linux_dsm_epyc7002/drivers/scsi/u14-34f.c
FUJITA Tomonori b80ca4f7ee [SCSI] replace sizeof sense_buffer with SCSI_SENSE_BUFFERSIZE
This replaces sizeof sense_buffer with SCSI_SENSE_BUFFERSIZE in
several LLDs. It's a preparation for the future changes to remove
sense_buffer array in scsi_cmnd structure.

Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2008-01-23 11:29:27 -06:00

1974 lines
66 KiB
C

/*
* u14-34f.c - Low-level driver for UltraStor 14F/34F SCSI host adapters.
*
* 03 Jun 2003 Rev. 8.10 for linux-2.5.70
* + Update for new IRQ API.
* + Use "goto" when appropriate.
* + Drop u14-34f.h.
* + Update for new module_param API.
* + Module parameters can now be specified only in the
* same format as the kernel boot options.
*
* boot option old module param
* ----------- ------------------
* addr,... io_port=addr,...
* lc:[y|n] linked_comm=[1|0]
* mq:xx max_queue_depth=xx
* tm:[0|1|2] tag_mode=[0|1|2]
* et:[y|n] ext_tran=[1|0]
* of:[y|n] have_old_firmware=[1|0]
*
* A valid example using the new parameter format is:
* modprobe u14-34f "u14-34f=0x340,0x330,lc:y,tm:0,mq:4"
*
* which is equivalent to the old format:
* modprobe u14-34f io_port=0x340,0x330 linked_comm=1 tag_mode=0 \
* max_queue_depth=4
*
* With actual module code, u14-34f and u14_34f are equivalent
* as module parameter names.
*
* 12 Feb 2003 Rev. 8.04 for linux 2.5.60
* + Release irq before calling scsi_register.
*
* 12 Nov 2002 Rev. 8.02 for linux 2.5.47
* + Release driver_lock before calling scsi_register.
*
* 11 Nov 2002 Rev. 8.01 for linux 2.5.47
* + Fixed bios_param and scsicam_bios_param calling parameters.
*
* 28 Oct 2002 Rev. 8.00 for linux 2.5.44-ac4
* + Use new tcq and adjust_queue_depth api.
* + New command line option (tm:[0-2]) to choose the type of tags:
* 0 -> disable tagging ; 1 -> simple tags ; 2 -> ordered tags.
* Default is tm:0 (tagged commands disabled).
* For compatibility the "tc:" option is an alias of the "tm:"
* option; tc:n is equivalent to tm:0 and tc:y is equivalent to
* tm:1.
*
* 10 Oct 2002 Rev. 7.70 for linux 2.5.42
* + Foreport from revision 6.70.
*
* 25 Jun 2002 Rev. 6.70 for linux 2.4.19
* + Fixed endian-ness problem due to bitfields.
*
* 21 Feb 2002 Rev. 6.52 for linux 2.4.18
* + Backport from rev. 7.22 (use io_request_lock).
*
* 20 Feb 2002 Rev. 7.22 for linux 2.5.5
* + Remove any reference to virt_to_bus().
* + Fix pio hang while detecting multiple HBAs.
*
* 01 Jan 2002 Rev. 7.20 for linux 2.5.1
* + Use the dynamic DMA mapping API.
*
* 19 Dec 2001 Rev. 7.02 for linux 2.5.1
* + Use SCpnt->sc_data_direction if set.
* + Use sglist.page instead of sglist.address.
*
* 11 Dec 2001 Rev. 7.00 for linux 2.5.1
* + Use host->host_lock instead of io_request_lock.
*
* 1 May 2001 Rev. 6.05 for linux 2.4.4
* + Fix data transfer direction for opcode SEND_CUE_SHEET (0x5d)
*
* 25 Jan 2001 Rev. 6.03 for linux 2.4.0
* + "check_region" call replaced by "request_region".
*
* 22 Nov 2000 Rev. 6.02 for linux 2.4.0-test11
* + Removed old scsi error handling support.
* + The obsolete boot option flag eh:n is silently ignored.
* + Removed error messages while a disk drive is powered up at
* boot time.
* + Improved boot messages: all tagged capable device are
* indicated as "tagged".
*
* 16 Sep 1999 Rev. 5.11 for linux 2.2.12 and 2.3.18
* + Updated to the new __setup interface for boot command line options.
* + When loaded as a module, accepts the new parameter boot_options
* which value is a string with the same format of the kernel boot
* command line options. A valid example is:
* modprobe u14-34f 'boot_options="0x230,0x340,lc:y,mq:4"'
*
* 22 Jul 1999 Rev. 5.00 for linux 2.2.10 and 2.3.11
* + Removed pre-2.2 source code compatibility.
*
* 26 Jul 1998 Rev. 4.33 for linux 2.0.35 and 2.1.111
* Added command line option (et:[y|n]) to use the existing
* translation (returned by scsicam_bios_param) as disk geometry.
* The default is et:n, which uses the disk geometry jumpered
* on the board.
* The default value et:n is compatible with all previous revisions
* of this driver.
*
* 28 May 1998 Rev. 4.32 for linux 2.0.33 and 2.1.104
* Increased busy timeout from 10 msec. to 200 msec. while
* processing interrupts.
*
* 18 May 1998 Rev. 4.31 for linux 2.0.33 and 2.1.102
* Improved abort handling during the eh recovery process.
*
* 13 May 1998 Rev. 4.30 for linux 2.0.33 and 2.1.101
* The driver is now fully SMP safe, including the
* abort and reset routines.
* Added command line options (eh:[y|n]) to choose between
* new_eh_code and the old scsi code.
* If linux version >= 2.1.101 the default is eh:y, while the eh
* option is ignored for previous releases and the old scsi code
* is used.
*
* 18 Apr 1998 Rev. 4.20 for linux 2.0.33 and 2.1.97
* Reworked interrupt handler.
*
* 11 Apr 1998 rev. 4.05 for linux 2.0.33 and 2.1.95
* Major reliability improvement: when a batch with overlapping
* requests is detected, requests are queued one at a time
* eliminating any possible board or drive reordering.
*
* 10 Apr 1998 rev. 4.04 for linux 2.0.33 and 2.1.95
* Improved SMP support (if linux version >= 2.1.95).
*
* 9 Apr 1998 rev. 4.03 for linux 2.0.33 and 2.1.94
* Performance improvement: when sequential i/o is detected,
* always use direct sort instead of reverse sort.
*
* 4 Apr 1998 rev. 4.02 for linux 2.0.33 and 2.1.92
* io_port is now unsigned long.
*
* 17 Mar 1998 rev. 4.01 for linux 2.0.33 and 2.1.88
* Use new scsi error handling code (if linux version >= 2.1.88).
* Use new interrupt code.
*
* 12 Sep 1997 rev. 3.11 for linux 2.0.30 and 2.1.55
* Use of udelay inside the wait loops to avoid timeout
* problems with fast cpus.
* Removed check about useless calls to the interrupt service
* routine (reported on SMP systems only).
* At initialization time "sorted/unsorted" is displayed instead
* of "linked/unlinked" to reinforce the fact that "linking" is
* nothing but "elevator sorting" in the actual implementation.
