mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
5e28783013
We get: linux/arch/x86/xen/enlighten.c: In function ‘xen_start_kernel’: linux/arch/x86/xen/enlighten.c:226: warning: ‘cx’ may be used uninitialized in this function linux/arch/x86/xen/enlighten.c:240: note: ‘cx’ was declared here and the cx is really not set but passed in the xen_cpuid instruction which masks the value with returned masked_ecx from cpuid. This can potentially lead to invalid data being stored in cx. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
1425 lines
33 KiB
C
1425 lines
33 KiB
C
/*
|
|
* Core of Xen paravirt_ops implementation.
|
|
*
|
|
* This file contains the xen_paravirt_ops structure itself, and the
|
|
* implementations for:
|
|
* - privileged instructions
|
|
* - interrupt flags
|
|
* - segment operations
|
|
* - booting and setup
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/interface/version.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/interface/vcpu.h>
|
|
#include <xen/interface/memory.h>
|
|
#include <xen/features.h>
|
|
#include <xen/page.h>
|
|
#include <xen/hvm.h>
|
|
#include <xen/hvc-console.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/page.h>
|
|
#include <asm/xen/pci.h>
|
|
#include <asm/xen/hypercall.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/stackprotector.h>
|
|
#include <asm/hypervisor.h>
|
|
|
|
#include "xen-ops.h"
|
|
#include "mmu.h"
|
|
#include "multicalls.h"
|
|
|
|
EXPORT_SYMBOL_GPL(hypercall_page);
|
|
|
|
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
|
|
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
|
|
|
|
enum xen_domain_type xen_domain_type = XEN_NATIVE;
|
|
EXPORT_SYMBOL_GPL(xen_domain_type);
|
|
|
|
unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
|
|
EXPORT_SYMBOL(machine_to_phys_mapping);
|
|
unsigned long machine_to_phys_nr;
|
|
EXPORT_SYMBOL(machine_to_phys_nr);
|
|
|
|
struct start_info *xen_start_info;
|
|
EXPORT_SYMBOL_GPL(xen_start_info);
|
|
|
|
struct shared_info xen_dummy_shared_info;
|
|
|
|
void *xen_initial_gdt;
|
|
|
|
RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
|
|
__read_mostly int xen_have_vector_callback;
|
|
EXPORT_SYMBOL_GPL(xen_have_vector_callback);
|
|
|
|
/*
|
|
* Point at some empty memory to start with. We map the real shared_info
|
|
* page as soon as fixmap is up and running.
|
|
*/
|
|
struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
|
|
|
|
/*
|
|
* Flag to determine whether vcpu info placement is available on all
|
|
* VCPUs. We assume it is to start with, and then set it to zero on
|
|
* the first failure. This is because it can succeed on some VCPUs
|
|
* and not others, since it can involve hypervisor memory allocation,
|
|
* or because the guest failed to guarantee all the appropriate
|
|
* constraints on all VCPUs (ie buffer can't cross a page boundary).
|
|
*
|
|
* Note that any particular CPU may be using a placed vcpu structure,
|
|
* but we can only optimise if the all are.
|
|
*
|
|
* 0: not available, 1: available
|
|
*/
|
|
static int have_vcpu_info_placement = 1;
|
|
|
|
static void clamp_max_cpus(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (setup_max_cpus > MAX_VIRT_CPUS)
|
|
setup_max_cpus = MAX_VIRT_CPUS;
|
|
#endif
|
|
}
|
|
|
|
static void xen_vcpu_setup(int cpu)
|
|
{
|
|
struct vcpu_register_vcpu_info info;
|
|
int err;
|
|
struct vcpu_info *vcpup;
|
|
|
|
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
|
|
|
|
if (cpu < MAX_VIRT_CPUS)
|
|
per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
|
|
if (!have_vcpu_info_placement) {
|
|
if (cpu >= MAX_VIRT_CPUS)
|
|
clamp_max_cpus();
|
|
return;
|
|
}
|
|
|
|
vcpup = &per_cpu(xen_vcpu_info, cpu);
|
|
info.mfn = arbitrary_virt_to_mfn(vcpup);
|
|
info.offset = offset_in_page(vcpup);
|
|
|
|
/* Check to see if the hypervisor will put the vcpu_info
|
|
structure where we want it, which allows direct access via
|
|
a percpu-variable. */
|
|
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
|
|
|
|
if (err) {
|
|
printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
|
|
have_vcpu_info_placement = 0;
|
|
clamp_max_cpus();
|
|
} else {
|
|
/* This cpu is using the registered vcpu info, even if
|
|
later ones fail to. */
|
|
per_cpu(xen_vcpu, cpu) = vcpup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On restore, set the vcpu placement up again.
|
|
* If it fails, then we're in a bad state, since
|
|
* we can't back out from using it...
