linux_dsm_epyc7002/arch/powerpc/xmon/xmon.c
Balbir Singh efe4fbb1ac powerpc/xmon: Add patch_instruction() support for xmon
Move from mwrite() to patch_instruction() for xmon for
breakpoint addition and removal.

Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-07-03 23:12:19 +10:00

3763 lines
79 KiB
C

/*
* Routines providing a simple monitor for use on the PowerMac.
*
* Copyright (C) 1996-2005 Paul Mackerras.
* Copyright (C) 2001 PPC64 Team, IBM Corp
* Copyrignt (C) 2006 Michael Ellerman, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched/signal.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/kallsyms.h>
#include <linux/kmsg_dump.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/sysrq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/ctype.h>
#include <asm/debugfs.h>
#include <asm/ptrace.h>
#include <asm/smp.h>
#include <asm/string.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/xmon.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/rtas.h>
#include <asm/sstep.h>
#include <asm/irq_regs.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/setjmp.h>
#include <asm/reg.h>
#include <asm/debug.h>
#include <asm/hw_breakpoint.h>
#include <asm/xive.h>
#include <asm/opal.h>
#include <asm/firmware.h>
#include <asm/code-patching.h>
#ifdef CONFIG_PPC64
#include <asm/hvcall.h>
#include <asm/paca.h>
#endif
#if defined(CONFIG_PPC_SPLPAR)
#include <asm/plpar_wrappers.h>
#else
static inline long plapr_set_ciabr(unsigned long ciabr) {return 0; };
#endif
#include "nonstdio.h"
#include "dis-asm.h"
#ifdef CONFIG_SMP
static cpumask_t cpus_in_xmon = CPU_MASK_NONE;
static unsigned long xmon_taken = 1;
static int xmon_owner;
static int xmon_gate;
#else
#define xmon_owner 0
#endif /* CONFIG_SMP */
static unsigned long in_xmon __read_mostly = 0;
static int xmon_on = IS_ENABLED(CONFIG_XMON_DEFAULT);
static unsigned long adrs;
static int size = 1;
#define MAX_DUMP (128 * 1024)
static unsigned long ndump = 64;
static unsigned long nidump = 16;
static unsigned long ncsum = 4096;
static int termch;
static char tmpstr[128];
static long bus_error_jmp[JMP_BUF_LEN];
static int catch_memory_errors;
static int catch_spr_faults;
static long *xmon_fault_jmp[NR_CPUS];
/* Breakpoint stuff */
struct bpt {
unsigned long address;
unsigned int instr[2];
atomic_t ref_count;
int enabled;
unsigned long pad;
};
/* Bits in bpt.enabled */
#define BP_CIABR 1
#define BP_TRAP 2
#define BP_DABR 4
#define NBPTS 256
static struct bpt bpts[NBPTS];
static struct bpt dabr;
static struct bpt *iabr;
static unsigned bpinstr = 0x7fe00008; /* trap */
#define BP_NUM(bp) ((bp) - bpts + 1)
/* Prototypes */
static int cmds(struct pt_regs *);
static int mread(unsigned long, void *, int);
static int mwrite(unsigned long, void *, int);
static int handle_fault(struct pt_regs *);
static void byterev(unsigned char *, int);
static void memex(void);
static int bsesc(void);
static void dump(void);
static void prdump(unsigned long, long);
static int ppc_inst_dump(unsigned long, long, int);
static void dump_log_buf(void);
#ifdef CONFIG_PPC_POWERNV
static void dump_opal_msglog(void);
#else
static inline void dump_opal_msglog(void)
{
printf("Machine is not running OPAL firmware.\n");
}
#endif
static void backtrace(struct pt_regs *);
static void excprint(struct pt_regs *);
static void prregs(struct pt_regs *);
static void memops(int);
static void memlocate(void);
static void memzcan(void);
static void memdiffs(unsigned char *, unsigned char *, unsigned, unsigned);
int skipbl(void);
int scanhex(unsigned long *valp);
static void scannl(void);
static int hexdigit(int);
void getstring(char *, int);
static void flush_input(void);
static int inchar(void);
static void take_input(char *);
static int read_spr(int, unsigned long *);
static void write_spr(int, unsigned long);
static void super_regs(void);
static void remove_bpts(void);
static void insert_bpts(void);
static void remove_cpu_bpts(void);
static void insert_cpu_bpts(void);
static struct bpt *at_breakpoint(unsigned long pc);
static struct bpt *in_breakpoint_table(unsigned long pc, unsigned long *offp);
static int do_step(struct pt_regs *);
static void bpt_cmds(void);
static void cacheflush(void);
static int cpu_cmd(void);
static void csum(void);
static void bootcmds(void);
static void proccall(void);
static void show_tasks(void);
void dump_segments(void);
static void symbol_lookup(void);
static void xmon_show_stack(unsigned long sp, unsigned long lr,
unsigned long pc);
static void xmon_print_symbol(unsigned long address, const char *mid,
const char *after);
static const char *getvecname(unsigned long vec);
static int do_spu_cmd(void);
#ifdef CONFIG_44x
static void dump_tlb_44x(void);
#endif
#ifdef CONFIG_PPC_BOOK3E
static void dump_tlb_book3e(void);
#endif
#ifdef CONFIG_PPC64
#define REG "%.16lx"
#else
#define REG "%.8lx"
#endif
#ifdef __LITTLE_ENDIAN__
#define GETWORD(v) (((v)[3] << 24) + ((v)[2] << 16) + ((v)[1] << 8) + (v)[0])
#else
#define GETWORD(v) (((v)[0] << 24) + ((v)[1] << 16) + ((v)[2] << 8) + (v)[3])
#endif
static char *help_string = "\
Commands:\n\
b show breakpoints\n\
bd set data breakpoint\n\
bi set instruction breakpoint\n\
bc clear breakpoint\n"
#ifdef CONFIG_SMP
"\
c print cpus stopped in xmon\n\
c# try to switch to cpu number h (in hex)\n"
#endif
"\
C checksum\n\
d dump bytes\n\
d1 dump 1 byte values\n\
d2 dump 2 byte values\n\
d4 dump 4 byte values\n\
d8 dump 8 byte values\n\
di dump instructions\n\
df dump float values\n\
dd dump double values\n\
dl dump the kernel log buffer\n"
#ifdef CONFIG_PPC_POWERNV
"\
do dump the OPAL message log\n"
#endif
#ifdef CONFIG_PPC64
"\
dp[#] dump paca for current cpu, or cpu #\n\
dpa dump paca for all possible cpus\n"
#endif
"\
dr dump stream of raw bytes\n\
dt dump the tracing buffers (uses printk)\n\
"
#ifdef CONFIG_PPC_POWERNV
" dx# dump xive on CPU #\n\
dxi# dump xive irq state #\n\
dxa dump xive on all CPUs\n"
#endif
" e print exception information\n\
f flush cache\n\
la lookup symbol+offset of specified address\n\
ls lookup address of specified symbol\n\
m examine/change memory\n\
mm move a block of memory\n\
ms set a block of memory\n\
md compare two blocks of memory\n\
ml locate a block of memory\n\
mz zero a block of memory\n\
mi show information about memory allocation\n\
p call a procedure\n\
P list processes/tasks\n\
r print registers\n\
s single step\n"
#ifdef CONFIG_SPU_BASE
" ss stop execution on all spus\n\
sr restore execution on stopped spus\n\
sf # dump spu fields for spu # (in hex)\n\
sd # dump spu local store for spu # (in hex)\n\
sdi # disassemble spu local store for spu # (in hex)\n"
#endif
" S print special registers\n\
Sa print all SPRs\n\
Sr # read SPR #\n\
Sw #v write v to SPR #\n\
t print backtrace\n\
x exit monitor and recover\n\
X exit monitor and don't recover\n"
#if defined(CONFIG_PPC64) && !defined(CONFIG_PPC_BOOK3E)
" u dump segment table or SLB\n"
#elif defined(CONFIG_PPC_STD_MMU_32)
" u dump segment registers\n"
#elif defined(CONFIG_44x) || defined(CONFIG_PPC_BOOK3E)
" u dump TLB\n"
#endif
" ? help\n"
" # n limit output to n lines per page (for dp, dpa, dl)\n"
" zr reboot\n\
zh halt\n"
;
static struct pt_regs *xmon_regs;
static inline void sync(void)
{
asm volatile("sync; isync");
}
static inline void store_inst(void *p)
{
asm volatile ("dcbst 0,%0; sync; icbi 0,%0; isync" : : "r" (p));
}
static inline void cflush(void *p)
{
asm volatile ("dcbf 0,%0; icbi 0,%0" : : "r" (p));
}
static inline void cinval(void *p)
{
asm volatile ("dcbi 0,%0; icbi 0,%0" : : "r" (p));
}
/**
* write_ciabr() - write the CIABR SPR
* @ciabr: The value to write.
*
* This function writes a value to the CIARB register either directly
* through mtspr instruction if the kernel is in HV privilege mode or
* call a hypervisor function to achieve the same in case the kernel
* is in supervisor privilege mode.
*/
static void write_ciabr(unsigned long ciabr)
{
if (!cpu_has_feature(CPU_FTR_ARCH_207S))
return;
if (cpu_has_feature(CPU_FTR_HVMODE)) {
mtspr(SPRN_CIABR, ciabr);
return;
}
plapr_set_ciabr(ciabr);
}
/**
* set_ciabr() - set the CIABR
* @addr: The value to set.
*
* This function sets the correct privilege value into the the HW
* breakpoint address before writing it up in the CIABR register.
*/
static void set_ciabr(unsigned long addr)
{
addr &= ~CIABR_PRIV;
if (cpu_has_feature(CPU_FTR_HVMODE))
addr |= CIABR_PRIV_HYPER;
else
addr |= CIABR_PRIV_SUPER;
write_ciabr(addr);
}
/*
* Disable surveillance (the service processor watchdog function)
* while we are in xmon.
* XXX we should re-enable it when we leave. :)
*/
#define SURVEILLANCE_TOKEN 9000
static inline void disable_surveillance(void)
{
#ifdef CONFIG_PPC_PSERIES
/* Since this can't be a module, args should end up below 4GB. */
static struct rtas_args args;
int token;
/*
* At this point we have got all the cpus we can into
* xmon, so there is hopefully no other cpu calling RTAS
* at the moment, even though we don't take rtas.lock.
* If we did try to take rtas.lock there would be a
* real possibility of deadlock.
*/
token = rtas_token("set-indicator");
if (token == RTAS_UNKNOWN_SERVICE)
return;
rtas_call_unlocked(&args, token, 3, 1, NULL, SURVEILLANCE_TOKEN, 0, 0);
#endif /* CONFIG_PPC_PSERIES */
}
#ifdef CONFIG_SMP
static int xmon_speaker;
static void get_output_lock(void)
{
int me = smp_processor_id() + 0x100;
int last_speaker = 0, prev;
long timeout;
if (xmon_speaker == me)
return;
for (;;) {
last_speaker = cmpxchg(&xmon_speaker, 0, me);
if (last_speaker == 0)
return;
/*
* Wait a full second for the lock, we might be on a slow
* console, but check every 100us.