*
* 17 May 1997 rev. 3.10 for linux 2.0.30 and 2.1.38
* Use of serial_number_at_timeout in abort and reset processing.
* Use of the __initfunc and __initdata macro in setup code.
* Minor cleanups in the list_statistics code.
*
* 24 Feb 1997 rev. 3.00 for linux 2.0.29 and 2.1.26
* When loading as a module, parameter passing is now supported
* both in 2.0 and in 2.1 style.
* Fixed data transfer direction for some SCSI opcodes.
* Immediate acknowledge to request sense commands.
* Linked commands to each disk device are now reordered by elevator
* sorting. Rare cases in which reordering of write requests could
* cause wrong results are managed.
*
* 18 Jan 1997 rev. 2.60 for linux 2.1.21 and 2.0.28
* Added command line options to enable/disable linked commands
* (lc:[y|n]), old firmware support (of:[y|n]) and to set the max
* queue depth (mq:xx). Default is "u14-34f=lc:n,of:n,mq:8".
* Improved command linking.
*
* 8 Jan 1997 rev. 2.50 for linux 2.1.20 and 2.0.27
* Added linked command support.
*
* 3 Dec 1996 rev. 2.40 for linux 2.1.14 and 2.0.27
* Added queue depth adjustment.
*
* 22 Nov 1996 rev. 2.30 for linux 2.1.12 and 2.0.26
* The list of i/o ports to be probed can be overwritten by the
* "u14-34f=port0,port1,...." boot command line option.
* Scatter/gather lists are now allocated by a number of kmalloc
* calls, in order to avoid the previous size limit of 64Kb.
*
* 16 Nov 1996 rev. 2.20 for linux 2.1.10 and 2.0.25
* Added multichannel support.
*
* 27 Sep 1996 rev. 2.12 for linux 2.1.0
* Portability cleanups (virtual/bus addressing, little/big endian
* support).
*
* 09 Jul 1996 rev. 2.11 for linux 2.0.4
* "Data over/under-run" no longer implies a redo on all targets.
* Number of internal retries is now limited.
*
* 16 Apr 1996 rev. 2.10 for linux 1.3.90
* New argument "reset_flags" to the reset routine.
*
* 21 Jul 1995 rev. 2.02 for linux 1.3.11
* Fixed Data Transfer Direction for some SCSI commands.
*
* 13 Jun 1995 rev. 2.01 for linux 1.2.10
* HAVE_OLD_UX4F_FIRMWARE should be defined for U34F boards when
* the firmware prom is not the latest one (28008-006).
*
* 11 Mar 1995 rev. 2.00 for linux 1.2.0
* Fixed a bug which prevented media change detection for removable
* disk drives.
*
* 23 Feb 1995 rev. 1.18 for linux 1.1.94
* Added a check for scsi_register returning NULL.
*
* 11 Feb 1995 rev. 1.17 for linux 1.1.91
* U14F qualified to run with 32 sglists.
* Now DEBUG_RESET is disabled by default.
*
* 9 Feb 1995 rev. 1.16 for linux 1.1.90
* Use host->wish_block instead of host->block.
*
* 8 Feb 1995 rev. 1.15 for linux 1.1.89
* Cleared target_time_out counter while performing a reset.
*
* 28 Jan 1995 rev. 1.14 for linux 1.1.86
* Added module support.
* Log and do a retry when a disk drive returns a target status
* different from zero on a recovered error.
* Auto detects if U14F boards have an old firmware revision.
* Max number of scatter/gather lists set to 16 for all boards
* (most installation run fine using 33 sglists, while other
* has problems when using more than 16).
*
* 16 Jan 1995 rev. 1.13 for linux 1.1.81
* Display a message if check_region detects a port address
* already in use.
*
* 15 Dec 1994 rev. 1.12 for linux 1.1.74
* The host->block flag is set for all the detected ISA boards.
*
* 30 Nov 1994 rev. 1.11 for linux 1.1.68
* Redo i/o on target status CHECK_CONDITION for TYPE_DISK only.
* Added optional support for using a single board at a time.
*
* 14 Nov 1994 rev. 1.10 for linux 1.1.63
*
* 28 Oct 1994 rev. 1.09 for linux 1.1.58 Final BETA release.
* 16 Jul 1994 rev. 1.00 for linux 1.1.29 Initial ALPHA release.
*
* This driver is a total replacement of the original UltraStor
* scsi driver, but it supports ONLY the 14F and 34F boards.
* It can be configured in the same kernel in which the original
* ultrastor driver is configured to allow the original U24F
* support.
*
* Multiple U14F and/or U34F host adapters are supported.
*
* Copyright (C) 1994-2003 Dario Ballabio (ballabio_dario@emc.com)
*
* Alternate email: dario.ballabio@inwind.it, dario.ballabio@tiscalinet.it
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*
* WARNING: if your 14/34F board has an old firmware revision (see below)
* you must change "#undef" into "#define" in the following
* statement.
*/
#undef HAVE_OLD_UX4F_FIRMWARE
/*
* The UltraStor 14F, 24F, and 34F are a family of intelligent, high
* performance SCSI-2 host adapters.
* Here is the scoop on the various models:
*
* 14F - ISA first-party DMA HA with floppy support and WD1003 emulation.
* 24F - EISA Bus Master HA with floppy support and WD1003 emulation.
* 34F - VESA Local-Bus Bus Master HA (no WD1003 emulation).
*
* This code has been tested with up to two U14F boards, using both
* firmware 28004-005/38004-004 (BIOS rev. 2.00) and the latest firmware
* 28004-006/38004-005 (BIOS rev. 2.01).
*
* The latest firmware is required in order to get reliable operations when
* clustering is enabled. ENABLE_CLUSTERING provides a performance increase
* up to 50% on sequential access.
*
* Since the struct scsi_host_template structure is shared among all 14F and 34F,
* the last setting of use_clustering is in effect for all of these boards.
*
* Here a sample configuration using two U14F boards:
*
U14F0: ISA 0x330, BIOS 0xc8000, IRQ 11, DMA 5, SG 32, MB 16, of:n, lc:y, mq:8.
U14F1: ISA 0x340, BIOS 0x00000, IRQ 10, DMA 6, SG 32, MB 16, of:n, lc:y, mq:8.
*
* The boot controller must have its BIOS enabled, while other boards can
* have their BIOS disabled, or enabled to an higher address.
* Boards are named Ux4F0, Ux4F1..., according to the port address order in
* the io_port[] array.
*
* The following facts are based on real testing results (not on
* documentation) on the above U14F board.
*
* - The U14F board should be jumpered for bus on time less or equal to 7
* microseconds, while the default is 11 microseconds. This is order to
* get acceptable performance while using floppy drive and hard disk
* together. The jumpering for 7 microseconds is: JP13 pin 15-16,
* JP14 pin 7-8 and pin 9-10.
* The reduction has a little impact on scsi performance.
*
* - If scsi bus length exceeds 3m., the scsi bus speed needs to be reduced
* from 10Mhz to 5Mhz (do this by inserting a jumper on JP13 pin 7-8).