|
|
*/
|
|
void xen_vcpu_restore(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
bool other_cpu = (cpu != smp_processor_id());
|
|
|
|
if (other_cpu &&
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
|
|
BUG();
|
|
|
|
xen_setup_runstate_info(cpu);
|
|
|
|
if (have_vcpu_info_placement)
|
|
xen_vcpu_setup(cpu);
|
|
|
|
if (other_cpu &&
|
|
HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void __init xen_banner(void)
|
|
{
|
|
unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
|
|
struct xen_extraversion extra;
|
|
HYPERVISOR_xen_version(XENVER_extraversion, &extra);
|
|
|
|
printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
|
|
pv_info.name);
|
|
printk(KERN_INFO "Xen version: %d.%d%s%s\n",
|
|
version >> 16, version & 0xffff, extra.extraversion,
|
|
xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
|
|
}
|
|
|
|
static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
|
|
static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
|
|
|
|
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
|
|
unsigned int *cx, unsigned int *dx)
|
|
{
|
|
unsigned maskebx = ~0;
|
|
unsigned maskecx = ~0;
|
|
unsigned maskedx = ~0;
|
|
|
|
/*
|
|
* Mask out inconvenient features, to try and disable as many
|
|
* unsupported kernel subsystems as possible.
|
|
*/
|
|
switch (*ax) {
|
|
case 1:
|
|
maskecx = cpuid_leaf1_ecx_mask;
|
|
maskedx = cpuid_leaf1_edx_mask;
|
|
break;
|
|
|
|
case 0xb:
|
|
/* Suppress extended topology stuff */
|
|
maskebx = 0;
|
|
break;
|
|
}
|
|
|
|
asm(XEN_EMULATE_PREFIX "cpuid"
|
|
: "=a" (*ax),
|
|
"=b" (*bx),
|
|
"=c" (*cx),
|
|
"=d" (*dx)
|
|
: "0" (*ax), "2" (*cx));
|
|
|
|
*bx &= maskebx;
|
|
*cx &= maskecx;
|
|
*dx &= maskedx;
|
|
}
|
|
|
|
static void __init xen_init_cpuid_mask(void)
|
|
{
|
|
unsigned int ax, bx, cx, dx;
|
|
unsigned int xsave_mask;
|
|
|
|
cpuid_leaf1_edx_mask =
|
|
~((1 << X86_FEATURE_MCE) | /* disable MCE */
|
|
(1 << X86_FEATURE_MCA) | /* disable MCA */
|
|
(1 << X86_FEATURE_MTRR) | /* disable MTRR */
|
|
(1 << X86_FEATURE_ACC)); /* thermal monitoring */
|
|
|
|
if (!xen_initial_domain())
|
|
cpuid_leaf1_edx_mask &=
|
|
~((1 << X86_FEATURE_APIC) | /* disable local APIC */
|
|
(1 << X86_FEATURE_ACPI)); /* disable ACPI */
|
|
ax = 1;
|
|
cx = 0;
|
|
xen_cpuid(&ax, &bx, &cx, &dx);
|
|
|
|
xsave_mask =
|
|
(1 << (X86_FEATURE_XSAVE % 32)) |
|
|
(1 << (X86_FEATURE_OSXSAVE % 32));
|
|
|
|
/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
|
|
if ((cx & xsave_mask) != xsave_mask)
|
|
cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
|
|
}
|
|
|
|
static void xen_set_debugreg(int reg, unsigned long val)
|
|
{
|
|
HYPERVISOR_set_debugreg(reg, val);
|
|
}
|
|
|
|
static unsigned long xen_get_debugreg(int reg)
|
|
{
|
|
return HYPERVISOR_get_debugreg(reg);
|
|
}
|
|
|
|
static void xen_end_context_switch(struct task_struct *next)
|
|
{
|
|
xen_mc_flush();
|
|
paravirt_end_context_switch(next);
|
|
}
|
|
|
|
static unsigned long xen_store_tr(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the page permissions for a particular virtual address. If the
|
|
* address is a vmalloc mapping (or other non-linear mapping), then
|
|
* find the linear mapping of the page and also set its protections to
|
|
* match.
|
|
*/
|
|
static void set_aliased_prot(void *v, pgprot_t prot)
|
|
{
|
|
int level;
|
|
pte_t *ptep;
|
|
pte_t pte;
|
|
unsigned long pfn;
|
|
struct page *page;
|
|
|
|
ptep = lookup_address((unsigned long)v, &level);
|
|
BUG_ON(ptep == NULL);
|
|
|
|
pfn = pte_pfn(*ptep);
|
|
page = pfn_to_page(pfn);
|
|
|
|
pte = pfn_pte(pfn, prot);
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
|
|
BUG();
|
|
|
|
if (!PageHighMem(page)) {
|
|
void *av = __va(PFN_PHYS(pfn));
|
|
|
|
if (av != v)
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
|
|
BUG();
|
|
} else
|
|
kmap_flush_unused();
|
|
}
|
|
|
|
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
|
|
{
|
|
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
|
|
int i;
|
|
|
|
for(i = 0; i < entries; i += entries_per_page)
|
|
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
|
|
}
|
|
|
|
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
|
|
{
|
|
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
|
|
int i;
|
|
|
|
for(i = 0; i < entries; i += entries_per_page)
|
|
set_aliased_prot(ldt + i, PAGE_KERNEL);
|
|
}
|
|
|
|
static void xen_set_ldt(const void *addr, unsigned entries)
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
|
|
|
|
trace_xen_cpu_set_ldt(addr, entries);
|
|
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_SET_LDT;
|
|
op->arg1.linear_addr = (unsigned long)addr;
|
|
op->arg2.nr_ents = entries;
|
|
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_load_gdt(const struct desc_ptr *dtr)
|
|
{
|
|
unsigned long va = dtr->address;
|
|
unsigned int size = dtr->size + 1;
|
|
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
unsigned long frames[pages];
|
|
int f;
|
|
|
|
/*
|
|
* A GDT can be up to 64k in size, which corresponds to 8192
|
|
* 8-byte entries, or 16 4k pages..