*/
timeout = 10000;
while (xmon_speaker == last_speaker) {
if (--timeout > 0) {
udelay(100);
continue;
}
/* hostile takeover */
prev = cmpxchg(&xmon_speaker, last_speaker, me);
if (prev == last_speaker)
return;
break;
}
}
}
static void release_output_lock(void)
{
xmon_speaker = 0;
}
int cpus_are_in_xmon(void)
{
return !cpumask_empty(&cpus_in_xmon);
}
static bool wait_for_other_cpus(int ncpus)
{
unsigned long timeout;
/* We wait for 2s, which is a metric "little while" */
for (timeout = 20000; timeout != 0; --timeout) {
if (cpumask_weight(&cpus_in_xmon) >= ncpus)
return true;
udelay(100);
barrier();
}
return false;
}
#endif /* CONFIG_SMP */
static inline int unrecoverable_excp(struct pt_regs *regs)
{
#if defined(CONFIG_4xx) || defined(CONFIG_PPC_BOOK3E)
/* We have no MSR_RI bit on 4xx or Book3e, so we simply return false */
return 0;
#else
return ((regs->msr & MSR_RI) == 0);
#endif
}
static int xmon_core(struct pt_regs *regs, int fromipi)
{
int cmd = 0;
struct bpt *bp;
long recurse_jmp[JMP_BUF_LEN];
unsigned long offset;
unsigned long flags;
#ifdef CONFIG_SMP
int cpu;
int secondary;
#endif
local_irq_save(flags);
hard_irq_disable();
bp = in_breakpoint_table(regs->nip, &offset);
if (bp != NULL) {
regs->nip = bp->address + offset;
atomic_dec(&bp->ref_count);
}
remove_cpu_bpts();
#ifdef CONFIG_SMP
cpu = smp_processor_id();
if (cpumask_test_cpu(cpu, &cpus_in_xmon)) {
/*
* We catch SPR read/write faults here because the 0x700, 0xf60
* etc. handlers don't call debugger_fault_handler().
*/
if (catch_spr_faults)
longjmp(bus_error_jmp, 1);
get_output_lock();
excprint(regs);
printf("cpu 0x%x: Exception %lx %s in xmon, "
"returning to main loop\n",
cpu, regs->trap, getvecname(TRAP(regs)));
release_output_lock();
longjmp(xmon_fault_jmp[cpu], 1);
}
if (setjmp(recurse_jmp) != 0) {
if (!in_xmon || !xmon_gate) {
get_output_lock();
printf("xmon: WARNING: bad recursive fault "
"on cpu 0x%x\n", cpu);
release_output_lock();
goto waiting;
}
secondary = !(xmon_taken && cpu == xmon_owner);
goto cmdloop;
}
xmon_fault_jmp[cpu] = recurse_jmp;
bp = NULL;
if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) == (MSR_IR|MSR_64BIT))
bp = at_breakpoint(regs->nip);
if (bp || unrecoverable_excp(regs))
fromipi = 0;
if (!fromipi) {
get_output_lock();
excprint(regs);
if (bp) {
printf("cpu 0x%x stopped at breakpoint 0x%lx (",
cpu, BP_NUM(bp));
xmon_print_symbol(regs->nip, " ", ")\n");
}
if (unrecoverable_excp(regs))
printf("WARNING: exception is not recoverable, "
"can't continue\n");
release_output_lock();
}
cpumask_set_cpu(cpu, &cpus_in_xmon);
waiting:
secondary = 1;
while (secondary && !xmon_gate) {
if (in_xmon == 0) {
if (fromipi)
goto leave;
secondary = test_and_set_bit(0, &in_xmon);
}
barrier();
}
if (!secondary && !xmon_gate) {
/* we are the first cpu to come in */
/* interrupt other cpu(s) */
int ncpus = num_online_cpus();
xmon_owner = cpu;
mb();
if (ncpus > 1) {
/*
* A system reset (trap == 0x100) can be triggered on
* all CPUs, so when we come in via 0x100 try waiting
* for the other CPUs to come in before we send the
* debugger break (IPI). This is similar to
* crash_kexec_secondary().
*/
if (TRAP(regs) != 0x100 || !wait_for_other_cpus(ncpus))
smp_send_debugger_break();
wait_for_other_cpus(ncpus);
}
remove_bpts();
disable_surveillance();
/* for breakpoint or single step, print the current instr. */
if (bp || TRAP(regs) == 0xd00)
ppc_inst_dump(regs->nip, 1, 0);
printf("enter ? for help\n");
mb();
xmon_gate = 1;
barrier();
}
cmdloop:
while (in_xmon) {
if (secondary) {
if (cpu == xmon_owner) {
if (!test_and_set_bit(0, &xmon_taken)) {
secondary = 0;
continue;
}
/* missed it */
while (cpu == xmon_owner)
barrier();
}
barrier();
} else {
cmd = cmds(regs);
if (cmd != 0) {
/* exiting xmon */
insert_bpts();
xmon_gate = 0;
wmb();
in_xmon = 0;
break;
}
/* have switched to some other cpu */
secondary = 1;
}
}
leave:
cpumask_clear_cpu(cpu, &cpus_in_xmon);
xmon_fault_jmp[cpu] = NULL;
#else
/* UP is simple... */
if (in_xmon) {
printf("Exception %lx %s in xmon, returning to main loop\n",
regs->trap, getvecname(TRAP(regs)));
longjmp(xmon_fault_jmp[0], 1);
}
if (setjmp(recurse_jmp) == 0) {
xmon_fault_jmp[0] = recurse_jmp;
in_xmon = 1;
excprint(regs);
bp = at_breakpoint(regs->nip);
if (bp) {
printf("Stopped at breakpoint %lx (", BP_NUM(bp));
xmon_print_symbol(regs->nip, " ", ")\n");
}
if (unrecoverable_excp(regs))
printf("WARNING: exception is not recoverable, "
"can't continue\n");
remove_bpts();
disable_surveillance();
/* for breakpoint or single step, print the current instr. */
if (bp || TRAP(regs) == 0xd00)
ppc_inst_dump(regs->nip, 1, 0);
printf("enter ? for help\n");
}
cmd = cmds(regs);
insert_bpts();
in_xmon = 0;
#endif
#ifdef CONFIG_BOOKE
if (regs->msr & MSR_DE) {
bp = at_breakpoint(regs->nip);
if (bp != NULL) {
regs->nip = (unsigned long) &bp->instr[0];
atomic_inc(&bp->ref_count);
}
}
#else
if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) == (MSR_IR|MSR_64BIT)) {
bp = at_breakpoint(regs->nip);
if (bp != NULL) {
int stepped = emulate_step(regs, bp->instr[0]);
if (stepped == 0) {
regs->nip = (unsigned long) &bp->instr[0];
atomic_inc(&bp->ref_count);
} else if (stepped < 0) {
printf("Couldn't single-step %s instruction\n",
(IS_RFID(bp->instr[0])? "rfid": "mtmsrd"));
}
}
}
#endif
insert_cpu_bpts();
touch_nmi_watchdog();
local_irq_restore(flags);
return cmd != 'X' && cmd != EOF;
}
int xmon(struct pt_regs *excp)
{
struct pt_regs regs;
if (excp == NULL) {
ppc_save_regs(&regs);
excp = &regs;
}
return xmon_core(excp, 0);
}
EXPORT_SYMBOL(xmon);
irqreturn_t xmon_irq(int irq, void *d)
{
unsigned long flags;
local_irq_save(flags);
printf("Keyboard interrupt\n");
xmon(get_irq_regs());
local_irq_restore(flags);
return IRQ_HANDLED;
}
static int xmon_bpt(struct pt_regs *regs)
{
struct bpt *bp;
unsigned long offset;
if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) != (MSR_IR|MSR_64BIT))
return 0;
/* Are we at the trap at bp->instr[1] for some bp? */
bp = in_breakpoint_table(regs->nip, &offset);
if (bp != NULL && offset == 4) {
regs->nip = bp->address + 4;
atomic_dec(&bp->ref_count);
return 1;
}
/* Are we at a breakpoint? */
bp = at_breakpoint(regs->nip);
if (!bp)
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_sstep(struct pt_regs *regs)
{
if (user_mode(regs))
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_break_match(struct pt_regs *regs)
{
if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) != (MSR_IR|MSR_64BIT))
return 0;
if (dabr.enabled == 0)
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_iabr_match(struct pt_regs *regs)
{
if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) != (MSR_IR|MSR_64BIT))
return 0;
if (iabr == NULL)
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_ipi(struct pt_regs *regs)
{
#ifdef CONFIG_SMP
if (in_xmon && !cpumask_test_cpu(smp_processor_id(), &cpus_in_xmon))
xmon_core(regs, 1);
#endif
return 0;
}
static int xmon_fault_handler(struct pt_regs *regs)
{
struct bpt *bp;
unsigned long offset;
if (in_xmon && catch_memory_errors)
handle_fault(regs); /* doesn't return */
if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) == (MSR_IR|MSR_64BIT)) {
bp = in_breakpoint_table(regs->nip, &offset);
if (bp != NULL) {
regs->nip = bp->address + offset;
atomic_dec(&bp->ref_count);
}
}
return 0;
}
static struct bpt *at_breakpoint(unsigned long pc)
{
int i;
struct bpt *bp;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp)
if (bp->enabled && pc == bp->address)
return bp;
return NULL;
}
static struct bpt *in_breakpoint_table(unsigned long nip, unsigned long *offp)
{
unsigned long off;
off = nip - (unsigned long) bpts;
if (off >= sizeof(bpts))
return NULL;
off %= sizeof(struct bpt);
if (off != offsetof(struct bpt, instr[0])
&& off != offsetof(struct bpt, instr[1]))
return NULL;
*offp = off - offsetof(struct bpt, instr[0]);
return (struct bpt *) (nip - off);
}
static struct bpt *new_breakpoint(unsigned long a)
{
struct bpt *bp;
a &= ~3UL;
bp = at_breakpoint(a);
if (bp)
return bp;
for (bp = bpts; bp < &bpts[NBPTS]; ++bp) {
if (!bp->enabled && atomic_read(&bp->ref_count) == 0) {
bp->address = a;
bp->instr[1] = bpinstr;
store_inst(&bp->instr[1]);
return bp;
}
}
printf("Sorry, no free breakpoints. Please clear one first.\n");
return NULL;
}
static void insert_bpts(void)
{
int i;
struct bpt *bp;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp) {
if ((bp->enabled & (BP_TRAP|BP_CIABR)) == 0)
continue;
if (mread(bp->address, &bp->instr[0], 4) != 4) {
printf("Couldn't read instruction at %lx, "
"disabling breakpoint there\n", bp->address);
bp->enabled = 0;
continue;
}
if (IS_MTMSRD(bp->instr[0]) || IS_RFID(bp->instr[0])) {
printf("Breakpoint at %lx is on an mtmsrd or rfid "
"instruction, disabling it\n", bp->address);
bp->enabled = 0;
continue;
}
store_inst(&bp->instr[0]);
if (bp->enabled & BP_CIABR)
continue;
if (patch_instruction((unsigned int *)bp->address,
bpinstr) != 0) {
printf("Couldn't write instruction at %lx, "
"disabling breakpoint there\n", bp->address);
bp->enabled &= ~BP_TRAP;
continue;
}
store_inst((void *)bp->address);
}
}
static void insert_cpu_bpts(void)
{
struct arch_hw_breakpoint brk;
if (dabr.enabled) {
brk.address = dabr.address;
brk.type = (dabr.enabled & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
brk.len = 8;
__set_breakpoint(&brk);
}
if (iabr)
set_ciabr(iabr->address);
}
static void remove_bpts(void)
{
int i;
struct bpt *bp;
unsigned instr;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp) {
if ((bp->enabled & (BP_TRAP|BP_CIABR)) != BP_TRAP)
continue;
if (mread(bp->address, &instr, 4) == 4
&& instr == bpinstr
&& patch_instruction(
(unsigned int *)bp->address, bp->instr[0]) != 0)
printf("Couldn't remove breakpoint at %lx\n",
bp->address);
else
store_inst((void *)bp->address);
}
}
static void remove_cpu_bpts(void)
{
hw_breakpoint_disable();
write_ciabr(0);
}
static void set_lpp_cmd(void)
{
unsigned long lpp;
if (!scanhex(&lpp)) {
printf("Invalid number.\n");
lpp = 0;
}
xmon_set_pagination_lpp(lpp);
}
/* Command interpreting routine */
static char *last_cmd;
static int
cmds(struct pt_regs *excp)
{
int cmd = 0;
last_cmd = NULL;
xmon_regs = excp;
xmon_show_stack(excp->gpr[1], excp->link, excp->nip);
for(;;) {
#ifdef CONFIG_SMP
printf("%x:", smp_processor_id());
#endif /* CONFIG_SMP */
printf("mon> ");
flush_input();
termch = 0;
cmd = skipbl();
if( cmd == '\n' ) {
if (last_cmd == NULL)
continue;
take_input(last_cmd);
last_cmd = NULL;
cmd = inchar();
}
switch (cmd) {
case 'm':
cmd = inchar();
switch (cmd) {
case 'm':
case 's':
case 'd':
memops(cmd);
break;
case 'l':
memlocate();
break;
case 'z':
memzcan();
break;
case 'i':
show_mem(0, NULL);
break;
default:
termch = cmd;
memex();
}
break;
case 'd':
dump();
break;
case 'l':
symbol_lookup();
break;
case 'r':
prregs(excp); /* print regs */
break;
case 'e':
excprint(excp);
break;
case 'S':
super_regs();
break;
case 't':
backtrace(excp);
break;
case 'f':
cacheflush();
break;
case 's':
if (do_spu_cmd() == 0)
break;
if (do_step(excp))
return cmd;
break;
case 'x':
case 'X':
return cmd;
case EOF:
printf(" <no input ...>\n");
mdelay(2000);
return cmd;
case '?':
xmon_puts(help_string);
break;
case '#':
set_lpp_cmd();
break;
case 'b':
bpt_cmds();
break;
case 'C':
csum();
break;
case 'c':
if (cpu_cmd())
return 0;
break;
case 'z':
bootcmds();
break;
case 'p':
proccall();
break;
case 'P':
show_tasks();
break;
#ifdef CONFIG_PPC_STD_MMU
case 'u':
dump_segments();
break;
#elif defined(CONFIG_44x)
case 'u':
dump_tlb_44x();
break;
#elif defined(CONFIG_PPC_BOOK3E)
case 'u':
dump_tlb_book3e();
break;
#endif
default:
printf("Unrecognized command: ");
do {
if (' ' < cmd && cmd <= '~')
putchar(cmd);
else
printf("\\x%x", cmd);
cmd = inchar();
} while (cmd != '\n');
printf(" (type ? for help)\n");
break;
}
}
}
#ifdef CONFIG_BOOKE
static int do_step(struct pt_regs *regs)
{
regs->msr |= MSR_DE;
mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
return 1;
}
#else
/*
* Step a single instruction.