*
* - If U14F on board firmware is older than 28004-006/38004-005,
* the U14F board is unable to provide reliable operations if the scsi
* request length exceeds 16Kbyte. When this length is exceeded the
* behavior is:
* - adapter_status equal 0x96 or 0xa3 or 0x93 or 0x94;
* - adapter_status equal 0 and target_status equal 2 on for all targets
* in the next operation following the reset.
* This sequence takes a long time (>3 seconds), so in the meantime
* the SD_TIMEOUT in sd.c could expire giving rise to scsi aborts
* (SD_TIMEOUT has been increased from 3 to 6 seconds in 1.1.31).
* Because of this I had to DISABLE_CLUSTERING and to work around the
* bus reset in the interrupt service routine, returning DID_BUS_BUSY
* so that the operations are retried without complains from the scsi.c
* code.
* Any reset of the scsi bus is going to kill tape operations, since
* no retry is allowed for tapes. Bus resets are more likely when the
* scsi bus is under heavy load.
* Requests using scatter/gather have a maximum length of 16 x 1024 bytes
* when DISABLE_CLUSTERING is in effect, but unscattered requests could be
* larger than 16Kbyte.
*
* The new firmware has fixed all the above problems.
*
* For U34F boards the latest bios prom is 38008-002 (BIOS rev. 2.01),
* the latest firmware prom is 28008-006. Older firmware 28008-005 has
* problems when using more than 16 scatter/gather lists.
*
* The list of i/o ports to be probed can be totally replaced by the
* boot command line option: "u14-34f=port0,port1,port2,...", where the
* port0, port1... arguments are ISA/VESA addresses to be probed.
* For example using "u14-34f=0x230,0x340", the driver probes only the two
* addresses 0x230 and 0x340 in this order; "u14-34f=0" totally disables
* this driver.
*
* After the optional list of detection probes, other possible command line
* options are:
*
* et:y use disk geometry returned by scsicam_bios_param;
* et:n use disk geometry jumpered on the board;
* lc:y enables linked commands;
* lc:n disables linked commands;
* tm:0 disables tagged commands (same as tc:n);
* tm:1 use simple queue tags (same as tc:y);
* tm:2 use ordered queue tags (same as tc:2);
* of:y enables old firmware support;
* of:n disables old firmware support;
* mq:xx set the max queue depth to the value xx (2 <= xx <= 8).
*
* The default value is: "u14-34f=lc:n,of:n,mq:8,tm:0,et:n".
* An example using the list of detection probes could be:
* "u14-34f=0x230,0x340,lc:y,tm:2,of:n,mq:4,et:n".
*
* When loading as a module, parameters can be specified as well.
* The above example would be (use 1 in place of y and 0 in place of n):
*
* modprobe u14-34f io_port=0x230,0x340 linked_comm=1 have_old_firmware=0 \
* max_queue_depth=4 ext_tran=0 tag_mode=2
*
* ----------------------------------------------------------------------------
* In this implementation, linked commands are designed to work with any DISK
* or CD-ROM, since this linking has only the intent of clustering (time-wise)
* and reordering by elevator sorting commands directed to each device,
* without any relation with the actual SCSI protocol between the controller
* and the device.
* If Q is the queue depth reported at boot time for each device (also named
* cmds/lun) and Q > 2, whenever there is already an active command to the
* device all other commands to the same device (up to Q-1) are kept waiting
* in the elevator sorting queue. When the active command completes, the
* commands in this queue are sorted by sector address. The sort is chosen
* between increasing or decreasing by minimizing the seek distance between
* the sector of the commands just completed and the sector of the first
* command in the list to be sorted.
* Trivial math assures that the unsorted average seek distance when doing
* random seeks over S sectors is S/3.
* When (Q-1) requests are uniformly distributed over S sectors, the average
* distance between two adjacent requests is S/((Q-1) + 1), so the sorted
* average seek distance for (Q-1) random requests over S sectors is S/Q.
* The elevator sorting hence divides the seek distance by a factor Q/3.
* The above pure geometric remarks are valid in all cases and the
* driver effectively reduces the seek distance by the predicted factor
* when there are Q concurrent read i/o operations on the device, but this
* does not necessarily results in a noticeable performance improvement:
* your mileage may vary....
*
* Note: command reordering inside a batch of queued commands could cause
* wrong results only if there is at least one write request and the
* intersection (sector-wise) of all requests is not empty.
* When the driver detects a batch including overlapping requests
* (a really rare event) strict serial (pid) order is enforced.
* ----------------------------------------------------------------------------
*
* The boards are named Ux4F0, Ux4F1,... according to the detection order.
*
* In order to support multiple ISA boards in a reliable way,
* the driver sets host->wish_block = TRUE for all ISA boards.
*/
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/byteorder.h>
#include <linux/proc_fs.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/stat.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ctype.h>
#include <linux/spinlock.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsicam.h>
static int u14_34f_detect(struct scsi_host_template *);