|
|
*/
|
|
|
|
BUG_ON(size > 65536);
|
|
BUG_ON(va & ~PAGE_MASK);
|
|
|
|
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
|
|
int level;
|
|
pte_t *ptep;
|
|
unsigned long pfn, mfn;
|
|
void *virt;
|
|
|
|
/*
|
|
* The GDT is per-cpu and is in the percpu data area.
|
|
* That can be virtually mapped, so we need to do a
|
|
* page-walk to get the underlying MFN for the
|
|
* hypercall. The page can also be in the kernel's
|
|
* linear range, so we need to RO that mapping too.
|
|
*/
|
|
ptep = lookup_address(va, &level);
|
|
BUG_ON(ptep == NULL);
|
|
|
|
pfn = pte_pfn(*ptep);
|
|
mfn = pfn_to_mfn(pfn);
|
|
virt = __va(PFN_PHYS(pfn));
|
|
|
|
frames[f] = mfn;
|
|
|
|
make_lowmem_page_readonly((void *)va);
|
|
make_lowmem_page_readonly(virt);
|
|
}
|
|
|
|
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* load_gdt for early boot, when the gdt is only mapped once
|
|
*/
|
|
static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
|
|
{
|
|
unsigned long va = dtr->address;
|
|
unsigned int size = dtr->size + 1;
|
|
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
unsigned long frames[pages];
|
|
int f;
|
|
|
|
/*
|
|
* A GDT can be up to 64k in size, which corresponds to 8192
|
|
* 8-byte entries, or 16 4k pages..
|
|
*/
|
|
|
|
BUG_ON(size > 65536);
|
|
BUG_ON(va & ~PAGE_MASK);
|
|
|
|
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
|
|
pte_t pte;
|
|
unsigned long pfn, mfn;
|
|
|
|
pfn = virt_to_pfn(va);
|
|
mfn = pfn_to_mfn(pfn);
|
|
|
|
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
|
|
BUG();
|
|
|
|
frames[f] = mfn;
|
|
}
|
|
|
|
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
|
|
BUG();
|
|
}
|
|
|
|
static void load_TLS_descriptor(struct thread_struct *t,
|
|
unsigned int cpu, unsigned int i)
|
|
{
|
|
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
|
|
xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
|
|
struct multicall_space mc = __xen_mc_entry(0);
|
|
|
|
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
|
|
}
|
|
|
|
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
|
|
{
|
|
/*
|
|
* XXX sleazy hack: If we're being called in a lazy-cpu zone
|
|
* and lazy gs handling is enabled, it means we're in a
|
|
* context switch, and %gs has just been saved. This means we
|
|
* can zero it out to prevent faults on exit from the
|
|
* hypervisor if the next process has no %gs. Either way, it
|
|
* has been saved, and the new value will get loaded properly.
|
|
* This will go away as soon as Xen has been modified to not
|
|
* save/restore %gs for normal hypercalls.
|
|
*
|
|
* On x86_64, this hack is not used for %gs, because gs points
|
|
* to KERNEL_GS_BASE (and uses it for PDA references), so we
|
|
* must not zero %gs on x86_64
|
|
*
|
|
* For x86_64, we need to zero %fs, otherwise we may get an
|
|
* exception between the new %fs descriptor being loaded and
|
|
* %fs being effectively cleared at __switch_to().
|
|
*/
|
|
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
|
|
#ifdef CONFIG_X86_32
|
|
lazy_load_gs(0);
|
|
#else
|
|
loadsegment(fs, 0);
|
|
#endif
|
|
}
|
|
|
|
xen_mc_batch();
|
|
|
|
load_TLS_descriptor(t, cpu, 0);
|
|
load_TLS_descriptor(t, cpu, 1);
|
|
load_TLS_descriptor(t, cpu, 2);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void xen_load_gs_index(unsigned int idx)
|
|
{
|
|
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
|
|
BUG();
|
|
}
|
|
#endif
|
|
|
|
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
|
|
const void *ptr)
|
|
{
|
|
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
|
|
u64 entry = *(u64 *)ptr;
|
|
|
|
trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
|
|
|
|
preempt_disable();
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
|
|
BUG();
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static int cvt_gate_to_trap(int vector, const gate_desc *val,
|
|
struct trap_info *info)
|
|
{
|
|
unsigned long addr;
|
|
|
|
if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
|
|
return 0;
|
|
|
|
info->vector = vector;
|
|
|
|
addr = gate_offset(*val);
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Look for known traps using IST, and substitute them
|
|
* appropriately. The debugger ones are the only ones we care
|
|
* about. Xen will handle faults like double_fault and
|
|
* machine_check, so we should never see them. Warn if
|
|
* there's an unexpected IST-using fault handler.