* Some instructions we emulate, others we execute with MSR_SE set.
*/
static int do_step(struct pt_regs *regs)
{
unsigned int instr;
int stepped;
/* check we are in 64-bit kernel mode, translation enabled */
if ((regs->msr & (MSR_64BIT|MSR_PR|MSR_IR)) == (MSR_64BIT|MSR_IR)) {
if (mread(regs->nip, &instr, 4) == 4) {
stepped = emulate_step(regs, instr);
if (stepped < 0) {
printf("Couldn't single-step %s instruction\n",
(IS_RFID(instr)? "rfid": "mtmsrd"));
return 0;
}
if (stepped > 0) {
regs->trap = 0xd00 | (regs->trap & 1);
printf("stepped to ");
xmon_print_symbol(regs->nip, " ", "\n");
ppc_inst_dump(regs->nip, 1, 0);
return 0;
}
}
}
regs->msr |= MSR_SE;
return 1;
}
#endif
static void bootcmds(void)
{
int cmd;
cmd = inchar();
if (cmd == 'r')
ppc_md.restart(NULL);
else if (cmd == 'h')
ppc_md.halt();
else if (cmd == 'p')
if (pm_power_off)
pm_power_off();
}
static int cpu_cmd(void)
{
#ifdef CONFIG_SMP
unsigned long cpu, first_cpu, last_cpu;
int timeout;
if (!scanhex(&cpu)) {
/* print cpus waiting or in xmon */
printf("cpus stopped:");
last_cpu = first_cpu = NR_CPUS;
for_each_possible_cpu(cpu) {
if (cpumask_test_cpu(cpu, &cpus_in_xmon)) {
if (cpu == last_cpu + 1) {
last_cpu = cpu;
} else {
if (last_cpu != first_cpu)
printf("-0x%lx", last_cpu);
last_cpu = first_cpu = cpu;
printf(" 0x%lx", cpu);
}
}
}
if (last_cpu != first_cpu)
printf("-0x%lx", last_cpu);
printf("\n");
return 0;
}
/* try to switch to cpu specified */
if (!cpumask_test_cpu(cpu, &cpus_in_xmon)) {
printf("cpu 0x%x isn't in xmon\n", cpu);
return 0;
}
xmon_taken = 0;
mb();
xmon_owner = cpu;
timeout = 10000000;
while (!xmon_taken) {
if (--timeout == 0) {
if (test_and_set_bit(0, &xmon_taken))
break;
/* take control back */
mb();
xmon_owner = smp_processor_id();
printf("cpu 0x%x didn't take control\n", cpu);
return 0;
}
barrier();
}
return 1;
#else
return 0;
#endif /* CONFIG_SMP */
}
static unsigned short fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
#define FCS(fcs, c) (((fcs) >> 8) ^ fcstab[((fcs) ^ (c)) & 0xff])
static void
csum(void)
{
unsigned int i;
unsigned short fcs;
unsigned char v;
if (!scanhex(&adrs))
return;
if (!scanhex(&ncsum))
return;
fcs = 0xffff;
for (i = 0; i < ncsum; ++i) {
if (mread(adrs+i, &v, 1) == 0) {
printf("csum stopped at "REG"\n", adrs+i);
break;
}
fcs = FCS(fcs, v);
}
printf("%x\n", fcs);
}
/*
* Check if this is a suitable place to put a breakpoint.
*/
static long check_bp_loc(unsigned long addr)
{
unsigned int instr;
addr &= ~3;
if (!is_kernel_addr(addr)) {
printf("Breakpoints may only be placed at kernel addresses\n");
return 0;
}
if (!mread(addr, &instr, sizeof(instr))) {
printf("Can't read instruction at address %lx\n", addr);
return 0;
}
if (IS_MTMSRD(instr) || IS_RFID(instr)) {
printf("Breakpoints may not be placed on mtmsrd or rfid "
"instructions\n");
return 0;
}
return 1;
}
static char *breakpoint_help_string =
"Breakpoint command usage:\n"
"b show breakpoints\n"
"b <addr> [cnt] set breakpoint at given instr addr\n"
"bc clear all breakpoints\n"
"bc <n/addr> clear breakpoint number n or at addr\n"
"bi <addr> [cnt] set hardware instr breakpoint (POWER8 only)\n"
"bd <addr> [cnt] set hardware data breakpoint\n"
"";
static void
bpt_cmds(void)
{
int cmd;
unsigned long a;
int i;
struct bpt *bp;
cmd = inchar();
switch (cmd) {
#ifndef CONFIG_PPC_8xx
static const char badaddr[] = "Only kernel addresses are permitted for breakpoints\n";
int mode;
case 'd': /* bd - hardware data breakpoint */
mode = 7;
cmd = inchar();
if (cmd == 'r')
mode = 5;
else if (cmd == 'w')
mode = 6;
else
termch = cmd;
dabr.address = 0;
dabr.enabled = 0;
if (scanhex(&dabr.address)) {
if (!is_kernel_addr(dabr.address)) {
printf(badaddr);
break;
}
dabr.address &= ~HW_BRK_TYPE_DABR;
dabr.enabled = mode | BP_DABR;
}
break;
case 'i': /* bi - hardware instr breakpoint */
if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
printf("Hardware instruction breakpoint "
"not supported on this cpu\n");
break;
}
if (iabr) {
iabr->enabled &= ~BP_CIABR;
iabr = NULL;
}
if (!scanhex(&a))
break;
if (!check_bp_loc(a))
break;
bp = new_breakpoint(a);
if (bp != NULL) {
bp->enabled |= BP_CIABR;
iabr = bp;
}
break;
#endif
case 'c':
if (!scanhex(&a)) {
/* clear all breakpoints */
for (i = 0; i < NBPTS; ++i)
bpts[i].enabled = 0;
iabr = NULL;
dabr.enabled = 0;
printf("All breakpoints cleared\n");
break;
}
if (a <= NBPTS && a >= 1) {
/* assume a breakpoint number */
bp = &bpts[a-1]; /* bp nums are 1 based */
} else {
/* assume a breakpoint address */
bp = at_breakpoint(a);
if (bp == NULL) {
printf("No breakpoint at %lx\n", a);
break;
}
}
printf("Cleared breakpoint %lx (", BP_NUM(bp));
xmon_print_symbol(bp->address, " ", ")\n");
bp->enabled = 0;
break;
default:
termch = cmd;
cmd = skipbl();
if (cmd == '?') {
printf(breakpoint_help_string);
break;
}
termch = cmd;
if (!scanhex(&a)) {
/* print all breakpoints */
printf(" type address\n");
if (dabr.enabled) {
printf(" data "REG" [", dabr.address);
if (dabr.enabled & 1)
printf("r");
if (dabr.enabled & 2)
printf("w");
printf("]\n");
}
for (bp = bpts; bp < &bpts[NBPTS]; ++bp) {
if (!bp->enabled)
continue;
printf("%2x %s ", BP_NUM(bp),
(bp->enabled & BP_CIABR) ? "inst": "trap");
xmon_print_symbol(bp->address, " ", "\n");
}
break;
}
if (!check_bp_loc(a))
break;
bp = new_breakpoint(a);
if (bp != NULL)
bp->enabled |= BP_TRAP;
break;
}
}
/* Very cheap human name for vector lookup. */
static
const char *getvecname(unsigned long vec)
{
char *ret;
switch (vec) {
case 0x100: ret = "(System Reset)"; break;
case 0x200: ret = "(Machine Check)"; break;
case 0x300: ret = "(Data Access)"; break;
case 0x380:
if (radix_enabled())
ret = "(Data Access Out of Range)";
else
ret = "(Data SLB Access)";
break;
case 0x400: ret = "(Instruction Access)"; break;
case 0x480:
if (radix_enabled())
ret = "(Instruction Access Out of Range)";
else
ret = "(Instruction SLB Access)";
break;
case 0x500: ret = "(Hardware Interrupt)"; break;
case 0x600: ret = "(Alignment)"; break;
case 0x700: ret = "(Program Check)"; break;
case 0x800: ret = "(FPU Unavailable)"; break;
case 0x900: ret = "(Decrementer)"; break;
case 0x980: ret = "(Hypervisor Decrementer)"; break;
case 0xa00: ret = "(Doorbell)"; break;
case 0xc00: ret = "(System Call)"; break;
case 0xd00: ret = "(Single Step)"; break;
case 0xe40: ret = "(Emulation Assist)"; break;
case 0xe60: ret = "(HMI)"; break;
case 0xe80: ret = "(Hypervisor Doorbell)"; break;
case 0xf00: ret = "(Performance Monitor)"; break;
case 0xf20: ret = "(Altivec Unavailable)"; break;
case 0x1300: ret = "(Instruction Breakpoint)"; break;
case 0x1500: ret = "(Denormalisation)"; break;
case 0x1700: ret = "(Altivec Assist)"; break;
default: ret = "";
}
return ret;
}
static void get_function_bounds(unsigned long pc, unsigned long *startp,
unsigned long *endp)
{
unsigned long size, offset;
const char *name;
*startp = *endp = 0;
if (pc == 0)
return;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
name = kallsyms_lookup(pc, &size, &offset, NULL, tmpstr);
if (name != NULL) {
*startp = pc - offset;
*endp = pc - offset + size;
}
sync();
}
catch_memory_errors = 0;
}
#define LRSAVE_OFFSET (STACK_FRAME_LR_SAVE * sizeof(unsigned long))
#define MARKER_OFFSET (STACK_FRAME_MARKER * sizeof(unsigned long))
static void xmon_show_stack(unsigned long sp, unsigned long lr,
unsigned long pc)
{
int max_to_print = 64;
unsigned long ip;
unsigned long newsp;
unsigned long marker;
struct pt_regs regs;
while (max_to_print--) {
if (!is_kernel_addr(sp)) {
if (sp != 0)
printf("SP (%lx) is in userspace\n", sp);
break;
}
if (!mread(sp + LRSAVE_OFFSET, &ip, sizeof(unsigned long))
|| !mread(sp, &newsp, sizeof(unsigned long))) {
printf("Couldn't read stack frame at %lx\n", sp);
break;
}
/*
* For the first stack frame, try to work out if
* LR and/or the saved LR value in the bottommost
* stack frame are valid.