static int u14_34f_release(struct Scsi_Host *);
static int u14_34f_queuecommand(struct scsi_cmnd *, void (*done)(struct scsi_cmnd *));
static int u14_34f_eh_abort(struct scsi_cmnd *);
static int u14_34f_eh_host_reset(struct scsi_cmnd *);
static int u14_34f_bios_param(struct scsi_device *, struct block_device *,
sector_t, int *);
static int u14_34f_slave_configure(struct scsi_device *);
static struct scsi_host_template driver_template = {
.name = "UltraStor 14F/34F rev. 8.10.00 ",
.detect = u14_34f_detect,
.release = u14_34f_release,
.queuecommand = u14_34f_queuecommand,
.eh_abort_handler = u14_34f_eh_abort,
.eh_host_reset_handler = u14_34f_eh_host_reset,
.bios_param = u14_34f_bios_param,
.slave_configure = u14_34f_slave_configure,
.this_id = 7,
.unchecked_isa_dma = 1,
.use_clustering = ENABLE_CLUSTERING,
.use_sg_chaining = ENABLE_SG_CHAINING,
};
#if !defined(__BIG_ENDIAN_BITFIELD) && !defined(__LITTLE_ENDIAN_BITFIELD)
#error "Adjust your <asm/byteorder.h> defines"
#endif
/* Values for the PRODUCT_ID ports for the 14/34F */
#define PRODUCT_ID1 0x56
#define PRODUCT_ID2 0x40 /* NOTE: Only upper nibble is used */
/* Subversion values */
#define ISA 0
#define ESA 1
#define OP_HOST_ADAPTER 0x1
#define OP_SCSI 0x2
#define OP_RESET 0x4
#define DTD_SCSI 0x0
#define DTD_IN 0x1
#define DTD_OUT 0x2
#define DTD_NONE 0x3
#define HA_CMD_INQUIRY 0x1
#define HA_CMD_SELF_DIAG 0x2
#define HA_CMD_READ_BUFF 0x3
#define HA_CMD_WRITE_BUFF 0x4
#undef DEBUG_LINKED_COMMANDS
#undef DEBUG_DETECT
#undef DEBUG_INTERRUPT
#undef DEBUG_RESET
#undef DEBUG_GENERATE_ERRORS
#undef DEBUG_GENERATE_ABORTS
#undef DEBUG_GEOMETRY
#define MAX_ISA 3
#define MAX_VESA 1
#define MAX_EISA 0
#define MAX_PCI 0
#define MAX_BOARDS (MAX_ISA + MAX_VESA + MAX_EISA + MAX_PCI)
#define MAX_CHANNEL 1
#define MAX_LUN 8
#define MAX_TARGET 8
#define MAX_MAILBOXES 16
#define MAX_SGLIST 32
#define MAX_SAFE_SGLIST 16
#define MAX_INTERNAL_RETRIES 64
#define MAX_CMD_PER_LUN 2
#define MAX_TAGGED_CMD_PER_LUN (MAX_MAILBOXES - MAX_CMD_PER_LUN)
#define SKIP ULONG_MAX
#define FALSE 0
#define TRUE 1
#define FREE 0
#define IN_USE 1
#define LOCKED 2
#define IN_RESET 3
#define IGNORE 4
#define READY 5
#define ABORTING 6
#define NO_DMA 0xff
#define MAXLOOP 10000
#define TAG_DISABLED 0
#define TAG_SIMPLE 1
#define TAG_ORDERED 2
#define REG_LCL_MASK 0
#define REG_LCL_INTR 1
#define REG_SYS_MASK 2
#define REG_SYS_INTR 3
#define REG_PRODUCT_ID1 4
#define REG_PRODUCT_ID2 5
#define REG_CONFIG1 6
#define REG_CONFIG2 7
#define REG_OGM 8
#define REG_ICM 12
#define REGION_SIZE 13UL
#define BSY_ASSERTED 0x01
#define IRQ_ASSERTED 0x01
#define CMD_RESET 0xc0
#define CMD_OGM_INTR 0x01
#define CMD_CLR_INTR 0x01
#define CMD_ENA_INTR 0x81
#define ASOK 0x00
#define ASST 0x91
#define YESNO(a) ((a) ? 'y' : 'n')
#define TLDEV(type) ((type) == TYPE_DISK || (type) == TYPE_ROM)
#define PACKED __attribute__((packed))
struct sg_list {
unsigned int address; /* Segment Address */
unsigned int num_bytes; /* Segment Length */
};
/* MailBox SCSI Command Packet */
struct mscp {
#if defined(__BIG_ENDIAN_BITFIELD)
unsigned char sg:1, ca:1, dcn:1, xdir:2, opcode:3;
unsigned char lun: 3, channel:2, target:3;
#else
unsigned char opcode: 3, /* type of command */
xdir: 2, /* data transfer direction */
dcn: 1, /* disable disconnect */
ca: 1, /* use cache (if available) */
sg: 1; /* scatter/gather operation */
unsigned char target: 3, /* SCSI target id */
channel: 2, /* SCSI channel number */
lun: 3; /* SCSI logical unit number */
#endif
unsigned int data_address PACKED; /* transfer data pointer */
unsigned int data_len PACKED; /* length in bytes */
unsigned int link_address PACKED; /* for linking command chains */
unsigned char clink_id; /* identifies command in chain */
unsigned char use_sg; /* (if sg is set) 8 bytes per list */
unsigned char sense_len;
unsigned char cdb_len; /* 6, 10, or 12 */
unsigned char cdb[12]; /* SCSI Command Descriptor Block */
unsigned char adapter_status; /* non-zero indicates HA error */
unsigned char target_status; /* non-zero indicates target error */
unsigned int sense_addr PACKED;
/* Additional fields begin here. */
struct scsi_cmnd *SCpnt;
unsigned int cpp_index; /* cp index */
/* All the cp structure is zero filled by queuecommand except the
following CP_TAIL_SIZE bytes, initialized by detect */
dma_addr_t cp_dma_addr; /* dma handle for this cp structure */
struct sg_list *sglist; /* pointer to the allocated SG list */
};
#define CP_TAIL_SIZE (sizeof(struct sglist *) + sizeof(dma_addr_t))
struct hostdata {
struct mscp cp[MAX_MAILBOXES]; /* Mailboxes for this board */
unsigned int cp_stat[MAX_MAILBOXES]; /* FREE, IN_USE, LOCKED, IN_RESET */
unsigned int last_cp_used; /* Index of last mailbox used */
unsigned int iocount; /* Total i/o done for this board */
int board_number; /* Number of this board */
char board_name[16]; /* Name of this board */
int in_reset; /* True if board is doing a reset */
int target_to[MAX_TARGET][MAX_CHANNEL]; /* N. of timeout errors on target */
int target_redo[MAX_TARGET][MAX_CHANNEL]; /* If TRUE redo i/o on target */
unsigned int retries; /* Number of internal retries */
unsigned long last_retried_pid; /* Pid of last retried command */
unsigned char subversion; /* Bus type, either ISA or ESA */
struct pci_dev *pdev; /* Always NULL */
unsigned char heads;
unsigned char sectors;
char board_id[256]; /* data from INQUIRY on this board */
};