|
|
*/
|
|
if (addr == (unsigned long)debug)
|
|
addr = (unsigned long)xen_debug;
|
|
else if (addr == (unsigned long)int3)
|
|
addr = (unsigned long)xen_int3;
|
|
else if (addr == (unsigned long)stack_segment)
|
|
addr = (unsigned long)xen_stack_segment;
|
|
else if (addr == (unsigned long)double_fault ||
|
|
addr == (unsigned long)nmi) {
|
|
/* Don't need to handle these */
|
|
return 0;
|
|
#ifdef CONFIG_X86_MCE
|
|
} else if (addr == (unsigned long)machine_check) {
|
|
return 0;
|
|
#endif
|
|
} else {
|
|
/* Some other trap using IST? */
|
|
if (WARN_ON(val->ist != 0))
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_X86_64 */
|
|
info->address = addr;
|
|
|
|
info->cs = gate_segment(*val);
|
|
info->flags = val->dpl;
|
|
/* interrupt gates clear IF */
|
|
if (val->type == GATE_INTERRUPT)
|
|
info->flags |= 1 << 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Locations of each CPU's IDT */
|
|
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
|
|
|
|
/* Set an IDT entry. If the entry is part of the current IDT, then
|
|
also update Xen. */
|
|
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
|
|
{
|
|
unsigned long p = (unsigned long)&dt[entrynum];
|
|
unsigned long start, end;
|
|
|
|
trace_xen_cpu_write_idt_entry(dt, entrynum, g);
|
|
|
|
preempt_disable();
|
|
|
|
start = __this_cpu_read(idt_desc.address);
|
|
end = start + __this_cpu_read(idt_desc.size) + 1;
|
|
|
|
xen_mc_flush();
|
|
|
|
native_write_idt_entry(dt, entrynum, g);
|
|
|
|
if (p >= start && (p + 8) <= end) {
|
|
struct trap_info info[2];
|
|
|
|
info[1].address = 0;
|
|
|
|
if (cvt_gate_to_trap(entrynum, g, &info[0]))
|
|
if (HYPERVISOR_set_trap_table(info))
|
|
BUG();
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_convert_trap_info(const struct desc_ptr *desc,
|
|
struct trap_info *traps)
|
|
{
|
|
unsigned in, out, count;
|
|
|
|
count = (desc->size+1) / sizeof(gate_desc);
|
|
BUG_ON(count > 256);
|
|
|
|
for (in = out = 0; in < count; in++) {
|
|
gate_desc *entry = (gate_desc*)(desc->address) + in;
|
|
|
|
if (cvt_gate_to_trap(in, entry, &traps[out]))
|
|
out++;
|
|
}
|
|
traps[out].address = 0;
|
|
}
|
|
|
|
void xen_copy_trap_info(struct trap_info *traps)
|
|
{
|
|
const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
|
|
|
|
xen_convert_trap_info(desc, traps);
|
|
}
|
|
|
|
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
|
|
hold a spinlock to protect the static traps[] array (static because
|
|
it avoids allocation, and saves stack space). */
|
|
static void xen_load_idt(const struct desc_ptr *desc)
|
|
{
|
|
static DEFINE_SPINLOCK(lock);
|
|
static struct trap_info traps[257];
|
|
|
|
trace_xen_cpu_load_idt(desc);
|
|
|
|
spin_lock(&lock);
|
|
|
|
__get_cpu_var(idt_desc) = *desc;
|
|
|
|
xen_convert_trap_info(desc, traps);
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_set_trap_table(traps))
|
|
BUG();
|
|
|
|
spin_unlock(&lock);
|
|
}
|
|
|
|
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
|
|
they're handled differently. */
|
|
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
|
|
const void *desc, int type)
|
|
{
|
|
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
|
|
|
|
preempt_disable();
|
|
|
|
switch (type) {
|
|
case DESC_LDT:
|
|
case DESC_TSS:
|
|
/* ignore */
|
|
break;
|
|
|
|
default: {
|
|
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
|
|
BUG();
|
|
}
|
|
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Version of write_gdt_entry for use at early boot-time needed to
|
|
* update an entry as simply as possible.