*/
if ((pc | lr) != 0) {
unsigned long fnstart, fnend;
unsigned long nextip;
int printip = 1;
get_function_bounds(pc, &fnstart, &fnend);
nextip = 0;
if (newsp > sp)
mread(newsp + LRSAVE_OFFSET, &nextip,
sizeof(unsigned long));
if (lr == ip) {
if (!is_kernel_addr(lr)
|| (fnstart <= lr && lr < fnend))
printip = 0;
} else if (lr == nextip) {
printip = 0;
} else if (is_kernel_addr(lr)
&& !(fnstart <= lr && lr < fnend)) {
printf("[link register ] ");
xmon_print_symbol(lr, " ", "\n");
}
if (printip) {
printf("["REG"] ", sp);
xmon_print_symbol(ip, " ", " (unreliable)\n");
}
pc = lr = 0;
} else {
printf("["REG"] ", sp);
xmon_print_symbol(ip, " ", "\n");
}
/* Look for "regshere" marker to see if this is
an exception frame. */
if (mread(sp + MARKER_OFFSET, &marker, sizeof(unsigned long))
&& marker == STACK_FRAME_REGS_MARKER) {
if (mread(sp + STACK_FRAME_OVERHEAD, &regs, sizeof(regs))
!= sizeof(regs)) {
printf("Couldn't read registers at %lx\n",
sp + STACK_FRAME_OVERHEAD);
break;
}
printf("--- Exception: %lx %s at ", regs.trap,
getvecname(TRAP(&regs)));
pc = regs.nip;
lr = regs.link;
xmon_print_symbol(pc, " ", "\n");
}
if (newsp == 0)
break;
sp = newsp;
}
}
static void backtrace(struct pt_regs *excp)
{
unsigned long sp;
if (scanhex(&sp))
xmon_show_stack(sp, 0, 0);
else
xmon_show_stack(excp->gpr[1], excp->link, excp->nip);
scannl();
}
static void print_bug_trap(struct pt_regs *regs)
{
#ifdef CONFIG_BUG
const struct bug_entry *bug;
unsigned long addr;
if (regs->msr & MSR_PR)
return; /* not in kernel */
addr = regs->nip; /* address of trap instruction */
if (!is_kernel_addr(addr))
return;
bug = find_bug(regs->nip);
if (bug == NULL)
return;
if (is_warning_bug(bug))
return;
#ifdef CONFIG_DEBUG_BUGVERBOSE
printf("kernel BUG at %s:%u!\n",
bug->file, bug->line);
#else
printf("kernel BUG at %p!\n", (void *)bug->bug_addr);
#endif
#endif /* CONFIG_BUG */
}
static void excprint(struct pt_regs *fp)
{
unsigned long trap;
#ifdef CONFIG_SMP
printf("cpu 0x%x: ", smp_processor_id());
#endif /* CONFIG_SMP */
trap = TRAP(fp);
printf("Vector: %lx %s at [%lx]\n", fp->trap, getvecname(trap), fp);
printf(" pc: ");
xmon_print_symbol(fp->nip, ": ", "\n");
printf(" lr: ", fp->link);
xmon_print_symbol(fp->link, ": ", "\n");
printf(" sp: %lx\n", fp->gpr[1]);
printf(" msr: %lx\n", fp->msr);
if (trap == 0x300 || trap == 0x380 || trap == 0x600 || trap == 0x200) {
printf(" dar: %lx\n", fp->dar);
if (trap != 0x380)
printf(" dsisr: %lx\n", fp->dsisr);
}
printf(" current = 0x%lx\n", current);
#ifdef CONFIG_PPC64
printf(" paca = 0x%lx\t softe: %d\t irq_happened: 0x%02x\n",
local_paca, local_paca->soft_enabled, local_paca->irq_happened);
#endif
if (current) {
printf(" pid = %ld, comm = %s\n",
current->pid, current->comm);
}
if (trap == 0x700)
print_bug_trap(fp);
printf(linux_banner);
}
static void prregs(struct pt_regs *fp)
{
int n, trap;
unsigned long base;
struct pt_regs regs;
if (scanhex(&base)) {
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
regs = *(struct pt_regs *)base;
sync();
__delay(200);
} else {
catch_memory_errors = 0;
printf("*** Error reading registers from "REG"\n",
base);
return;
}
catch_memory_errors = 0;
fp = &regs;
}
#ifdef CONFIG_PPC64
if (FULL_REGS(fp)) {
for (n = 0; n < 16; ++n)
printf("R%.2ld = "REG" R%.2ld = "REG"\n",
n, fp->gpr[n], n+16, fp->gpr[n+16]);
} else {
for (n = 0; n < 7; ++n)
printf("R%.2ld = "REG" R%.2ld = "REG"\n",
n, fp->gpr[n], n+7, fp->gpr[n+7]);
}
#else
for (n = 0; n < 32; ++n) {
printf("R%.2d = %.8x%s", n, fp->gpr[n],
(n & 3) == 3? "\n": " ");
if (n == 12 && !FULL_REGS(fp)) {
printf("\n");
break;
}
}
#endif
printf("pc = ");
xmon_print_symbol(fp->nip, " ", "\n");
if (TRAP(fp) != 0xc00 && cpu_has_feature(CPU_FTR_CFAR)) {
printf("cfar= ");
xmon_print_symbol(fp->orig_gpr3, " ", "\n");
}
printf("lr = ");
xmon_print_symbol(fp->link, " ", "\n");
printf("msr = "REG" cr = %.8lx\n", fp->msr, fp->ccr);
printf("ctr = "REG" xer = "REG" trap = %4lx\n",
fp->ctr, fp->xer, fp->trap);
trap = TRAP(fp);
if (trap == 0x300 || trap == 0x380 || trap == 0x600)
printf("dar = "REG" dsisr = %.8lx\n", fp->dar, fp->dsisr);
}
static void cacheflush(void)
{
int cmd;
unsigned long nflush;
cmd = inchar();
if (cmd != 'i')
termch = cmd;
scanhex((void *)&adrs);
if (termch != '\n')
termch = 0;
nflush = 1;
scanhex(&nflush);
nflush = (nflush + L1_CACHE_BYTES - 1) / L1_CACHE_BYTES;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
if (cmd != 'i') {
for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES)
cflush((void *) adrs);
} else {
for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES)
cinval((void *) adrs);
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
}
catch_memory_errors = 0;
}
extern unsigned long xmon_mfspr(int spr, unsigned long default_value);
extern void xmon_mtspr(int spr, unsigned long value);
static int
read_spr(int n, unsigned long *vp)
{
unsigned long ret = -1UL;
int ok = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_spr_faults = 1;
sync();
ret = xmon_mfspr(n, *vp);
sync();
*vp = ret;
ok = 1;
}
catch_spr_faults = 0;
return ok;
}
static void
write_spr(int n, unsigned long val)
{
if (setjmp(bus_error_jmp) == 0) {
catch_spr_faults = 1;
sync();
xmon_mtspr(n, val);
sync();
} else {
printf("SPR 0x%03x (%4d) Faulted during write\n", n, n);
}
catch_spr_faults = 0;
}
static void dump_206_sprs(void)
{
#ifdef CONFIG_PPC64
if (!cpu_has_feature(CPU_FTR_ARCH_206))
return;
/* Actually some of these pre-date 2.06, but whatevs */
printf("srr0 = %.16x srr1 = %.16x dsisr = %.8x\n",
mfspr(SPRN_SRR0), mfspr(SPRN_SRR1), mfspr(SPRN_DSISR));
printf("dscr = %.16x ppr = %.16x pir = %.8x\n",
mfspr(SPRN_DSCR), mfspr(SPRN_PPR), mfspr(SPRN_PIR));
if (!(mfmsr() & MSR_HV))
return;
printf("sdr1 = %.16x hdar = %.16x hdsisr = %.8x\n",
mfspr(SPRN_SDR1), mfspr(SPRN_HDAR), mfspr(SPRN_HDSISR));
printf("hsrr0 = %.16x hsrr1 = %.16x hdec = %.8x\n",
mfspr(SPRN_HSRR0), mfspr(SPRN_HSRR1), mfspr(SPRN_HDEC));
printf("lpcr = %.16x pcr = %.16x lpidr = %.8x\n",
mfspr(SPRN_LPCR), mfspr(SPRN_PCR), mfspr(SPRN_LPID));
printf("hsprg0 = %.16x hsprg1 = %.16x\n",
mfspr(SPRN_HSPRG0), mfspr(SPRN_HSPRG1));
printf("dabr = %.16x dabrx = %.16x\n",
mfspr(SPRN_DABR), mfspr(SPRN_DABRX));
#endif
}
static void dump_207_sprs(void)
{
#ifdef CONFIG_PPC64
unsigned long msr;
if (!cpu_has_feature(CPU_FTR_ARCH_207S))
return;
printf("dpdes = %.16x tir = %.16x cir = %.8x\n",
mfspr(SPRN_DPDES), mfspr(SPRN_TIR), mfspr(SPRN_CIR));
printf("fscr = %.16x tar = %.16x pspb = %.8x\n",
mfspr(SPRN_FSCR), mfspr(SPRN_TAR), mfspr(SPRN_PSPB));
msr = mfmsr();
if (msr & MSR_TM) {
/* Only if TM has been enabled in the kernel */
printf("tfhar = %.16x tfiar = %.16x texasr = %.16x\n",
mfspr(SPRN_TFHAR), mfspr(SPRN_TFIAR),
mfspr(SPRN_TEXASR));
}
printf("mmcr0 = %.16x mmcr1 = %.16x mmcr2 = %.16x\n",
mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCR2));
printf("pmc1 = %.8x pmc2 = %.8x pmc3 = %.8x pmc4 = %.8x\n",
mfspr(SPRN_PMC1), mfspr(SPRN_PMC2),
mfspr(SPRN_PMC3), mfspr(SPRN_PMC4));
printf("mmcra = %.16x siar = %.16x pmc5 = %.8x\n",
mfspr(SPRN_MMCRA), mfspr(SPRN_SIAR), mfspr(SPRN_PMC5));
printf("sdar = %.16x sier = %.16x pmc6 = %.8x\n",
mfspr(SPRN_SDAR), mfspr(SPRN_SIER), mfspr(SPRN_PMC6));
printf("ebbhr = %.16x ebbrr = %.16x bescr = %.16x\n",
mfspr(SPRN_EBBHR), mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
if (!(msr & MSR_HV))
return;
printf("hfscr = %.16x dhdes = %.16x rpr = %.16x\n",
mfspr(SPRN_HFSCR), mfspr(SPRN_DHDES), mfspr(SPRN_RPR));
printf("dawr = %.16x dawrx = %.16x ciabr = %.16x\n",
mfspr(SPRN_DAWR), mfspr(SPRN_DAWRX), mfspr(SPRN_CIABR));
#endif
}
static void dump_one_spr(int spr, bool show_unimplemented)
{
unsigned long val;
val = 0xdeadbeef;
if (!read_spr(spr, &val)) {
printf("SPR 0x%03x (%4d) Faulted during read\n", spr, spr);
return;
}
if (val == 0xdeadbeef) {
/* Looks like read was a nop, confirm */
val = 0x0badcafe;
if (!read_spr(spr, &val)) {
printf("SPR 0x%03x (%4d) Faulted during read\n", spr, spr);
return;
}
if (val == 0x0badcafe) {
if (show_unimplemented)
printf("SPR 0x%03x (%4d) Unimplemented\n", spr, spr);
return;
}
}
printf("SPR 0x%03x (%4d) = 0x%lx\n", spr, spr, val);
}
static void super_regs(void)
{
static unsigned long regno;
int cmd;
int spr;
cmd = skipbl();
switch (cmd) {
case '\n': {
unsigned long sp, toc;
asm("mr %0,1" : "=r" (sp) :);
asm("mr %0,2" : "=r" (toc) :);
printf("msr = "REG" sprg0 = "REG"\n",
mfmsr(), mfspr(SPRN_SPRG0));
printf("pvr = "REG" sprg1 = "REG"\n",
mfspr(SPRN_PVR), mfspr(SPRN_SPRG1));
printf("dec = "REG" sprg2 = "REG"\n",
mfspr(SPRN_DEC), mfspr(SPRN_SPRG2));
printf("sp = "REG" sprg3 = "REG"\n", sp, mfspr(SPRN_SPRG3));
printf("toc = "REG" dar = "REG"\n", toc, mfspr(SPRN_DAR));
dump_206_sprs();
dump_207_sprs();
return;
}
case 'w': {
unsigned long val;
scanhex(&regno);