static struct Scsi_Host *sh[MAX_BOARDS + 1];
static const char *driver_name = "Ux4F";
static char sha[MAX_BOARDS];
static DEFINE_SPINLOCK(driver_lock);
/* Initialize num_boards so that ihdlr can work while detect is in progress */
static unsigned int num_boards = MAX_BOARDS;
static unsigned long io_port[] = {
/* Space for MAX_INT_PARAM ports usable while loading as a module */
SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP,
SKIP, SKIP,
/* Possible ISA/VESA ports */
0x330, 0x340, 0x230, 0x240, 0x210, 0x130, 0x140,
/* End of list */
0x0
};
#define HD(board) ((struct hostdata *) &sh[board]->hostdata)
#define BN(board) (HD(board)->board_name)
/* Device is Little Endian */
#define H2DEV(x) cpu_to_le32(x)
#define DEV2H(x) le32_to_cpu(x)
static irqreturn_t do_interrupt_handler(int, void *);
static void flush_dev(struct scsi_device *, unsigned long, unsigned int, unsigned int);
static int do_trace = FALSE;
static int setup_done = FALSE;
static int link_statistics;
static int ext_tran = FALSE;
#if defined(HAVE_OLD_UX4F_FIRMWARE)
static int have_old_firmware = TRUE;
#else
static int have_old_firmware = FALSE;
#endif
#if defined(CONFIG_SCSI_U14_34F_TAGGED_QUEUE)
static int tag_mode = TAG_SIMPLE;
#else
static int tag_mode = TAG_DISABLED;
#endif
#if defined(CONFIG_SCSI_U14_34F_LINKED_COMMANDS)
static int linked_comm = TRUE;
#else
static int linked_comm = FALSE;
#endif
#if defined(CONFIG_SCSI_U14_34F_MAX_TAGS)
static int max_queue_depth = CONFIG_SCSI_U14_34F_MAX_TAGS;
#else
static int max_queue_depth = MAX_CMD_PER_LUN;
#endif
#define MAX_INT_PARAM 10
#define MAX_BOOT_OPTIONS_SIZE 256
static char boot_options[MAX_BOOT_OPTIONS_SIZE];
#if defined(MODULE)
#include <linux/module.h>
#include <linux/moduleparam.h>
module_param_string(u14_34f, boot_options, MAX_BOOT_OPTIONS_SIZE, 0);
MODULE_PARM_DESC(u14_34f, " equivalent to the \"u14-34f=...\" kernel boot " \
"option." \
" Example: modprobe u14-34f \"u14_34f=0x340,0x330,lc:y,tm:0,mq:4\"");
MODULE_AUTHOR("Dario Ballabio");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("UltraStor 14F/34F SCSI Driver");
#endif
static int u14_34f_slave_configure(struct scsi_device *dev) {
int j, tqd, utqd;
char *tag_suffix, *link_suffix;
struct Scsi_Host *host = dev->host;
j = ((struct hostdata *) host->hostdata)->board_number;
utqd = MAX_CMD_PER_LUN;
tqd = max_queue_depth;
if (TLDEV(dev->type) && dev->tagged_supported)
if (tag_mode == TAG_SIMPLE) {
scsi_adjust_queue_depth(dev, MSG_SIMPLE_TAG, tqd);
tag_suffix = ", simple tags";
}
else if (tag_mode == TAG_ORDERED) {
scsi_adjust_queue_depth(dev, MSG_ORDERED_TAG, tqd);
tag_suffix = ", ordered tags";
}
else {
scsi_adjust_queue_depth(dev, 0, tqd);
tag_suffix = ", no tags";
}
else if (TLDEV(dev->type) && linked_comm) {
scsi_adjust_queue_depth(dev, 0, tqd);
tag_suffix = ", untagged";
}
else {
scsi_adjust_queue_depth(dev, 0, utqd);
tag_suffix = "";
}
if (TLDEV(dev->type) && linked_comm && dev->queue_depth > 2)
link_suffix = ", sorted";
else if (TLDEV(dev->type))
link_suffix = ", unsorted";
else
link_suffix = "";
sdev_printk(KERN_INFO, dev, "cmds/lun %d%s%s.\n",
dev->queue_depth, link_suffix, tag_suffix);
return FALSE;
}
static int wait_on_busy(unsigned long iobase, unsigned int loop) {
while (inb(iobase + REG_LCL_INTR) & BSY_ASSERTED) {
udelay(1L);
if (--loop == 0) return TRUE;
}
return FALSE;
}
static int board_inquiry(unsigned int j) {
struct mscp *cpp;
dma_addr_t id_dma_addr;
unsigned int time, limit = 0;
id_dma_addr = pci_map_single(HD(j)->pdev, HD(j)->board_id,
sizeof(HD(j)->board_id), PCI_DMA_BIDIRECTIONAL);
cpp = &HD(j)->cp[0];
cpp->cp_dma_addr = pci_map_single(HD(j)->pdev, cpp, sizeof(struct mscp),
PCI_DMA_BIDIRECTIONAL);
memset(cpp, 0, sizeof(struct mscp) - CP_TAIL_SIZE);
cpp->opcode = OP_HOST_ADAPTER;
cpp->xdir = DTD_IN;
cpp->data_address = H2DEV(id_dma_addr);
cpp->data_len = H2DEV(sizeof(HD(j)->board_id));
cpp->cdb_len = 6;
cpp->cdb[0] = HA_CMD_INQUIRY;
if (wait_on_busy(sh[j]->io_port, MAXLOOP)) {
printk("%s: board_inquiry, adapter busy.\n", BN(j));
return TRUE;
}
HD(j)->cp_stat[0] = IGNORE;
/* Clear the interrupt indication */
outb(CMD_CLR_INTR, sh[j]->io_port + REG_SYS_INTR);
/* Store pointer in OGM address bytes */
outl(H2DEV(cpp->cp_dma_addr), sh[j]->io_port + REG_OGM);
/* Issue OGM interrupt */
outb(CMD_OGM_INTR, sh[j]->io_port + REG_LCL_INTR);
spin_unlock_irq(&driver_lock);
time = jiffies;
while ((jiffies - time) < HZ && limit++ < 20000) udelay(100L);
spin_lock_irq(&driver_lock);
if (cpp->adapter_status || HD(j)->cp_stat[0] != FREE) {
HD(j)->cp_stat[0] = FREE;
printk("%s: board_inquiry, err 0x%x.\n", BN(j), cpp->adapter_status);
return TRUE;
}
pci_unmap_single(HD(j)->pdev, cpp->cp_dma_addr, sizeof(struct mscp),
PCI_DMA_BIDIRECTIONAL);
pci_unmap_single(HD(j)->pdev, id_dma_addr, sizeof(HD(j)->board_id),
PCI_DMA_BIDIRECTIONAL);
return FALSE;
}
static int port_detect \
(unsigned long port_base, unsigned int j, struct scsi_host_template *tpnt) {
unsigned char irq, dma_channel, subversion, i;
unsigned char in_byte;
char *bus_type, dma_name[16];
/* Allowed BIOS base addresses (NULL indicates reserved) */
unsigned long bios_segment_table[8] = {
0,
0xc4000, 0xc8000, 0xcc000, 0xd0000,
0xd4000, 0xd8000, 0xdc000
};
/* Allowed IRQs */
unsigned char interrupt_table[4] = { 15, 14, 11, 10 };
/* Allowed DMA channels for ISA (0 indicates reserved) */
unsigned char dma_channel_table[4] = { 5, 6, 7, 0 };