|
|
*/
|
|
static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
|
|
const void *desc, int type)
|
|
{
|
|
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
|
|
|
|
switch (type) {
|
|
case DESC_LDT:
|
|
case DESC_TSS:
|
|
/* ignore */
|
|
break;
|
|
|
|
default: {
|
|
xmaddr_t maddr = virt_to_machine(&dt[entry]);
|
|
|
|
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
|
|
dt[entry] = *(struct desc_struct *)desc;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void xen_load_sp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
mcs = xen_mc_entry(0);
|
|
MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_set_iopl_mask(unsigned mask)
|
|
{
|
|
struct physdev_set_iopl set_iopl;
|
|
|
|
/* Force the change at ring 0. */
|
|
set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
|
|
HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
|
|
}
|
|
|
|
static void xen_io_delay(void)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static u32 xen_apic_read(u32 reg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void xen_apic_write(u32 reg, u32 val)
|
|
{
|
|
/* Warn to see if there's any stray references */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static u64 xen_apic_icr_read(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void xen_apic_icr_write(u32 low, u32 id)
|
|
{
|
|
/* Warn to see if there's any stray references */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static void xen_apic_wait_icr_idle(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static u32 xen_safe_apic_wait_icr_idle(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void set_xen_basic_apic_ops(void)
|
|
{
|
|
apic->read = xen_apic_read;
|
|
apic->write = xen_apic_write;
|
|
apic->icr_read = xen_apic_icr_read;
|
|
apic->icr_write = xen_apic_icr_write;
|
|
apic->wait_icr_idle = xen_apic_wait_icr_idle;
|
|
apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void xen_clts(void)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
mcs = xen_mc_entry(0);
|
|
|
|
MULTI_fpu_taskswitch(mcs.mc, 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
|
|
|
|
static unsigned long xen_read_cr0(void)
|
|
{
|
|
unsigned long cr0 = percpu_read(xen_cr0_value);
|
|
|
|
if (unlikely(cr0 == 0)) {
|
|
cr0 = native_read_cr0();
|
|
percpu_write(xen_cr0_value, cr0);
|
|
}
|
|
|
|
return cr0;
|
|
}
|
|
|
|
static void xen_write_cr0(unsigned long cr0)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
percpu_write(xen_cr0_value, cr0);
|
|
|
|
/* Only pay attention to cr0.TS; everything else is
|
|
ignored. */
|
|
mcs = xen_mc_entry(0);
|
|
|
|
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_write_cr4(unsigned long cr4)
|
|
{
|
|
cr4 &= ~X86_CR4_PGE;
|
|
cr4 &= ~X86_CR4_PSE;
|
|
|
|
native_write_cr4(cr4);
|
|
}
|
|
|
|
static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
|
|
{
|
|
int ret;
|
|
|
|
ret = 0;
|
|
|
|
switch (msr) {
|
|
#ifdef CONFIG_X86_64
|
|
unsigned which;
|
|
u64 base;
|
|
|
|
case MSR_FS_BASE: which = SEGBASE_FS; goto set;
|
|
case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
|
|
case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
|
|
|
|
set:
|
|
base = ((u64)high << 32) | low;
|
|
if (HYPERVISOR_set_segment_base(which, base) != 0)
|
|
ret = -EIO;
|
|
break;
|
|
#endif
|
|
|
|
case MSR_STAR:
|
|
case MSR_CSTAR:
|
|
case MSR_LSTAR:
|
|
case MSR_SYSCALL_MASK:
|
|
case MSR_IA32_SYSENTER_CS:
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
/* Fast syscall setup is all done in hypercalls, so
|
|
these are all ignored. Stub them out here to stop
|
|
Xen console noise. */
|
|
break;
|
|
|
|
case MSR_IA32_CR_PAT:
|
|
if (smp_processor_id() == 0)
|
|
xen_set_pat(((u64)high << 32) | low);
|
|
break;
|
|
|
|
default:
|
|
ret = native_write_msr_safe(msr, low, high);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void xen_setup_shared_info(void)
|
|
{
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
|
set_fixmap(FIX_PARAVIRT_BOOTMAP,
|
|
xen_start_info->shared_info);
|
|
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
|
|
} else
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)__va(xen_start_info->shared_info);
|
|
|
|
#ifndef CONFIG_SMP
|
|
/* In UP this is as good a place as any to set up shared info */
|
|
xen_setup_vcpu_info_placement();
|
|
#endif
|
|
|
|
xen_setup_mfn_list_list();
|
|
}
|
|
|
|
/* This is called once we have the cpu_possible_map */
|
|
void xen_setup_vcpu_info_placement(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
xen_vcpu_setup(cpu);
|
|
|
|
/* xen_vcpu_setup managed to place the vcpu_info within the
|
|
percpu area for all cpus, so make use of it */
|
|
if (have_vcpu_info_placement) {
|
|
pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
|
|
pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
|
|
pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
|
|
pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
|
|
pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