val = 0;
read_spr(regno, &val);
scanhex(&val);
write_spr(regno, val);
dump_one_spr(regno, true);
break;
}
case 'r':
scanhex(&regno);
dump_one_spr(regno, true);
break;
case 'a':
/* dump ALL SPRs */
for (spr = 1; spr < 1024; ++spr)
dump_one_spr(spr, false);
break;
}
scannl();
}
/*
* Stuff for reading and writing memory safely
*/
static int
mread(unsigned long adrs, void *buf, int size)
{
volatile int n;
char *p, *q;
n = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
p = (char *)adrs;
q = (char *)buf;
switch (size) {
case 2:
*(u16 *)q = *(u16 *)p;
break;
case 4:
*(u32 *)q = *(u32 *)p;
break;
case 8:
*(u64 *)q = *(u64 *)p;
break;
default:
for( ; n < size; ++n) {
*q++ = *p++;
sync();
}
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
}
catch_memory_errors = 0;
return n;
}
static int
mwrite(unsigned long adrs, void *buf, int size)
{
volatile int n;
char *p, *q;
n = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
p = (char *) adrs;
q = (char *) buf;
switch (size) {
case 2:
*(u16 *)p = *(u16 *)q;
break;
case 4:
*(u32 *)p = *(u32 *)q;
break;
case 8:
*(u64 *)p = *(u64 *)q;
break;
default:
for ( ; n < size; ++n) {
*p++ = *q++;
sync();
}
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
} else {
printf("*** Error writing address "REG"\n", adrs + n);
}
catch_memory_errors = 0;
return n;
}
static int fault_type;
static int fault_except;
static char *fault_chars[] = { "--", "**", "##" };
static int handle_fault(struct pt_regs *regs)
{
fault_except = TRAP(regs);
switch (TRAP(regs)) {
case 0x200:
fault_type = 0;
break;
case 0x300:
case 0x380:
fault_type = 1;
break;
default:
fault_type = 2;
}
longjmp(bus_error_jmp, 1);
return 0;
}
#define SWAP(a, b, t) ((t) = (a), (a) = (b), (b) = (t))
static void
byterev(unsigned char *val, int size)
{
int t;
switch (size) {
case 2:
SWAP(val[0], val[1], t);
break;
case 4:
SWAP(val[0], val[3], t);
SWAP(val[1], val[2], t);
break;
case 8: /* is there really any use for this? */
SWAP(val[0], val[7], t);
SWAP(val[1], val[6], t);
SWAP(val[2], val[5], t);
SWAP(val[3], val[4], t);
break;
}
}
static int brev;
static int mnoread;
static char *memex_help_string =
"Memory examine command usage:\n"
"m [addr] [flags] examine/change memory\n"
" addr is optional. will start where left off.\n"
" flags may include chars from this set:\n"
" b modify by bytes (default)\n"
" w modify by words (2 byte)\n"
" l modify by longs (4 byte)\n"
" d modify by doubleword (8 byte)\n"
" r toggle reverse byte order mode\n"
" n do not read memory (for i/o spaces)\n"
" . ok to read (default)\n"
"NOTE: flags are saved as defaults\n"
"";
static char *memex_subcmd_help_string =
"Memory examine subcommands:\n"
" hexval write this val to current location\n"
" 'string' write chars from string to this location\n"
" ' increment address\n"
" ^ decrement address\n"
" / increment addr by 0x10. //=0x100, ///=0x1000, etc\n"
" \\ decrement addr by 0x10. \\\\=0x100, \\\\\\=0x1000, etc\n"
" ` clear no-read flag\n"
" ; stay at this addr\n"
" v change to byte mode\n"
" w change to word (2 byte) mode\n"
" l change to long (4 byte) mode\n"
" u change to doubleword (8 byte) mode\n"
" m addr change current addr\n"
" n toggle no-read flag\n"
" r toggle byte reverse flag\n"
" < count back up count bytes\n"
" > count skip forward count bytes\n"
" x exit this mode\n"
"";
static void
memex(void)
{
int cmd, inc, i, nslash;
unsigned long n;
unsigned char val[16];
scanhex((void *)&adrs);
cmd = skipbl();
if (cmd == '?') {
printf(memex_help_string);
return;
} else {
termch = cmd;
}
last_cmd = "m\n";
while ((cmd = skipbl()) != '\n') {
switch( cmd ){
case 'b': size = 1; break;
case 'w': size = 2; break;
case 'l': size = 4; break;
case 'd': size = 8; break;
case 'r': brev = !brev; break;
case 'n': mnoread = 1; break;
case '.': mnoread = 0; break;
}
}
if( size <= 0 )
size = 1;
else if( size > 8 )
size = 8;
for(;;){
if (!mnoread)
n = mread(adrs, val, size);
printf(REG"%c", adrs, brev? 'r': ' ');
if (!mnoread) {
if (brev)
byterev(val, size);
putchar(' ');
for (i = 0; i < n; ++i)
printf("%.2x", val[i]);
for (; i < size; ++i)
printf("%s", fault_chars[fault_type]);
}
putchar(' ');
inc = size;
nslash = 0;
for(;;){
if( scanhex(&n) ){
for (i = 0; i < size; ++i)
val[i] = n >> (i * 8);
if (!brev)
byterev(val, size);
mwrite(adrs, val, size);
inc = size;
}
cmd = skipbl();
if (cmd == '\n')
break;
inc = 0;
switch (cmd) {
case '\'':
for(;;){
n = inchar();
if( n == '\\' )
n = bsesc();
else if( n == '\'' )
break;
for (i = 0; i < size; ++i)
val[i] = n >> (i * 8);
if (!brev)
byterev(val, size);
mwrite(adrs, val, size);
adrs += size;
}
adrs -= size;
inc = size;
break;
case ',':
adrs += size;
break;
case '.':
mnoread = 0;
break;
case ';':
break;
case 'x':
case EOF:
scannl();
return;
case 'b':
case 'v':
size = 1;
break;
case 'w':
size = 2;
break;
case 'l':
size = 4;
break;
case 'u':
size = 8;
break;
case '^':
adrs -= size;
break;
case '/':
if (nslash > 0)
adrs -= 1 << nslash;
else
nslash = 0;
nslash += 4;
adrs += 1 << nslash;
break;
case '\\':
if (nslash < 0)
adrs += 1 << -nslash;
else
nslash = 0;
nslash -= 4;
adrs -= 1 << -nslash;
break;
case 'm':
scanhex((void *)&adrs);
break;
case 'n':
mnoread = 1;
break;
case 'r':
brev = !brev;
break;
case '<':
n = size;
scanhex(&n);
adrs -= n;
break;
case '>':
n = size;
scanhex(&n);
adrs += n;
break;
case '?':
printf(memex_subcmd_help_string);
break;
}
}
adrs += inc;
}
}
static int
bsesc(void)
{
int c;
c = inchar();
switch( c ){
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 'b': c = '\b'; break;
case 't': c = '\t'; break;
}
return c;
}
static void xmon_rawdump (unsigned long adrs, long ndump)
{
long n, m, r, nr;
unsigned char temp[16];
for (n = ndump; n > 0;) {
r = n < 16? n: 16;
nr = mread(adrs, temp, r);
adrs += nr;
for (m = 0; m < r; ++m) {
if (m < nr)
printf("%.2x", temp[m]);
else
printf("%s", fault_chars[fault_type]);
}
n -= r;
if (nr < r)
break;
}
printf("\n");
}
#ifdef CONFIG_PPC64
static void dump_one_paca(int cpu)
{
struct paca_struct *p;
#ifdef CONFIG_PPC_STD_MMU_64
int i = 0;
#endif
if (setjmp(bus_error_jmp) != 0) {
printf("*** Error dumping paca for cpu 0x%x!\n", cpu);
return;
}
catch_memory_errors = 1;
sync();
p = &paca[cpu];
printf("paca for cpu 0x%x @ %p:\n", cpu, p);
printf(" %-*s = %s\n", 20, "possible", cpu_possible(cpu) ? "yes" : "no");
printf(" %-*s = %s\n", 20, "present", cpu_present(cpu) ? "yes" : "no");
printf(" %-*s = %s\n", 20, "online", cpu_online(cpu) ? "yes" : "no");
#define DUMP(paca, name, format) \
printf(" %-*s = %#-*"format"\t(0x%lx)\n", 20, #name, 18, paca->name, \
offsetof(struct paca_struct, name));
DUMP(p, lock_token, "x");
DUMP(p, paca_index, "x");
DUMP(p, kernel_toc, "lx");
DUMP(p, kernelbase, "lx");
DUMP(p, kernel_msr, "lx");
DUMP(p, emergency_sp, "p");
#ifdef CONFIG_PPC_BOOK3S_64
DUMP(p, nmi_emergency_sp, "p");
DUMP(p, mc_emergency_sp, "p");
DUMP(p, in_nmi, "x");
DUMP(p, in_mce, "x");
DUMP(p, hmi_event_available, "x");
#endif
DUMP(p, data_offset, "lx");
DUMP(p, hw_cpu_id, "x");
DUMP(p, cpu_start, "x");
DUMP(p, kexec_state, "x");
#ifdef CONFIG_PPC_STD_MMU_64
for (i = 0; i < SLB_NUM_BOLTED; i++) {
u64 esid, vsid;
if (!p->slb_shadow_ptr)
continue;
esid = be64_to_cpu(p->slb_shadow_ptr->save_area[i].esid);
vsid = be64_to_cpu(p->slb_shadow_ptr->save_area[i].vsid);
if (esid || vsid) {
printf(" slb_shadow[%d]: = 0x%016lx 0x%016lx\n",
i, esid, vsid);
}
}
DUMP(p, vmalloc_sllp, "x");
DUMP(p, slb_cache_ptr, "x");
for (i = 0; i < SLB_CACHE_ENTRIES; i++)
printf(" slb_cache[%d]: = 0x%016lx\n", i, p->slb_cache[i]);
#endif
DUMP(p, dscr_default, "llx");
#ifdef CONFIG_PPC_BOOK3E
DUMP(p, pgd, "p");
DUMP(p, kernel_pgd, "p");
DUMP(p, tcd_ptr, "p");
DUMP(p, mc_kstack, "p");
DUMP(p, crit_kstack, "p");
DUMP(p, dbg_kstack, "p");
#endif
DUMP(p, __current, "p");
DUMP(p, kstack, "lx");
DUMP(p, stab_rr, "lx");
DUMP(p, saved_r1, "lx");
DUMP(p, trap_save, "x");
DUMP(p, soft_enabled, "x");
DUMP(p, irq_happened, "x");
DUMP(p, io_sync, "x");
DUMP(p, irq_work_pending, "x");
DUMP(p, nap_state_lost, "x");
DUMP(p, sprg_vdso, "llx");
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
DUMP(p, tm_scratch, "llx");
#endif
#ifdef CONFIG_PPC_POWERNV
DUMP(p, core_idle_state_ptr, "p");
DUMP(p, thread_idle_state, "x");
DUMP(p, thread_mask, "x");
DUMP(p, subcore_sibling_mask, "x");
#endif
DUMP(p, accounting.utime, "llx");
DUMP(p, accounting.stime, "llx");
DUMP(p, accounting.utime_scaled, "llx");
DUMP(p, accounting.starttime, "llx");
DUMP(p, accounting.starttime_user, "llx");
DUMP(p, accounting.startspurr, "llx");
DUMP(p, accounting.utime_sspurr, "llx");
DUMP(p, accounting.steal_time, "llx");
#undef DUMP
catch_memory_errors = 0;
sync();
}
static void dump_all_pacas(void)
{
int cpu;
if (num_possible_cpus() == 0) {