/* Head/sector mappings */
struct {
unsigned char heads;
unsigned char sectors;
} mapping_table[4] = {
{ 16, 63 }, { 64, 32 }, { 64, 63 }, { 64, 32 }
};
struct config_1 {
#if defined(__BIG_ENDIAN_BITFIELD)
unsigned char dma_channel: 2, interrupt:2,
removable_disks_as_fixed:1, bios_segment: 3;
#else
unsigned char bios_segment: 3, removable_disks_as_fixed: 1,
interrupt: 2, dma_channel: 2;
#endif
} config_1;
struct config_2 {
#if defined(__BIG_ENDIAN_BITFIELD)
unsigned char tfr_port: 2, bios_drive_number: 1,
mapping_mode: 2, ha_scsi_id: 3;
#else
unsigned char ha_scsi_id: 3, mapping_mode: 2,
bios_drive_number: 1, tfr_port: 2;
#endif
} config_2;
char name[16];
sprintf(name, "%s%d", driver_name, j);
if (!request_region(port_base, REGION_SIZE, driver_name)) {
#if defined(DEBUG_DETECT)
printk("%s: address 0x%03lx in use, skipping probe.\n", name, port_base);
#endif
goto fail;
}
spin_lock_irq(&driver_lock);
if (inb(port_base + REG_PRODUCT_ID1) != PRODUCT_ID1) goto freelock;
in_byte = inb(port_base + REG_PRODUCT_ID2);
if ((in_byte & 0xf0) != PRODUCT_ID2) goto freelock;
*(char *)&config_1 = inb(port_base + REG_CONFIG1);
*(char *)&config_2 = inb(port_base + REG_CONFIG2);
irq = interrupt_table[config_1.interrupt];
dma_channel = dma_channel_table[config_1.dma_channel];
subversion = (in_byte & 0x0f);
/* Board detected, allocate its IRQ */
if (request_irq(irq, do_interrupt_handler,
IRQF_DISABLED | ((subversion == ESA) ? IRQF_SHARED : 0),
driver_name, (void *) &sha[j])) {
printk("%s: unable to allocate IRQ %u, detaching.\n", name, irq);
goto freelock;
}
if (subversion == ISA && request_dma(dma_channel, driver_name)) {
printk("%s: unable to allocate DMA channel %u, detaching.\n",
name, dma_channel);
goto freeirq;
}
if (have_old_firmware) tpnt->use_clustering = DISABLE_CLUSTERING;
spin_unlock_irq(&driver_lock);
sh[j] = scsi_register(tpnt, sizeof(struct hostdata));
spin_lock_irq(&driver_lock);
if (sh[j] == NULL) {
printk("%s: unable to register host, detaching.\n", name);
goto freedma;
}
sh[j]->io_port = port_base;
sh[j]->unique_id = port_base;
sh[j]->n_io_port = REGION_SIZE;
sh[j]->base = bios_segment_table[config_1.bios_segment];
sh[j]->irq = irq;
sh[j]->sg_tablesize = MAX_SGLIST;
sh[j]->this_id = config_2.ha_scsi_id;
sh[j]->can_queue = MAX_MAILBOXES;
sh[j]->cmd_per_lun = MAX_CMD_PER_LUN;
#if defined(DEBUG_DETECT)
{
unsigned char sys_mask, lcl_mask;
sys_mask = inb(sh[j]->io_port + REG_SYS_MASK);
lcl_mask = inb(sh[j]->io_port + REG_LCL_MASK);
printk("SYS_MASK 0x%x, LCL_MASK 0x%x.\n", sys_mask, lcl_mask);
}
#endif
/* Probably a bogus host scsi id, set it to the dummy value */
if (sh[j]->this_id == 0) sh[j]->this_id = -1;
/* If BIOS is disabled, force enable interrupts */
if (sh[j]->base == 0) outb(CMD_ENA_INTR, sh[j]->io_port + REG_SYS_MASK);
memset(HD(j), 0, sizeof(struct hostdata));
HD(j)->heads = mapping_table[config_2.mapping_mode].heads;
HD(j)->sectors = mapping_table[config_2.mapping_mode].sectors;
HD(j)->subversion = subversion;
HD(j)->pdev = NULL;
HD(j)->board_number = j;
if (have_old_firmware) sh[j]->sg_tablesize = MAX_SAFE_SGLIST;
if (HD(j)->subversion == ESA) {
sh[j]->unchecked_isa_dma = FALSE;
sh[j]->dma_channel = NO_DMA;
sprintf(BN(j), "U34F%d", j);
bus_type = "VESA";
}
else {
unsigned long flags;
sh[j]->unchecked_isa_dma = TRUE;
flags=claim_dma_lock();
disable_dma(dma_channel);
clear_dma_ff(dma_channel);
set_dma_mode(dma_channel, DMA_MODE_CASCADE);
enable_dma(dma_channel);
release_dma_lock(flags);
sh[j]->dma_channel = dma_channel;
sprintf(BN(j), "U14F%d", j);
bus_type = "ISA";
}
sh[j]->max_channel = MAX_CHANNEL - 1;
sh[j]->max_id = MAX_TARGET;
sh[j]->max_lun = MAX_LUN;
if (HD(j)->subversion == ISA && !board_inquiry(j)) {
HD(j)->board_id[40] = 0;
if (strcmp(&HD(j)->board_id[32], "06000600")) {
printk("%s: %s.\n", BN(j), &HD(j)->board_id[8]);
printk("%s: firmware %s is outdated, FW PROM should be 28004-006.\n",
BN(j), &HD(j)->board_id[32]);
sh[j]->hostt->use_clustering = DISABLE_CLUSTERING;
sh[j]->sg_tablesize = MAX_SAFE_SGLIST;
}
}
if (dma_channel == NO_DMA) sprintf(dma_name, "%s", "BMST");
else sprintf(dma_name, "DMA %u", dma_channel);
spin_unlock_irq(&driver_lock);
for (i = 0; i < sh[j]->can_queue; i++)
HD(j)->cp[i].cp_dma_addr = pci_map_single(HD(j)->pdev,
&HD(j)->cp[i], sizeof(struct mscp), PCI_DMA_BIDIRECTIONAL);
for (i = 0; i < sh[j]->can_queue; i++)
if (! ((&HD(j)->cp[i])->sglist = kmalloc(
sh[j]->sg_tablesize * sizeof(struct sg_list),
(sh[j]->unchecked_isa_dma ? GFP_DMA : 0) | GFP_ATOMIC))) {
printk("%s: kmalloc SGlist failed, mbox %d, detaching.\n", BN(j), i);
goto release;
}
if (max_queue_depth > MAX_TAGGED_CMD_PER_LUN)
max_queue_depth = MAX_TAGGED_CMD_PER_LUN;
if (max_queue_depth < MAX_CMD_PER_LUN) max_queue_depth = MAX_CMD_PER_LUN;
if (tag_mode != TAG_DISABLED && tag_mode != TAG_SIMPLE)
tag_mode = TAG_ORDERED;
if (j == 0) {
printk("UltraStor 14F/34F: Copyright (C) 1994-2003 Dario Ballabio.\n");
printk("%s config options -> of:%c, tm:%d, lc:%c, mq:%d, et:%c.\n",
driver_name, YESNO(have_old_firmware), tag_mode,
YESNO(linked_comm), max_queue_depth, YESNO(ext_tran));
}
printk("%s: %s 0x%03lx, BIOS 0x%05x, IRQ %u, %s, SG %d, MB %d.\n",
BN(j), bus_type, (unsigned long)sh[j]->io_port, (int)sh[j]->base,
sh[j]->irq, dma_name, sh[j]->sg_tablesize, sh[j]->can_queue);
if (sh[j]->max_id > 8 || sh[j]->max_lun > 8)
printk("%s: wide SCSI support enabled, max_id %u, max_lun %u.\n",