|
|
}
|
|
}
|
|
|
|
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
|
|
unsigned long addr, unsigned len)
|
|
{
|
|
char *start, *end, *reloc;
|
|
unsigned ret;
|
|
|
|
start = end = reloc = NULL;
|
|
|
|
#define SITE(op, x) \
|
|
case PARAVIRT_PATCH(op.x): \
|
|
if (have_vcpu_info_placement) { \
|
|
start = (char *)xen_##x##_direct; \
|
|
end = xen_##x##_direct_end; \
|
|
reloc = xen_##x##_direct_reloc; \
|
|
} \
|
|
goto patch_site
|
|
|
|
switch (type) {
|
|
SITE(pv_irq_ops, irq_enable);
|
|
SITE(pv_irq_ops, irq_disable);
|
|
SITE(pv_irq_ops, save_fl);
|
|
SITE(pv_irq_ops, restore_fl);
|
|
#undef SITE
|
|
|
|
patch_site:
|
|
if (start == NULL || (end-start) > len)
|
|
goto default_patch;
|
|
|
|
ret = paravirt_patch_insns(insnbuf, len, start, end);
|
|
|
|
/* Note: because reloc is assigned from something that
|
|
appears to be an array, gcc assumes it's non-null,
|
|
but doesn't know its relationship with start and
|
|
end. */
|
|
if (reloc > start && reloc < end) {
|
|
int reloc_off = reloc - start;
|
|
long *relocp = (long *)(insnbuf + reloc_off);
|
|
long delta = start - (char *)addr;
|
|
|
|
*relocp += delta;
|
|
}
|
|
break;
|
|
|
|
default_patch:
|
|
default:
|
|
ret = paravirt_patch_default(type, clobbers, insnbuf,
|
|
addr, len);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct pv_info xen_info __initconst = {
|
|
.paravirt_enabled = 1,
|
|
.shared_kernel_pmd = 0,
|
|
|
|
#ifdef CONFIG_X86_64
|
|
.extra_user_64bit_cs = FLAT_USER_CS64,
|
|
#endif
|
|
|
|
.name = "Xen",
|
|
};
|
|
|
|
static const struct pv_init_ops xen_init_ops __initconst = {
|
|
.patch = xen_patch,
|
|
};
|
|
|
|
static const struct pv_cpu_ops xen_cpu_ops __initconst = {
|
|
.cpuid = xen_cpuid,
|
|
|
|
.set_debugreg = xen_set_debugreg,
|
|
.get_debugreg = xen_get_debugreg,
|
|
|
|
.clts = xen_clts,
|
|
|
|
.read_cr0 = xen_read_cr0,
|
|
.write_cr0 = xen_write_cr0,
|
|
|
|
.read_cr4 = native_read_cr4,
|
|
.read_cr4_safe = native_read_cr4_safe,
|
|
.write_cr4 = xen_write_cr4,
|
|
|
|
.wbinvd = native_wbinvd,
|
|
|
|
.read_msr = native_read_msr_safe,
|
|
.write_msr = xen_write_msr_safe,
|
|
.read_tsc = native_read_tsc,
|
|
.read_pmc = native_read_pmc,
|
|
|
|
.iret = xen_iret,
|
|
.irq_enable_sysexit = xen_sysexit,
|
|
#ifdef CONFIG_X86_64
|
|
.usergs_sysret32 = xen_sysret32,
|
|
.usergs_sysret64 = xen_sysret64,
|
|
#endif
|
|
|
|
.load_tr_desc = paravirt_nop,
|
|
.set_ldt = xen_set_ldt,
|
|
.load_gdt = xen_load_gdt,
|
|
.load_idt = xen_load_idt,
|
|
.load_tls = xen_load_tls,
|
|
#ifdef CONFIG_X86_64
|
|
.load_gs_index = xen_load_gs_index,
|
|
#endif
|
|
|
|
.alloc_ldt = xen_alloc_ldt,
|
|
.free_ldt = xen_free_ldt,
|
|
|
|
.store_gdt = native_store_gdt,
|
|
.store_idt = native_store_idt,
|
|
.store_tr = xen_store_tr,
|
|
|
|
.write_ldt_entry = xen_write_ldt_entry,
|
|
.write_gdt_entry = xen_write_gdt_entry,
|
|
.write_idt_entry = xen_write_idt_entry,
|
|
.load_sp0 = xen_load_sp0,
|
|
|
|
.set_iopl_mask = xen_set_iopl_mask,
|
|
.io_delay = xen_io_delay,
|
|
|
|
/* Xen takes care of %gs when switching to usermode for us */
|
|
.swapgs = paravirt_nop,
|
|
|
|
.start_context_switch = paravirt_start_context_switch,
|
|
.end_context_switch = xen_end_context_switch,
|
|
};
|
|
|
|
static const struct pv_apic_ops xen_apic_ops __initconst = {
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
.startup_ipi_hook = paravirt_nop,
|
|
#endif
|
|
};
|
|
|
|
static void xen_reboot(int reason)
|
|
{
|
|
struct sched_shutdown r = { .reason = reason };
|
|
|
|
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
|
|
BUG();
|
|
}
|
|
|
|
static void xen_restart(char *msg)
|
|
{
|
|
xen_reboot(SHUTDOWN_reboot);
|
|
}
|
|
|
|
static void xen_emergency_restart(void)
|
|
{
|
|
xen_reboot(SHUTDOWN_reboot);
|
|
}
|
|
|
|
static void xen_machine_halt(void)
|
|
{
|
|
xen_reboot(SHUTDOWN_poweroff);
|
|
}
|
|
|
|
static void xen_machine_power_off(void)
|
|
{
|
|
if (pm_power_off)
|
|
pm_power_off();
|
|
xen_reboot(SHUTDOWN_poweroff);
|
|
}
|
|
|
|
static void xen_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
xen_reboot(SHUTDOWN_crash);
|
|
}
|
|
|
|
static int
|
|
xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
|
|
{
|
|
xen_reboot(SHUTDOWN_crash);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block xen_panic_block = {
|
|
.notifier_call= xen_panic_event,
|
|
};
|
|
|
|
int xen_panic_handler_init(void)
|
|
{
|
|
atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
|
|
return 0;
|
|
}
|
|
|
|
static const struct machine_ops xen_machine_ops __initconst = {
|
|
.restart = xen_restart,
|
|
.halt = xen_machine_halt,
|
|
.power_off = xen_machine_power_off,
|
|
.shutdown = xen_machine_halt,
|
|
.crash_shutdown = xen_crash_shutdown,
|
|
.emergency_restart = xen_emergency_restart,
|
|
};
|
|
|
|
/*
|
|
* Set up the GDT and segment registers for -fstack-protector. Until
|
|
* we do this, we have to be careful not to call any stack-protected
|
|
* function, which is most of the kernel.