printf("No possible cpus, use 'dp #' to dump individual cpus\n");
return;
}
for_each_possible_cpu(cpu)
dump_one_paca(cpu);
}
static void dump_pacas(void)
{
unsigned long num;
int c;
c = inchar();
if (c == 'a') {
dump_all_pacas();
return;
}
termch = c; /* Put c back, it wasn't 'a' */
if (scanhex(&num))
dump_one_paca(num);
else
dump_one_paca(xmon_owner);
}
#endif
#ifdef CONFIG_PPC_POWERNV
static void dump_one_xive(int cpu)
{
unsigned int hwid = get_hard_smp_processor_id(cpu);
opal_xive_dump(XIVE_DUMP_TM_HYP, hwid);
opal_xive_dump(XIVE_DUMP_TM_POOL, hwid);
opal_xive_dump(XIVE_DUMP_TM_OS, hwid);
opal_xive_dump(XIVE_DUMP_TM_USER, hwid);
opal_xive_dump(XIVE_DUMP_VP, hwid);
opal_xive_dump(XIVE_DUMP_EMU_STATE, hwid);
if (setjmp(bus_error_jmp) != 0) {
catch_memory_errors = 0;
printf("*** Error dumping xive on cpu %d\n", cpu);
return;
}
catch_memory_errors = 1;
sync();
xmon_xive_do_dump(cpu);
sync();
__delay(200);
catch_memory_errors = 0;
}
static void dump_all_xives(void)
{
int cpu;
if (num_possible_cpus() == 0) {
printf("No possible cpus, use 'dx #' to dump individual cpus\n");
return;
}
for_each_possible_cpu(cpu)
dump_one_xive(cpu);
}
static void dump_one_xive_irq(u32 num)
{
s64 rc;
__be64 vp;
u8 prio;
__be32 lirq;
rc = opal_xive_get_irq_config(num, &vp, &prio, &lirq);
xmon_printf("IRQ 0x%x config: vp=0x%llx prio=%d lirq=0x%x (rc=%lld)\n",
num, be64_to_cpu(vp), prio, be32_to_cpu(lirq), rc);
}
static void dump_xives(void)
{
unsigned long num;
int c;
c = inchar();
if (c == 'a') {
dump_all_xives();
return;
} else if (c == 'i') {
if (scanhex(&num))
dump_one_xive_irq(num);
return;
}
termch = c; /* Put c back, it wasn't 'a' */
if (scanhex(&num))
dump_one_xive(num);
else
dump_one_xive(xmon_owner);
}
#endif /* CONFIG_PPC_POWERNV */
static void dump_by_size(unsigned long addr, long count, int size)
{
unsigned char temp[16];
int i, j;
u64 val;
count = ALIGN(count, 16);
for (i = 0; i < count; i += 16, addr += 16) {
printf(REG, addr);
if (mread(addr, temp, 16) != 16) {
printf("\nFaulted reading %d bytes from 0x"REG"\n", 16, addr);
return;
}
for (j = 0; j < 16; j += size) {
putchar(' ');
switch (size) {
case 1: val = temp[j]; break;
case 2: val = *(u16 *)&temp[j]; break;
case 4: val = *(u32 *)&temp[j]; break;
case 8: val = *(u64 *)&temp[j]; break;
default: val = 0;
}
printf("%0*lx", size * 2, val);
}
printf("\n");
}
}
static void
dump(void)
{
static char last[] = { "d?\n" };
int c;
c = inchar();
#ifdef CONFIG_PPC64
if (c == 'p') {
xmon_start_pagination();
dump_pacas();
xmon_end_pagination();
return;
}
#endif
#ifdef CONFIG_PPC_POWERNV
if (c == 'x') {
xmon_start_pagination();
dump_xives();
xmon_end_pagination();
return;
}
#endif
if (c == '\n')
termch = c;
scanhex((void *)&adrs);
if (termch != '\n')
termch = 0;
if (c == 'i') {
scanhex(&nidump);
if (nidump == 0)
nidump = 16;
else if (nidump > MAX_DUMP)
nidump = MAX_DUMP;
adrs += ppc_inst_dump(adrs, nidump, 1);
last_cmd = "di\n";
} else if (c == 'l') {
dump_log_buf();
} else if (c == 'o') {
dump_opal_msglog();
} else if (c == 't') {
ftrace_dump(DUMP_ALL);
tracing_on();
} else if (c == 'r') {
scanhex(&ndump);
if (ndump == 0)
ndump = 64;
xmon_rawdump(adrs, ndump);
adrs += ndump;
last_cmd = "dr\n";
} else {
scanhex(&ndump);
if (ndump == 0)
ndump = 64;
else if (ndump > MAX_DUMP)
ndump = MAX_DUMP;
switch (c) {
case '8':
case '4':
case '2':
case '1':
ndump = ALIGN(ndump, 16);
dump_by_size(adrs, ndump, c - '0');
last[1] = c;
last_cmd = last;
break;
default:
prdump(adrs, ndump);
last_cmd = "d\n";
}
adrs += ndump;
}
}
static void
prdump(unsigned long adrs, long ndump)
{
long n, m, c, r, nr;
unsigned char temp[16];
for (n = ndump; n > 0;) {
printf(REG, adrs);
putchar(' ');
r = n < 16? n: 16;
nr = mread(adrs, temp, r);
adrs += nr;
for (m = 0; m < r; ++m) {
if ((m & (sizeof(long) - 1)) == 0 && m > 0)
putchar(' ');
if (m < nr)
printf("%.2x", temp[m]);
else
printf("%s", fault_chars[fault_type]);
}
for (; m < 16; ++m) {
if ((m & (sizeof(long) - 1)) == 0)
putchar(' ');
printf(" ");
}
printf(" |");
for (m = 0; m < r; ++m) {
if (m < nr) {
c = temp[m];
putchar(' ' <= c && c <= '~'? c: '.');
} else
putchar(' ');
}
n -= r;
for (; m < 16; ++m)
putchar(' ');
printf("|\n");
if (nr < r)
break;
}
}
typedef int (*instruction_dump_func)(unsigned long inst, unsigned long addr);
static int
generic_inst_dump(unsigned long adr, long count, int praddr,
instruction_dump_func dump_func)
{
int nr, dotted;
unsigned long first_adr;
unsigned long inst, last_inst = 0;
unsigned char val[4];
dotted = 0;
for (first_adr = adr; count > 0; --count, adr += 4) {
nr = mread(adr, val, 4);
if (nr == 0) {
if (praddr) {
const char *x = fault_chars[fault_type];
printf(REG" %s%s%s%s\n", adr, x, x, x, x);
}
break;
}
inst = GETWORD(val);
if (adr > first_adr && inst == last_inst) {
if (!dotted) {
printf(" ...\n");
dotted = 1;
}
continue;
}
dotted = 0;
last_inst = inst;
if (praddr)
printf(REG" %.8x", adr, inst);
printf("\t");
dump_func(inst, adr);
printf("\n");
}
return adr - first_adr;
}
static int
ppc_inst_dump(unsigned long adr, long count, int praddr)
{
return generic_inst_dump(adr, count, praddr, print_insn_powerpc);
}
void
print_address(unsigned long addr)
{
xmon_print_symbol(addr, "\t# ", "");
}
void
dump_log_buf(void)
{
struct kmsg_dumper dumper = { .active = 1 };
unsigned char buf[128];
size_t len;
if (setjmp(bus_error_jmp) != 0) {
printf("Error dumping printk buffer!\n");
return;
}
catch_memory_errors = 1;
sync();
kmsg_dump_rewind_nolock(&dumper);
xmon_start_pagination();
while (kmsg_dump_get_line_nolock(&dumper, false, buf, sizeof(buf), &len)) {
buf[len] = '\0';
printf("%s", buf);
}
xmon_end_pagination();
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
catch_memory_errors = 0;
}
#ifdef CONFIG_PPC_POWERNV
static void dump_opal_msglog(void)
{
unsigned char buf[128];
ssize_t res;
loff_t pos = 0;
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
printf("Machine is not running OPAL firmware.\n");
return;
}
if (setjmp(bus_error_jmp) != 0) {
printf("Error dumping OPAL msglog!\n");
return;
}
catch_memory_errors = 1;
sync();
xmon_start_pagination();
while ((res = opal_msglog_copy(buf, pos, sizeof(buf) - 1))) {
if (res < 0) {
printf("Error dumping OPAL msglog! Error: %zd\n", res);
break;
}
buf[res] = '\0';
printf("%s", buf);
pos += res;
}
xmon_end_pagination();
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
catch_memory_errors = 0;
}
#endif
/*
* Memory operations - move, set, print differences
*/
static unsigned long mdest; /* destination address */
static unsigned long msrc; /* source address */
static unsigned long mval; /* byte value to set memory to */
static unsigned long mcount; /* # bytes to affect */
static unsigned long mdiffs; /* max # differences to print */
static void
memops(int cmd)
{
scanhex((void *)&mdest);
if( termch != '\n' )
termch = 0;
scanhex((void *)(cmd == 's'? &mval: &msrc));
if( termch != '\n' )
termch = 0;
scanhex((void *)&mcount);
switch( cmd ){
case 'm':
memmove((void *)mdest, (void *)msrc, mcount);
break;
case 's':
memset((void *)mdest, mval, mcount);
break;
case 'd':
if( termch != '\n' )
termch = 0;
scanhex((void *)&mdiffs);
memdiffs((unsigned char *)mdest, (unsigned char *)msrc, mcount, mdiffs);
break;
}
}
static void
memdiffs(unsigned char *p1, unsigned char *p2, unsigned nb, unsigned maxpr)
{
unsigned n, prt;
prt = 0;
for( n = nb; n > 0; --n )
if( *p1++ != *p2++ )
if( ++prt <= maxpr )
printf("%.16x %.2x # %.16x %.2x\n", p1 - 1,
p1[-1], p2 - 1, p2[-1]);
if( prt > maxpr )
printf("Total of %d differences\n", prt);
}
static unsigned mend;
static unsigned mask;
static void
memlocate(void)
{
unsigned a, n;
unsigned char val[4];
last_cmd = "ml";
scanhex((void *)&mdest);
if (termch != '\n') {
termch = 0;
scanhex((void *)&mend);
if (termch != '\n') {
termch = 0;
scanhex((void *)&mval);
mask = ~0;
if (termch != '\n') termch = 0;
scanhex((void *)&mask);
}
}
n = 0;
for (a = mdest; a < mend; a += 4) {
if (mread(a, val, 4) == 4
&& ((GETWORD(val) ^ mval) & mask) == 0) {
printf("%.16x: %.16x\n", a, GETWORD(val));
if (++n >= 10)
break;
}
}
}
static unsigned long mskip = 0x1000;
static unsigned long mlim = 0xffffffff;
static void
memzcan(void)
{
unsigned char v;
unsigned a;
int ok, ook;
scanhex(&mdest);
if (termch != '\n') termch = 0;
scanhex(&mskip);
if (termch != '\n') termch = 0;
scanhex(&mlim);
ook = 0;
for (a = mdest; a < mlim; a += mskip) {
ok = mread(a, &v, 1);
if (ok && !ook) {
printf("%.8x .. ", a);
} else if (!ok && ook)
printf("%.8x\n", a - mskip);
ook = ok;
if (a + mskip < a)
break;
}
if (ook)
printf("%.8x\n", a - mskip);
}
static void show_task(struct task_struct *tsk)
{
char state;
/*
* Cloned from kdb_task_state_char(), which is not entirely
* appropriate for calling from xmon. This could be moved
* to a common, generic, routine used by both.