BN(j), sh[j]->max_id, sh[j]->max_lun);
for (i = 0; i <= sh[j]->max_channel; i++)
printk("%s: SCSI channel %u enabled, host target ID %d.\n",
BN(j), i, sh[j]->this_id);
return TRUE;
freedma:
if (subversion == ISA) free_dma(dma_channel);
freeirq:
free_irq(irq, &sha[j]);
freelock:
spin_unlock_irq(&driver_lock);
release_region(port_base, REGION_SIZE);
fail:
return FALSE;
release:
u14_34f_release(sh[j]);
return FALSE;
}
static void internal_setup(char *str, int *ints) {
int i, argc = ints[0];
char *cur = str, *pc;
if (argc > 0) {
if (argc > MAX_INT_PARAM) argc = MAX_INT_PARAM;
for (i = 0; i < argc; i++) io_port[i] = ints[i + 1];
io_port[i] = 0;
setup_done = TRUE;
}
while (cur && (pc = strchr(cur, ':'))) {
int val = 0, c = *++pc;
if (c == 'n' || c == 'N') val = FALSE;
else if (c == 'y' || c == 'Y') val = TRUE;
else val = (int) simple_strtoul(pc, NULL, 0);
if (!strncmp(cur, "lc:", 3)) linked_comm = val;
else if (!strncmp(cur, "of:", 3)) have_old_firmware = val;
else if (!strncmp(cur, "tm:", 3)) tag_mode = val;
else if (!strncmp(cur, "tc:", 3)) tag_mode = val;
else if (!strncmp(cur, "mq:", 3)) max_queue_depth = val;
else if (!strncmp(cur, "ls:", 3)) link_statistics = val;
else if (!strncmp(cur, "et:", 3)) ext_tran = val;
if ((cur = strchr(cur, ','))) ++cur;
}
return;
}
static int option_setup(char *str) {
int ints[MAX_INT_PARAM];
char *cur = str;
int i = 1;
while (cur && isdigit(*cur) && i <= MAX_INT_PARAM) {
ints[i++] = simple_strtoul(cur, NULL, 0);
if ((cur = strchr(cur, ',')) != NULL) cur++;
}
ints[0] = i - 1;
internal_setup(cur, ints);
return 1;
}
static int u14_34f_detect(struct scsi_host_template *tpnt) {
unsigned int j = 0, k;
tpnt->proc_name = "u14-34f";
if(strlen(boot_options)) option_setup(boot_options);
#if defined(MODULE)
/* io_port could have been modified when loading as a module */
if(io_port[0] != SKIP) {
setup_done = TRUE;
io_port[MAX_INT_PARAM] = 0;
}
#endif
for (k = 0; k < MAX_BOARDS + 1; k++) sh[k] = NULL;
for (k = 0; io_port[k]; k++) {
if (io_port[k] == SKIP) continue;
if (j < MAX_BOARDS && port_detect(io_port[k], j, tpnt)) j++;
}
num_boards = j;
return j;
}
static void map_dma(unsigned int i, unsigned int j) {
unsigned int data_len = 0;
unsigned int k, count, pci_dir;
struct scatterlist *sg;
struct mscp *cpp;
struct scsi_cmnd *SCpnt;
cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt;
pci_dir = SCpnt->sc_data_direction;
if (SCpnt->sense_buffer)
cpp->sense_addr = H2DEV(pci_map_single(HD(j)->pdev, SCpnt->sense_buffer,
SCSI_SENSE_BUFFERSIZE, PCI_DMA_FROMDEVICE));
cpp->sense_len = SCSI_SENSE_BUFFERSIZE;
if (scsi_bufflen(SCpnt)) {
count = scsi_dma_map(SCpnt);
BUG_ON(count < 0);
scsi_for_each_sg(SCpnt, sg, count, k) {
cpp->sglist[k].address = H2DEV(sg_dma_address(sg));
cpp->sglist[k].num_bytes = H2DEV(sg_dma_len(sg));
data_len += sg->length;
}
cpp->sg = TRUE;
cpp->use_sg = scsi_sg_count(SCpnt);
cpp->data_address =
H2DEV(pci_map_single(HD(j)->pdev, cpp->sglist,
cpp->use_sg * sizeof(struct sg_list),
pci_dir));
cpp->data_len = H2DEV(data_len);
} else {
pci_dir = PCI_DMA_BIDIRECTIONAL;
cpp->data_len = H2DEV(scsi_bufflen(SCpnt));
}
}
static void unmap_dma(unsigned int i, unsigned int j) {
unsigned int pci_dir;
struct mscp *cpp;
struct scsi_cmnd *SCpnt;
cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt;
pci_dir = SCpnt->sc_data_direction;
if (DEV2H(cpp->sense_addr))
pci_unmap_single(HD(j)->pdev, DEV2H(cpp->sense_addr),
DEV2H(cpp->sense_len), PCI_DMA_FROMDEVICE);
scsi_dma_unmap(SCpnt);
if (!DEV2H(cpp->data_len)) pci_dir = PCI_DMA_BIDIRECTIONAL;
if (DEV2H(cpp->data_address))
pci_unmap_single(HD(j)->pdev, DEV2H(cpp->data_address),
DEV2H(cpp->data_len), pci_dir);
}
static void sync_dma(unsigned int i, unsigned int j) {
unsigned int pci_dir;
struct mscp *cpp;
struct scsi_cmnd *SCpnt;
cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt;
pci_dir = SCpnt->sc_data_direction;
if (DEV2H(cpp->sense_addr))
pci_dma_sync_single_for_cpu(HD(j)->pdev, DEV2H(cpp->sense_addr),
DEV2H(cpp->sense_len), PCI_DMA_FROMDEVICE);
if (scsi_sg_count(SCpnt))
pci_dma_sync_sg_for_cpu(HD(j)->pdev, scsi_sglist(SCpnt),
scsi_sg_count(SCpnt), pci_dir);
if (!DEV2H(cpp->data_len)) pci_dir = PCI_DMA_BIDIRECTIONAL;
if (DEV2H(cpp->data_address))
pci_dma_sync_single_for_cpu(HD(j)->pdev, DEV2H(cpp->data_address),
DEV2H(cpp->data_len), pci_dir);
}
static void scsi_to_dev_dir(unsigned int i, unsigned int j) {
unsigned int k;
static const unsigned char data_out_cmds[] = {
0x0a, 0x2a, 0x15, 0x55, 0x04, 0x07, 0x18, 0x1d, 0x24, 0x2e,
0x30, 0x31, 0x32, 0x38, 0x39, 0x3a, 0x3b, 0x3d, 0x3f, 0x40,
0x41, 0x4c, 0xaa, 0xae, 0xb0, 0xb1, 0xb2, 0xb6, 0xea, 0x1b, 0x5d
};
static const unsigned char data_none_cmds[] = {
0x01, 0x0b, 0x10, 0x11, 0x13, 0x16, 0x17, 0x19, 0x2b, 0x1e,
0x2c, 0xac, 0x2f, 0xaf, 0x33, 0xb3, 0x35, 0x36, 0x45, 0x47,
0x48, 0x49, 0xa9, 0x4b, 0xa5, 0xa6, 0xb5, 0x00
};
struct mscp *cpp;
struct scsi_cmnd *SCpnt;
cpp = &HD(j)->cp[i]; SCpnt = cpp->SCpnt;
if (SCpnt->sc_data_direction == DMA_FROM_DEVICE) {
cpp->xdir = DTD_IN;
return;
}
else if (SCpnt->sc_data_direction == DMA_FROM_DEVICE) {
cpp->xdir = DTD_OUT;
return;
}
else if (SCpnt->sc_data_direction == DMA_NONE) {
cpp->xdir = DTD_NONE;
return;
}
if (SCpnt->sc_data_direction != DMA_BIDIRECTIONAL)
panic("%s: qcomm, invalid SCpnt->sc_data_direction.\n", BN(j));
cpp->xdir = DTD_IN;
for (k = 0; k < ARRAY_SIZE(data_out_cmds); k++)
if (SCpnt->cmnd[0] == data_out_cmds[k]) {
cpp->xdir = DTD_OUT;