|
|
*/
|
|
static void __init xen_setup_stackprotector(void)
|
|
{
|
|
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
|
|
pv_cpu_ops.load_gdt = xen_load_gdt_boot;
|
|
|
|
setup_stack_canary_segment(0);
|
|
switch_to_new_gdt(0);
|
|
|
|
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
|
|
pv_cpu_ops.load_gdt = xen_load_gdt;
|
|
}
|
|
|
|
/* First C function to be called on Xen boot */
|
|
asmlinkage void __init xen_start_kernel(void)
|
|
{
|
|
struct physdev_set_iopl set_iopl;
|
|
int rc;
|
|
pgd_t *pgd;
|
|
|
|
if (!xen_start_info)
|
|
return;
|
|
|
|
xen_domain_type = XEN_PV_DOMAIN;
|
|
|
|
xen_setup_machphys_mapping();
|
|
|
|
/* Install Xen paravirt ops */
|
|
pv_info = xen_info;
|
|
pv_init_ops = xen_init_ops;
|
|
pv_cpu_ops = xen_cpu_ops;
|
|
pv_apic_ops = xen_apic_ops;
|
|
|
|
x86_init.resources.memory_setup = xen_memory_setup;
|
|
x86_init.oem.arch_setup = xen_arch_setup;
|
|
x86_init.oem.banner = xen_banner;
|
|
|
|
xen_init_time_ops();
|
|
|
|
/*
|
|
* Set up some pagetable state before starting to set any ptes.
|
|
*/
|
|
|
|
xen_init_mmu_ops();
|
|
|
|
/* Prevent unwanted bits from being set in PTEs. */
|
|
__supported_pte_mask &= ~_PAGE_GLOBAL;
|
|
if (!xen_initial_domain())
|
|
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
|
|
|
|
__supported_pte_mask |= _PAGE_IOMAP;
|
|
|
|
/*
|
|
* Prevent page tables from being allocated in highmem, even
|
|
* if CONFIG_HIGHPTE is enabled.
|
|
*/
|
|
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
|
|
|
|
/* Work out if we support NX */
|
|
x86_configure_nx();
|
|
|
|
xen_setup_features();
|
|
|
|
/* Get mfn list */
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
xen_build_dynamic_phys_to_machine();
|
|
|
|
/*
|
|
* Set up kernel GDT and segment registers, mainly so that
|
|
* -fstack-protector code can be executed.
|
|
*/
|
|
xen_setup_stackprotector();
|
|
|
|
xen_init_irq_ops();
|
|
xen_init_cpuid_mask();
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* set up the basic apic ops.
|
|
*/
|
|
set_xen_basic_apic_ops();
|
|
#endif
|
|
|
|
if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
|
|
pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
|
|
pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
|
|
}
|
|
|
|
machine_ops = xen_machine_ops;
|
|
|
|
/*
|
|
* The only reliable way to retain the initial address of the
|
|
* percpu gdt_page is to remember it here, so we can go and
|
|
* mark it RW later, when the initial percpu area is freed.
|
|
*/
|
|
xen_initial_gdt = &per_cpu(gdt_page, 0);
|
|
|
|
xen_smp_init();
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
/*
|
|
* The pages we from Xen are not related to machine pages, so
|
|
* any NUMA information the kernel tries to get from ACPI will
|
|
* be meaningless. Prevent it from trying.
|
|
*/
|
|
acpi_numa = -1;
|
|
#endif
|
|
|
|
pgd = (pgd_t *)xen_start_info->pt_base;
|
|
|
|
if (!xen_initial_domain())
|
|
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
|
|
|
|
__supported_pte_mask |= _PAGE_IOMAP;
|
|
/* Don't do the full vcpu_info placement stuff until we have a
|
|
possible map and a non-dummy shared_info. */
|
|
per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
|
|
|
|
local_irq_disable();
|
|
early_boot_irqs_disabled = true;
|
|
|
|
memblock_init();
|
|
|
|
xen_raw_console_write("mapping kernel into physical memory\n");
|
|
pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
|
|
xen_ident_map_ISA();
|
|
|
|
/* Allocate and initialize top and mid mfn levels for p2m structure */
|
|
xen_build_mfn_list_list();
|
|
|
|
/* keep using Xen gdt for now; no urgent need to change it */
|
|
|
|
#ifdef CONFIG_X86_32
|
|
pv_info.kernel_rpl = 1;
|
|
if (xen_feature(XENFEAT_supervisor_mode_kernel))
|
|
pv_info.kernel_rpl = 0;
|
|
#else
|
|
pv_info.kernel_rpl = 0;
|
|
#endif
|
|
/* set the limit of our address space */
|
|
xen_reserve_top();
|
|
|
|
/* We used to do this in xen_arch_setup, but that is too late on AMD
|
|
* were early_cpu_init (run before ->arch_setup()) calls early_amd_init
|
|
* which pokes 0xcf8 port.