*/
state = (tsk->state == 0) ? 'R' :
(tsk->state < 0) ? 'U' :
(tsk->state & TASK_UNINTERRUPTIBLE) ? 'D' :
(tsk->state & TASK_STOPPED) ? 'T' :
(tsk->state & TASK_TRACED) ? 'C' :
(tsk->exit_state & EXIT_ZOMBIE) ? 'Z' :
(tsk->exit_state & EXIT_DEAD) ? 'E' :
(tsk->state & TASK_INTERRUPTIBLE) ? 'S' : '?';
printf("%p %016lx %6d %6d %c %2d %s\n", tsk,
tsk->thread.ksp,
tsk->pid, tsk->parent->pid,
state, task_thread_info(tsk)->cpu,
tsk->comm);
}
static void show_tasks(void)
{
unsigned long tskv;
struct task_struct *tsk = NULL;
printf(" task_struct ->thread.ksp PID PPID S P CMD\n");
if (scanhex(&tskv))
tsk = (struct task_struct *)tskv;
if (setjmp(bus_error_jmp) != 0) {
catch_memory_errors = 0;
printf("*** Error dumping task %p\n", tsk);
return;
}
catch_memory_errors = 1;
sync();
if (tsk)
show_task(tsk);
else
for_each_process(tsk)
show_task(tsk);
sync();
__delay(200);
catch_memory_errors = 0;
}
static void proccall(void)
{
unsigned long args[8];
unsigned long ret;
int i;
typedef unsigned long (*callfunc_t)(unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long);
callfunc_t func;
if (!scanhex(&adrs))
return;
if (termch != '\n')
termch = 0;
for (i = 0; i < 8; ++i)
args[i] = 0;
for (i = 0; i < 8; ++i) {
if (!scanhex(&args[i]) || termch == '\n')
break;
termch = 0;
}
func = (callfunc_t) adrs;
ret = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
ret = func(args[0], args[1], args[2], args[3],
args[4], args[5], args[6], args[7]);
sync();
printf("return value is 0x%lx\n", ret);
} else {
printf("*** %x exception occurred\n", fault_except);
}
catch_memory_errors = 0;
}
/* Input scanning routines */
int
skipbl(void)
{
int c;
if( termch != 0 ){
c = termch;
termch = 0;
} else
c = inchar();
while( c == ' ' || c == '\t' )
c = inchar();
return c;
}
#define N_PTREGS 44
static char *regnames[N_PTREGS] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"pc", "msr", "or3", "ctr", "lr", "xer", "ccr",
#ifdef CONFIG_PPC64
"softe",
#else
"mq",
#endif
"trap", "dar", "dsisr", "res"
};
int
scanhex(unsigned long *vp)
{
int c, d;
unsigned long v;
c = skipbl();
if (c == '%') {
/* parse register name */
char regname[8];
int i;
for (i = 0; i < sizeof(regname) - 1; ++i) {
c = inchar();
if (!isalnum(c)) {
termch = c;
break;
}
regname[i] = c;
}
regname[i] = 0;
for (i = 0; i < N_PTREGS; ++i) {
if (strcmp(regnames[i], regname) == 0) {
if (xmon_regs == NULL) {
printf("regs not available\n");
return 0;
}
*vp = ((unsigned long *)xmon_regs)[i];
return 1;
}
}
printf("invalid register name '%%%s'\n", regname);
return 0;
}
/* skip leading "0x" if any */
if (c == '0') {
c = inchar();
if (c == 'x') {
c = inchar();
} else {
d = hexdigit(c);
if (d == EOF) {
termch = c;
*vp = 0;
return 1;
}
}
} else if (c == '$') {
int i;
for (i=0; i<63; i++) {
c = inchar();
if (isspace(c) || c == '\0') {
termch = c;
break;
}
tmpstr[i] = c;
}
tmpstr[i++] = 0;
*vp = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
*vp = kallsyms_lookup_name(tmpstr);
sync();
}
catch_memory_errors = 0;
if (!(*vp)) {
printf("unknown symbol '%s'\n", tmpstr);
return 0;
}
return 1;
}
d = hexdigit(c);
if (d == EOF) {
termch = c;
return 0;
}
v = 0;
do {
v = (v << 4) + d;
c = inchar();
d = hexdigit(c);
} while (d != EOF);
termch = c;
*vp = v;
return 1;
}
static void
scannl(void)
{
int c;
c = termch;
termch = 0;
while( c != '\n' )
c = inchar();
}
static int hexdigit(int c)
{
if( '0' <= c && c <= '9' )
return c - '0';
if( 'A' <= c && c <= 'F' )
return c - ('A' - 10);
if( 'a' <= c && c <= 'f' )
return c - ('a' - 10);
return EOF;
}
void
getstring(char *s, int size)
{
int c;
c = skipbl();
do {
if( size > 1 ){
*s++ = c;
--size;
}
c = inchar();
} while( c != ' ' && c != '\t' && c != '\n' );
termch = c;
*s = 0;
}
static char line[256];
static char *lineptr;
static void
flush_input(void)
{
lineptr = NULL;
}
static int
inchar(void)
{
if (lineptr == NULL || *lineptr == 0) {
if (xmon_gets(line, sizeof(line)) == NULL) {
lineptr = NULL;
return EOF;
}
lineptr = line;
}
return *lineptr++;
}
static void
take_input(char *str)
{
lineptr = str;
}
static void
symbol_lookup(void)
{
int type = inchar();
unsigned long addr;
static char tmp[64];
switch (type) {
case 'a':
if (scanhex(&addr))
xmon_print_symbol(addr, ": ", "\n");
termch = 0;
break;
case 's':
getstring(tmp, 64);
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
addr = kallsyms_lookup_name(tmp);
if (addr)
printf("%s: %lx\n", tmp, addr);
else
printf("Symbol '%s' not found.\n", tmp);
sync();
}
catch_memory_errors = 0;
termch = 0;
break;
}
}
/* Print an address in numeric and symbolic form (if possible) */
static void xmon_print_symbol(unsigned long address, const char *mid,
const char *after)
{
char *modname;
const char *name = NULL;
unsigned long offset, size;
printf(REG, address);
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
name = kallsyms_lookup(address, &size, &offset, &modname,
tmpstr);
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
}
catch_memory_errors = 0;
if (name) {
printf("%s%s+%#lx/%#lx", mid, name, offset, size);
if (modname)
printf(" [%s]", modname);
}
printf("%s", after);
}
#ifdef CONFIG_PPC_STD_MMU_64
void dump_segments(void)
{
int i;
unsigned long esid,vsid;
unsigned long llp;
printf("SLB contents of cpu 0x%x\n", smp_processor_id());
for (i = 0; i < mmu_slb_size; i++) {
asm volatile("slbmfee %0,%1" : "=r" (esid) : "r" (i));
asm volatile("slbmfev %0,%1" : "=r" (vsid) : "r" (i));
if (!esid && !vsid)
continue;
printf("%02d %016lx %016lx", i, esid, vsid);
if (!(esid & SLB_ESID_V)) {
printf("\n");
continue;
}
llp = vsid & SLB_VSID_LLP;
if (vsid & SLB_VSID_B_1T) {
printf(" 1T ESID=%9lx VSID=%13lx LLP:%3lx \n",
GET_ESID_1T(esid),
(vsid & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T,
llp);
} else {
printf(" 256M ESID=%9lx VSID=%13lx LLP:%3lx \n",
GET_ESID(esid),
(vsid & ~SLB_VSID_B) >> SLB_VSID_SHIFT,
llp);
}
}
}
#endif
#ifdef CONFIG_PPC_STD_MMU_32
void dump_segments(void)
{
int i;
printf("sr0-15 =");
for (i = 0; i < 16; ++i)
printf(" %x", mfsrin(i));
printf("\n");
}
#endif
#ifdef CONFIG_44x
static void dump_tlb_44x(void)
{
int i;
for (i = 0; i < PPC44x_TLB_SIZE; i++) {
unsigned long w0,w1,w2;
asm volatile("tlbre %0,%1,0" : "=r" (w0) : "r" (i));
asm volatile("tlbre %0,%1,1" : "=r" (w1) : "r" (i));
asm volatile("tlbre %0,%1,2" : "=r" (w2) : "r" (i));
printf("[%02x] %08x %08x %08x ", i, w0, w1, w2);
if (w0 & PPC44x_TLB_VALID) {
printf("V %08x -> %01x%08x %c%c%c%c%c",
w0 & PPC44x_TLB_EPN_MASK,
w1 & PPC44x_TLB_ERPN_MASK,
w1 & PPC44x_TLB_RPN_MASK,
(w2 & PPC44x_TLB_W) ? 'W' : 'w',
(w2 & PPC44x_TLB_I) ? 'I' : 'i',
(w2 & PPC44x_TLB_M) ? 'M' : 'm',
(w2 & PPC44x_TLB_G) ? 'G' : 'g',
(w2 & PPC44x_TLB_E) ? 'E' : 'e');
}
printf("\n");
}
}
#endif /* CONFIG_44x */
#ifdef CONFIG_PPC_BOOK3E
static void dump_tlb_book3e(void)
{
u32 mmucfg, pidmask, lpidmask;
u64 ramask;
int i, tlb, ntlbs, pidsz, lpidsz, rasz, lrat = 0;
int mmu_version;
static const char *pgsz_names[] = {
" 1K",
" 2K",
" 4K",
" 8K",
" 16K",
" 32K",
" 64K",
"128K",
"256K",
"512K",
" 1M",
" 2M",
" 4M",
" 8M",
" 16M",
" 32M",
" 64M",
"128M",
"256M",
"512M",
" 1G",
" 2G",
" 4G",
" 8G",
" 16G",
" 32G",
" 64G",
"128G",
"256G",
"512G",
" 1T",
" 2T",
};
/* Gather some infos about the MMU */
mmucfg = mfspr(SPRN_MMUCFG);
mmu_version = (mmucfg & 3) + 1;
ntlbs = ((mmucfg >> 2) & 3) + 1;
pidsz = ((mmucfg >> 6) & 0x1f) + 1;
lpidsz = (mmucfg >> 24) & 0xf;
rasz = (mmucfg >> 16) & 0x7f;
if ((mmu_version > 1) && (mmucfg & 0x10000))
lrat = 1;
printf("Book3E MMU MAV=%d.0,%d TLBs,%d-bit PID,%d-bit LPID,%d-bit RA\n",
mmu_version, ntlbs, pidsz, lpidsz, rasz);
pidmask = (1ul << pidsz) - 1;
lpidmask = (1ul << lpidsz) - 1;
ramask = (1ull << rasz) - 1;
for (tlb = 0; tlb < ntlbs; tlb++) {
u32 tlbcfg;
int nent, assoc, new_cc = 1;
printf("TLB %d:\n------\n", tlb);
switch(tlb) {
case 0:
tlbcfg = mfspr(SPRN_TLB0CFG);
break;
case 1:
tlbcfg = mfspr(SPRN_TLB1CFG);
break;
case 2:
tlbcfg = mfspr(SPRN_TLB2CFG);
break;
case 3:
tlbcfg = mfspr(SPRN_TLB3CFG);
break;
default:
printf("Unsupported TLB number !\n");
continue;
}
nent = tlbcfg & 0xfff;
assoc = (tlbcfg >> 24) & 0xff;
for (i = 0; i < nent; i++) {
u32 mas0 = MAS0_TLBSEL(tlb);
u32 mas1 = MAS1_TSIZE(BOOK3E_PAGESZ_4K);
u64 mas2 = 0;
u64 mas7_mas3;
int esel = i, cc = i;
if (assoc != 0) {
cc = i / assoc;
esel = i % assoc;
mas2 = cc * 0x1000;
