void *value)
{
return sr_share_read_word(dev, 0, offset, value);
}
static int sr9700_get_eeprom_len(struct net_device *netdev)
{
return SR_EEPROM_LEN;
}
static int sr9700_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 *buf = (__le16 *)data;
int ret = 0;
int i;
/* access is 16bit */
if ((eeprom->offset & 0x01) || (eeprom->len & 0x01))
return -EINVAL;
for (i = 0; i < eeprom->len / 2; i++) {
ret = sr_read_eeprom_word(dev, eeprom->offset / 2 + i, buf + i);
if (ret < 0)
break;
}
return ret;
}
static int sr_mdio_read(struct net_device *netdev, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res;
int rc = 0;
if (phy_id) {
netdev_dbg(netdev, "Only internal phy supported\n");
return 0;
}
/* Access NSR_LINKST bit for link status instead of MII_BMSR */
if (loc == MII_BMSR) {
u8 value;
sr_read_reg(dev, SR_NSR, &value);
if (value & NSR_LINKST)
rc = 1;
}
sr_share_read_word(dev, 1, loc, &res);
if (rc == 1)
res = le16_to_cpu(res) | BMSR_LSTATUS;
else
res = le16_to_cpu(res) & ~BMSR_LSTATUS;
netdev_dbg(netdev, "sr_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n",
phy_id, loc, res);
return res;
}
static void sr_mdio_write(struct net_device *netdev, int phy_id, int loc,
int val)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res = cpu_to_le16(val);
if (phy_id) {
netdev_dbg(netdev, "Only internal phy supported\n");
return;
}
netdev_dbg(netdev, "sr_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n",
phy_id, loc, val);
sr_share_write_word(dev, 1, loc, res);
}
static u32 sr9700_get_link(struct net_device *netdev)
{
struct usbnet *dev = netdev_priv(netdev);
u8 value = 0;
int rc = 0;
/* Get the Link Status directly */
sr_read_reg(dev, SR_NSR, &value);
if (value & NSR_LINKST)
rc = 1;
return rc;
}
static int sr9700_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(netdev);
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static const struct ethtool_ops sr9700_ethtool_ops = {
.get_drvinfo = usbnet_get_drvinfo,
.get_link = sr9700_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_eeprom_len = sr9700_get_eeprom_len,
.get_eeprom = sr9700_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static void sr9700_set_multicast(struct net_device *netdev)
{
struct usbnet *dev = netdev_priv(netdev);
/* We use the 20 byte dev->data for our 8 byte filter buffer
* to avoid allocating memory that is tricky to free later
*/
u8 *hashes = (u8 *)&dev->data;
/* rx_ctl setting : enable, disable_long, disable_crc */
u8 rx_ctl = RCR_RXEN | RCR_DIS_CRC | RCR_DIS_LONG;
memset(hashes, 0x00, SR_MCAST_SIZE);
/* broadcast address */
hashes[SR_MCAST_SIZE - 1] |= SR_MCAST_ADDR_FLAG;
if (netdev->flags & IFF_PROMISC) {
rx_ctl |= RCR_PRMSC;
} else if (netdev->flags & IFF_ALLMULTI ||
netdev_mc_count(netdev) > SR_MCAST_MAX) {
rx_ctl |= RCR_RUNT;
} else if (!netdev_mc_empty(netdev)) {
struct netdev_hw_addr *ha;
netdev_for_each_mc_addr(ha, netdev) {
u32 crc = ether_crc(ETH_ALEN, ha->addr) >> 26;
hashes[crc >> 3] |= 1 << (crc & 0x7);
}
}
sr_write_async(dev, SR_MAR, SR_MCAST_SIZE, hashes);
sr_write_reg_async(dev, SR_RCR, rx_ctl);
}
static int sr9700_set_mac_address(struct net_device *netdev, void *p)
{
struct usbnet *dev = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data)) {
netdev_err(netdev, "not setting invalid mac address %pM\n",
addr->sa_data);
return -EINVAL;
}
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
sr_write_async(dev, SR_PAR, 6, netdev->dev_addr);
return 0;
}
static const struct net_device_ops sr9700_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_change_mtu = usbnet_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = sr9700_ioctl,
.ndo_set_rx_mode = sr9700_set_multicast,
.ndo_set_mac_address = sr9700_set_mac_address,
};
static int sr9700_bind(struct usbnet *dev, struct usb_interface *intf)
{
struct net_device *netdev;
struct mii_if_info *mii;
int ret;
ret = usbnet_get_endpoints(dev, intf);
if (ret)
goto out;
netdev = dev->net;
netdev->netdev_ops = &sr9700_netdev_ops;
netdev->ethtool_ops = &sr9700_ethtool_ops;
netdev->hard_header_len += SR_TX_OVERHEAD;
dev->hard_mtu = netdev->mtu + netdev->hard_header_len;
/* bulkin buffer is preferably not less than 3K */
dev->rx_urb_size = 3072;
mii = &dev->mii;
mii->dev = netdev;
mii->mdio_read = sr_mdio_read;
mii->mdio_write = sr_mdio_write;
mii->phy_id_mask = 0x1f;
mii->reg_num_mask = 0x1f;
sr_write_reg(dev, SR_NCR, NCR_RST);
udelay(20);
/* read MAC
* After Chip Power on, the Chip will reload the MAC from
* EEPROM automatically to PAR. In case there is no EEPROM externally,
* a default MAC address is stored in PAR for making chip work properly.