|
|
*/
|
|
set_iopl.iopl = 1;
|
|
rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
|
|
if (rc != 0)
|
|
xen_raw_printk("physdev_op failed %d\n", rc);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* set up basic CPUID stuff */
|
|
cpu_detect(&new_cpu_data);
|
|
new_cpu_data.hard_math = 1;
|
|
new_cpu_data.wp_works_ok = 1;
|
|
new_cpu_data.x86_capability[0] = cpuid_edx(1);
|
|
#endif
|
|
|
|
/* Poke various useful things into boot_params */
|
|
boot_params.hdr.type_of_loader = (9 << 4) | 0;
|
|
boot_params.hdr.ramdisk_image = xen_start_info->mod_start
|
|
? __pa(xen_start_info->mod_start) : 0;
|
|
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
|
|
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
|
|
|
|
if (!xen_initial_domain()) {
|
|
add_preferred_console("xenboot", 0, NULL);
|
|
add_preferred_console("tty", 0, NULL);
|
|
add_preferred_console("hvc", 0, NULL);
|
|
if (pci_xen)
|
|
x86_init.pci.arch_init = pci_xen_init;
|
|
} else {
|
|
const struct dom0_vga_console_info *info =
|
|
(void *)((char *)xen_start_info +
|
|
xen_start_info->console.dom0.info_off);
|
|
|
|
xen_init_vga(info, xen_start_info->console.dom0.info_size);
|
|
xen_start_info->console.domU.mfn = 0;
|
|
xen_start_info->console.domU.evtchn = 0;
|
|
|
|
/* Make sure ACS will be enabled */
|
|
pci_request_acs();
|
|
}
|
|
|
|
|
|
xen_raw_console_write("about to get started...\n");
|
|
|
|
xen_setup_runstate_info(0);
|
|
|
|
/* Start the world */
|
|
#ifdef CONFIG_X86_32
|
|
i386_start_kernel();
|
|
#else
|
|
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
|
|
#endif
|
|
}
|
|
|
|
static int init_hvm_pv_info(int *major, int *minor)
|
|
{
|
|
uint32_t eax, ebx, ecx, edx, pages, msr, base;
|
|
u64 pfn;
|
|
|
|
base = xen_cpuid_base();
|
|
cpuid(base + 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
*major = eax >> 16;
|
|
*minor = eax & 0xffff;
|
|
printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
|
|
|
|
cpuid(base + 2, &pages, &msr, &ecx, &edx);
|
|
|
|
pfn = __pa(hypercall_page);
|
|
wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
|
|
|
|
xen_setup_features();
|
|
|
|
pv_info.name = "Xen HVM";
|
|
|
|
xen_domain_type = XEN_HVM_DOMAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __ref xen_hvm_init_shared_info(void)
|
|
{
|
|
int cpu;
|
|
struct xen_add_to_physmap xatp;
|
|
static struct shared_info *shared_info_page = 0;
|
|
|
|
if (!shared_info_page)
|
|
shared_info_page = (struct shared_info *)
|
|
extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
xatp.domid = DOMID_SELF;
|
|
xatp.idx = 0;
|
|
xatp.space = XENMAPSPACE_shared_info;
|
|
xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
|
|
if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
|
|
BUG();
|
|
|
|
HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
|
|
|
|
/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
|
|
* page, we use it in the event channel upcall and in some pvclock
|
|
* related functions. We don't need the vcpu_info placement
|
|
* optimizations because we don't use any pv_mmu or pv_irq op on
|
|
* HVM.
|
|
* When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
|
|
* online but xen_hvm_init_shared_info is run at resume time too and
|
|
* in that case multiple vcpus might be online. */
|
|
for_each_online_cpu(cpu) {
|
|
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_XEN_PVHVM
|
|
static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
int cpu = (long)hcpu;
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
if (xen_have_vector_callback)
|
|
xen_init_lock_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
|
|
.notifier_call = xen_hvm_cpu_notify,
|
|
};
|
|
|
|
static void __init xen_hvm_guest_init(void)
|
|
{
|
|
int r;
|
|
int major, minor;
|
|
|
|
r = init_hvm_pv_info(&major, &minor);
|
|
if (r < 0)
|
|
return;
|
|
|
|
xen_hvm_init_shared_info();
|
|
|
|
if (xen_feature(XENFEAT_hvm_callback_vector))
|
|
xen_have_vector_callback = 1;
|
|
xen_hvm_smp_init();
|
|
register_cpu_notifier(&xen_hvm_cpu_notifier);
|
|
xen_unplug_emulated_devices();
|
|
have_vcpu_info_placement = 0;
|
|
x86_init.irqs.intr_init = xen_init_IRQ;
|
|
xen_hvm_init_time_ops();
|
|
xen_hvm_init_mmu_ops();
|
|
}
|
|
|
|
static bool __init xen_hvm_platform(void)
|
|
{
|
|
if (xen_pv_domain())
|
|
return false;
|
|
|
|
if (!xen_cpuid_base())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool xen_hvm_need_lapic(void)
|
|
{
|
|
if (xen_pv_domain())
|
|
return false;
|
|
if (!xen_hvm_domain())
|
|
return false;
|
|
if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
|
|
return false;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
|
|
|
|
const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
|
|
.name = "Xen HVM",
|
|
.detect = xen_hvm_platform,
|
|
.init_platform = xen_hvm_guest_init,
|
|
};
|
|
EXPORT_SYMBOL(x86_hyper_xen_hvm);
|
|
#endif
|