}
mas0 |= MAS0_ESEL(esel);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, mas1);
mtspr(SPRN_MAS2, mas2);
asm volatile("tlbre 0,0,0" : : : "memory");
mas1 = mfspr(SPRN_MAS1);
mas2 = mfspr(SPRN_MAS2);
mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
if (assoc && (i % assoc) == 0)
new_cc = 1;
if (!(mas1 & MAS1_VALID))
continue;
if (assoc == 0)
printf("%04x- ", i);
else if (new_cc)
printf("%04x-%c", cc, 'A' + esel);
else
printf(" |%c", 'A' + esel);
new_cc = 0;
printf(" %016llx %04x %s %c%c AS%c",
mas2 & ~0x3ffull,
(mas1 >> 16) & 0x3fff,
pgsz_names[(mas1 >> 7) & 0x1f],
mas1 & MAS1_IND ? 'I' : ' ',
mas1 & MAS1_IPROT ? 'P' : ' ',
mas1 & MAS1_TS ? '1' : '0');
printf(" %c%c%c%c%c%c%c",
mas2 & MAS2_X0 ? 'a' : ' ',
mas2 & MAS2_X1 ? 'v' : ' ',
mas2 & MAS2_W ? 'w' : ' ',
mas2 & MAS2_I ? 'i' : ' ',
mas2 & MAS2_M ? 'm' : ' ',
mas2 & MAS2_G ? 'g' : ' ',
mas2 & MAS2_E ? 'e' : ' ');
printf(" %016llx", mas7_mas3 & ramask & ~0x7ffull);
if (mas1 & MAS1_IND)
printf(" %s\n",
pgsz_names[(mas7_mas3 >> 1) & 0x1f]);
else
printf(" U%c%c%c S%c%c%c\n",
mas7_mas3 & MAS3_UX ? 'x' : ' ',
mas7_mas3 & MAS3_UW ? 'w' : ' ',
mas7_mas3 & MAS3_UR ? 'r' : ' ',
mas7_mas3 & MAS3_SX ? 'x' : ' ',
mas7_mas3 & MAS3_SW ? 'w' : ' ',
mas7_mas3 & MAS3_SR ? 'r' : ' ');
}
}
}
#endif /* CONFIG_PPC_BOOK3E */
static void xmon_init(int enable)
{
if (enable) {
__debugger = xmon;
__debugger_ipi = xmon_ipi;
__debugger_bpt = xmon_bpt;
__debugger_sstep = xmon_sstep;
__debugger_iabr_match = xmon_iabr_match;
__debugger_break_match = xmon_break_match;
__debugger_fault_handler = xmon_fault_handler;
} else {
__debugger = NULL;
__debugger_ipi = NULL;
__debugger_bpt = NULL;
__debugger_sstep = NULL;
__debugger_iabr_match = NULL;
__debugger_break_match = NULL;
__debugger_fault_handler = NULL;
}
}
#ifdef CONFIG_MAGIC_SYSRQ
static void sysrq_handle_xmon(int key)
{
/* ensure xmon is enabled */
xmon_init(1);
debugger(get_irq_regs());
if (!xmon_on)
xmon_init(0);
}
static struct sysrq_key_op sysrq_xmon_op = {
.handler = sysrq_handle_xmon,
.help_msg = "xmon(x)",
.action_msg = "Entering xmon",
};
static int __init setup_xmon_sysrq(void)
{
register_sysrq_key('x', &sysrq_xmon_op);
return 0;
}
device_initcall(setup_xmon_sysrq);
#endif /* CONFIG_MAGIC_SYSRQ */
#ifdef CONFIG_DEBUG_FS
static int xmon_dbgfs_set(void *data, u64 val)
{
xmon_on = !!val;
xmon_init(xmon_on);
return 0;
}
static int xmon_dbgfs_get(void *data, u64 *val)
{
*val = xmon_on;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(xmon_dbgfs_ops, xmon_dbgfs_get,
xmon_dbgfs_set, "%llu\n");
static int __init setup_xmon_dbgfs(void)
{
debugfs_create_file("xmon", 0600, powerpc_debugfs_root, NULL,
&xmon_dbgfs_ops);
return 0;
}
device_initcall(setup_xmon_dbgfs);
#endif /* CONFIG_DEBUG_FS */
static int xmon_early __initdata;
static int __init early_parse_xmon(char *p)
{
if (!p || strncmp(p, "early", 5) == 0) {
/* just "xmon" is equivalent to "xmon=early" */
xmon_init(1);
xmon_early = 1;
xmon_on = 1;
} else if (strncmp(p, "on", 2) == 0) {
xmon_init(1);
xmon_on = 1;
} else if (strncmp(p, "off", 3) == 0)
xmon_on = 0;
else
return 1;
return 0;
}
early_param("xmon", early_parse_xmon);
void __init xmon_setup(void)
{
if (xmon_on)
xmon_init(1);
if (xmon_early)
debugger(NULL);
}
#ifdef CONFIG_SPU_BASE
struct spu_info {
struct spu *spu;
u64 saved_mfc_sr1_RW;
u32 saved_spu_runcntl_RW;
unsigned long dump_addr;
u8 stopped_ok;
};
#define XMON_NUM_SPUS 16 /* Enough for current hardware */
static struct spu_info spu_info[XMON_NUM_SPUS];
void xmon_register_spus(struct list_head *list)
{
struct spu *spu;
list_for_each_entry(spu, list, full_list) {
if (spu->number >= XMON_NUM_SPUS) {
WARN_ON(1);
continue;
}
spu_info[spu->number].spu = spu;
spu_info[spu->number].stopped_ok = 0;
spu_info[spu->number].dump_addr = (unsigned long)
spu_info[spu->number].spu->local_store;
}
}
static void stop_spus(void)
{
struct spu *spu;
int i;
u64 tmp;
for (i = 0; i < XMON_NUM_SPUS; i++) {
if (!spu_info[i].spu)
continue;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
spu = spu_info[i].spu;
spu_info[i].saved_spu_runcntl_RW =
in_be32(&spu->problem->spu_runcntl_RW);
tmp = spu_mfc_sr1_get(spu);
spu_info[i].saved_mfc_sr1_RW = tmp;
tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
spu_mfc_sr1_set(spu, tmp);
sync();
__delay(200);
spu_info[i].stopped_ok = 1;
printf("Stopped spu %.2d (was %s)\n", i,
spu_info[i].saved_spu_runcntl_RW ?
"running" : "stopped");
} else {
catch_memory_errors = 0;
printf("*** Error stopping spu %.2d\n", i);
}
catch_memory_errors = 0;
}
}
static void restart_spus(void)
{
struct spu *spu;
int i;
for (i = 0; i < XMON_NUM_SPUS; i++) {
if (!spu_info[i].spu)
continue;
if (!spu_info[i].stopped_ok) {
printf("*** Error, spu %d was not successfully stopped"
", not restarting\n", i);
continue;
}
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
spu = spu_info[i].spu;
spu_mfc_sr1_set(spu, spu_info[i].saved_mfc_sr1_RW);
out_be32(&spu->problem->spu_runcntl_RW,
spu_info[i].saved_spu_runcntl_RW);
sync();
__delay(200);
printf("Restarted spu %.2d\n", i);
} else {
catch_memory_errors = 0;
printf("*** Error restarting spu %.2d\n", i);
}
catch_memory_errors = 0;
}
}
#define DUMP_WIDTH 23
#define DUMP_VALUE(format, field, value) \
do { \
if (setjmp(bus_error_jmp) == 0) { \
catch_memory_errors = 1; \
sync(); \
printf(" %-*s = "format"\n", DUMP_WIDTH, \
#field, value); \
sync(); \
__delay(200); \
} else { \
catch_memory_errors = 0; \
printf(" %-*s = *** Error reading field.\n", \
DUMP_WIDTH, #field); \
} \
catch_memory_errors = 0; \
} while (0)
#define DUMP_FIELD(obj, format, field) \
DUMP_VALUE(format, field, obj->field)
static void dump_spu_fields(struct spu *spu)
{
printf("Dumping spu fields at address %p:\n", spu);
DUMP_FIELD(spu, "0x%x", number);
DUMP_FIELD(spu, "%s", name);
DUMP_FIELD(spu, "0x%lx", local_store_phys);
DUMP_FIELD(spu, "0x%p", local_store);
DUMP_FIELD(spu, "0x%lx", ls_size);
DUMP_FIELD(spu, "0x%x", node);
DUMP_FIELD(spu, "0x%lx", flags);
DUMP_FIELD(spu, "%d", class_0_pending);
DUMP_FIELD(spu, "0x%lx", class_0_dar);
DUMP_FIELD(spu, "0x%lx", class_1_dar);
DUMP_FIELD(spu, "0x%lx", class_1_dsisr);
DUMP_FIELD(spu, "0x%lx", irqs[0]);
DUMP_FIELD(spu, "0x%lx", irqs[1]);
DUMP_FIELD(spu, "0x%lx", irqs[2]);
DUMP_FIELD(spu, "0x%x", slb_replace);
DUMP_FIELD(spu, "%d", pid);
DUMP_FIELD(spu, "0x%p", mm);
DUMP_FIELD(spu, "0x%p", ctx);
DUMP_FIELD(spu, "0x%p", rq);
DUMP_FIELD(spu, "0x%p", timestamp);
DUMP_FIELD(spu, "0x%lx", problem_phys);
DUMP_FIELD(spu, "0x%p", problem);
DUMP_VALUE("0x%x", problem->spu_runcntl_RW,
in_be32(&spu->problem->spu_runcntl_RW));
DUMP_VALUE("0x%x", problem->spu_status_R,
in_be32(&spu->problem->spu_status_R));
DUMP_VALUE("0x%x", problem->spu_npc_RW,
in_be32(&spu->problem->spu_npc_RW));
DUMP_FIELD(spu, "0x%p", priv2);
DUMP_FIELD(spu, "0x%p", pdata);
}
int
spu_inst_dump(unsigned long adr, long count, int praddr)
{
return generic_inst_dump(adr, count, praddr, print_insn_spu);
}
static void dump_spu_ls(unsigned long num, int subcmd)
{
unsigned long offset, addr, ls_addr;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
ls_addr = (unsigned long)spu_info[num].spu->local_store;
sync();
__delay(200);
} else {
catch_memory_errors = 0;
printf("*** Error: accessing spu info for spu %d\n", num);
return;
}
catch_memory_errors = 0;
if (scanhex(&offset))
addr = ls_addr + offset;
else
addr = spu_info[num].dump_addr;
if (addr >= ls_addr + LS_SIZE) {
printf("*** Error: address outside of local store\n");
return;
}
switch (subcmd) {
case 'i':
addr += spu_inst_dump(addr, 16, 1);
last_cmd = "sdi\n";
break;
default:
prdump(addr, 64);
addr += 64;
last_cmd = "sd\n";
break;
}
spu_info[num].dump_addr = addr;
}
static int do_spu_cmd(void)
{
static unsigned long num = 0;
int cmd, subcmd = 0;
cmd = inchar();
switch (cmd) {
case 's':
stop_spus();
break;
case 'r':
restart_spus();
break;
case 'd':
subcmd = inchar();
if (isxdigit(subcmd) || subcmd == '\n')
termch = subcmd;
case 'f':
scanhex(&num);
if (num >= XMON_NUM_SPUS || !spu_info[num].spu) {
printf("*** Error: invalid spu number\n");
return 0;
}
switch (cmd) {
case 'f':
dump_spu_fields(spu_info[num].spu);
break;
default:
dump_spu_ls(num, subcmd);
break;
}
break;
default:
return -1;
}
return 0;
}
#else /* ! CONFIG_SPU_BASE */
static int do_spu_cmd(void)
{
return -1;
}
#endif