*/
if (sr_read(dev, SR_PAR, ETH_ALEN, netdev->dev_addr) < 0) {
netdev_err(netdev, "Error reading MAC address\n");
ret = -ENODEV;
goto out;
}
/* power up and reset phy */
sr_write_reg(dev, SR_PRR, PRR_PHY_RST);
/* at least 10ms, here 20ms for safe */
mdelay(20);
sr_write_reg(dev, SR_PRR, 0);
/* at least 1ms, here 2ms for reading right register */
udelay(2 * 1000);
/* receive broadcast packets */
sr9700_set_multicast(netdev);
sr_mdio_write(netdev, mii->phy_id, MII_BMCR, BMCR_RESET);
sr_mdio_write(netdev, mii->phy_id, MII_ADVERTISE, ADVERTISE_ALL |
ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
mii_nway_restart(mii);
out:
return ret;
}
static int sr9700_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
struct sk_buff *sr_skb;
int len;
/* skb content (packets) format :
* p0 p1 p2 ...... pm
* / \
* / \
* / \
* / \
* p0b0 p0b1 p0b2 p0b3 ...... p0b(n-4) p0b(n-3)...p0bn
*
* p0 : packet 0
* p0b0 : packet 0 byte 0
*
* b0: rx status
* b1: packet length (incl crc) low
* b2: packet length (incl crc) high
* b3..n-4: packet data
* bn-3..bn: ethernet packet crc
*/
if (unlikely(skb->len < SR_RX_OVERHEAD)) {
netdev_err(dev->net, "unexpected tiny rx frame\n");
return 0;
}
/* one skb may contains multiple packets */
while (skb->len > SR_RX_OVERHEAD) {
if (skb->data[0] != 0x40)
return 0;
/* ignore the CRC length */
len = (skb->data[1] | (skb->data[2] << 8)) - 4;
if (len > ETH_FRAME_LEN)
return 0;
/* the last packet of current skb */
if (skb->len == (len + SR_RX_OVERHEAD)) {
skb_pull(skb, 3);
skb->len = len;
skb_set_tail_pointer(skb, len);
skb->truesize = len + sizeof(struct sk_buff);
return 2;
}
/* skb_clone is used for address align */
sr_skb = skb_clone(skb, GFP_ATOMIC);
if (!sr_skb)
return 0;
sr_skb->len = len;
sr_skb->data = skb->data + 3;
skb_set_tail_pointer(sr_skb, len);
sr_skb->truesize = len + sizeof(struct sk_buff);
usbnet_skb_return(dev, sr_skb);
skb_pull(skb, len + SR_RX_OVERHEAD);
};
return 0;
}
static struct sk_buff *sr9700_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
gfp_t flags)
{
int len;
/* SR9700 can only send out one ethernet packet at once.
*
* b0 b1 b2 b3 ...... b(n-4) b(n-3)...bn
*
* b0: rx status
* b1: packet length (incl crc) low
* b2: packet length (incl crc) high
* b3..n-4: packet data
* bn-3..bn: ethernet packet crc
*/
len = skb->len;
if (skb_headroom(skb) < SR_TX_OVERHEAD) {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, SR_TX_OVERHEAD, 0, flags);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
}
__skb_push(skb, SR_TX_OVERHEAD);
/* usbnet adds padding if length is a multiple of packet size
* if so, adjust length value in header
*/
if ((skb->len % dev->maxpacket) == 0)
len++;
skb->data[0] = len;
skb->data[1] = len >> 8;
return skb;
}
static void sr9700_status(struct usbnet *dev, struct urb *urb)
{
int link;
u8 *buf;
/* format:
b0: net status
b1: tx status 1
b2: tx status 2
b3: rx status
b4: rx overflow
b5: rx count
b6: tx count
b7: gpr
*/
if (urb->actual_length < 8)
return;
buf = urb->transfer_buffer;
link = !!(buf[0] & 0x40);
if (netif_carrier_ok(dev->net) != link) {
usbnet_link_change(dev, link, 1);
netdev_dbg(dev->net, "Link Status is: %d\n", link);
}
}
static int sr9700_link_reset(struct usbnet *dev)
{
struct ethtool_cmd ecmd;
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
netdev_dbg(dev->net, "link_reset() speed: %d duplex: %d\n",
ecmd.speed, ecmd.duplex);
return 0;
}
static const struct driver_info sr9700_driver_info = {
.description = "CoreChip SR9700 USB Ethernet",
.flags = FLAG_ETHER,
.bind = sr9700_bind,
.rx_fixup = sr9700_rx_fixup,
.tx_fixup = sr9700_tx_fixup,
.status = sr9700_status,
.link_reset = sr9700_link_reset,
.reset = sr9700_link_reset,
};
static const struct usb_device_id products[] = {
{
USB_DEVICE(0x0fe6, 0x9700), /* SR9700 device */
.driver_info = (unsigned long)&sr9700_driver_info,
},
{}, /* END */
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver sr9700_usb_driver = {
.name = "sr9700",
.id_table = products,
.probe = usbnet_probe,
.disconnect = usbnet_disconnect,
.suspend = usbnet_suspend,
.resume = usbnet_resume,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(sr9700_usb_driver);
MODULE_AUTHOR("liujl <liujunliang_ljl@163.com>");
MODULE_DESCRIPTION("SR9700 one chip USB 1.1 USB to Ethernet device from http://www.corechip-sz.com/");
MODULE_LICENSE("GPL");