break;
}
if (cpp->xdir == DTD_IN)
for (k = 0; k < ARRAY_SIZE(data_none_cmds); k++)
if (SCpnt->cmnd[0] == data_none_cmds[k]) {
cpp->xdir = DTD_NONE;
break;
}
}
static int u14_34f_queuecommand(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) {
unsigned int i, j, k;
struct mscp *cpp;
/* j is the board number */
j = ((struct hostdata *) SCpnt->device->host->hostdata)->board_number;
if (SCpnt->host_scribble)
panic("%s: qcomm, pid %ld, SCpnt %p already active.\n",
BN(j), SCpnt->serial_number, SCpnt);
/* i is the mailbox number, look for the first free mailbox
starting from last_cp_used */
i = HD(j)->last_cp_used + 1;
for (k = 0; k < sh[j]->can_queue; k++, i++) {
if (i >= sh[j]->can_queue) i = 0;
if (HD(j)->cp_stat[i] == FREE) {
HD(j)->last_cp_used = i;
break;
}
}
if (k == sh[j]->can_queue) {
printk("%s: qcomm, no free mailbox.\n", BN(j));
return 1;
}
/* Set pointer to control packet structure */
cpp = &HD(j)->cp[i];
memset(cpp, 0, sizeof(struct mscp) - CP_TAIL_SIZE);
SCpnt->scsi_done = done;
cpp->cpp_index = i;
SCpnt->host_scribble = (unsigned char *) &cpp->cpp_index;
if (do_trace) printk("%s: qcomm, mbox %d, target %d.%d:%d, pid %ld.\n",
BN(j), i, SCpnt->device->channel, SCpnt->device->id,
SCpnt->device->lun, SCpnt->serial_number);
cpp->opcode = OP_SCSI;
cpp->channel = SCpnt->device->channel;
cpp->target = SCpnt->device->id;
cpp->lun = SCpnt->device->lun;
cpp->SCpnt = SCpnt;
cpp->cdb_len = SCpnt->cmd_len;
memcpy(cpp->cdb, SCpnt->cmnd, SCpnt->cmd_len);
/* Use data transfer direction SCpnt->sc_data_direction */
scsi_to_dev_dir(i, j);
/* Map DMA buffers and SG list */
map_dma(i, j);
if (linked_comm && SCpnt->device->queue_depth > 2
&& TLDEV(SCpnt->device->type)) {
HD(j)->cp_stat[i] = READY;
flush_dev(SCpnt->device, SCpnt->request->sector, j, FALSE);
return 0;
}
if (wait_on_busy(sh[j]->io_port, MAXLOOP)) {
unmap_dma(i, j);
SCpnt->host_scribble = NULL;
scmd_printk(KERN_INFO, SCpnt,
"qcomm, pid %ld, adapter busy.\n", SCpnt->serial_number);
return 1;
}
/* Store pointer in OGM address bytes */
outl(H2DEV(cpp->cp_dma_addr), sh[j]->io_port + REG_OGM);
/* Issue OGM interrupt */
outb(CMD_OGM_INTR, sh[j]->io_port + REG_LCL_INTR);
HD(j)->cp_stat[i] = IN_USE;
return 0;
}
static int u14_34f_eh_abort(struct scsi_cmnd *SCarg) {
unsigned int i, j;
j = ((struct hostdata *) SCarg->device->host->hostdata)->board_number;
if (SCarg->host_scribble == NULL) {
scmd_printk(KERN_INFO, SCarg, "abort, pid %ld inactive.\n",
SCarg->serial_number);
return SUCCESS;
}
i = *(unsigned int *)SCarg->host_scribble;
scmd_printk(KERN_INFO, SCarg, "abort, mbox %d, pid %ld.\n",
i, SCarg->serial_number);
if (i >= sh[j]->can_queue)
panic("%s: abort, invalid SCarg->host_scribble.\n", BN(j));
if (wait_on_busy(sh[j]->io_port, MAXLOOP)) {
printk("%s: abort, timeout error.\n", BN(j));
return FAILED;
}
if (HD(j)->cp_stat[i] == FREE) {
printk("%s: abort, mbox %d is free.\n", BN(j), i);
return SUCCESS;
}
if (HD(j)->cp_stat[i] == IN_USE) {
printk("%s: abort, mbox %d is in use.\n", BN(j), i);
if (SCarg != HD(j)->cp[i].SCpnt)
panic("%s: abort, mbox %d, SCarg %p, cp SCpnt %p.\n",
BN(j), i, SCarg, HD(j)->cp[i].SCpnt);
if (inb(sh[j]->io_port + REG_SYS_INTR) & IRQ_ASSERTED)
printk("%s: abort, mbox %d, interrupt pending.\n", BN(j), i);
return FAILED;
}
if (HD(j)->cp_stat[i] == IN_RESET) {
printk("%s: abort, mbox %d is in reset.\n", BN(j), i);
return FAILED;
}
if (HD(j)->cp_stat[i] == LOCKED) {
printk("%s: abort, mbox %d is locked.\n", BN(j), i);
return SUCCESS;
}
if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) {
unmap_dma(i, j);
SCarg->result = DID_ABORT << 16;
SCarg->host_scribble = NULL;
HD(j)->cp_stat[i] = FREE;
printk("%s, abort, mbox %d ready, DID_ABORT, pid %ld done.\n",
BN(j), i, SCarg->serial_number);
SCarg->scsi_done(SCarg);
return SUCCESS;
}
panic("%s: abort, mbox %d, invalid cp_stat.\n", BN(j), i);
}
static int u14_34f_eh_host_reset(struct scsi_cmnd *SCarg) {
unsigned int i, j, time, k, c, limit = 0;
int arg_done = FALSE;
struct scsi_cmnd *SCpnt;
j = ((struct hostdata *) SCarg->device->host->hostdata)->board_number;
scmd_printk(KERN_INFO, SCarg, "reset, enter, pid %ld.\n", SCarg->serial_number);
spin_lock_irq(sh[j]->host_lock);
if (SCarg->host_scribble == NULL)
printk("%s: reset, pid %ld inactive.\n", BN(j), SCarg->serial_number);
if (HD(j)->in_reset) {
printk("%s: reset, exit, already in reset.\n", BN(j));
spin_unlock_irq(sh[j]->host_lock);
return FAILED;
}
if (wait_on_busy(sh[j]->io_port, MAXLOOP)) {
printk("%s: reset, exit, timeout error.\n", BN(j));
spin_unlock_irq(sh[j]->host_lock);
return FAILED;
}
HD(j)->retries = 0;
for (c = 0; c <= sh[j]->max_channel; c++)
for (k = 0; k < sh[j]->max_id; k++) {
HD(j)->target_redo[k][c] = TRUE;
HD(j)->target_to[k][c] = 0;
}
for (i = 0; i < sh[j]->can_queue; i++) {
if (HD(j)->cp_stat[i] == FREE) continue;
if (HD(j)->cp_stat[i] == LOCKED) {
HD(j)->cp_stat[i] = FREE;
printk("%s: reset, locked mbox %d forced free.\n", BN(j), i);
continue;
}
if (!(SCpnt = HD(j)->cp[i].SCpnt))
panic("%s: reset, mbox %d, SCpnt == NULL.\n", BN(j), i);
if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) {
HD(j)->cp_stat[i] = ABORTING;
printk("%s: reset, mbox %d aborting, pid %ld.\n",
BN(j), i, SCpnt->serial_number);
}
else {
HD(j)->cp_stat[i] = IN_RESET;
printk("%s: reset, mbox %d in reset, pid %ld.\n",
BN(j), i, SCpnt->serial_number);
}
if (SCpnt->host_scribble == NULL)
panic("%s: reset, mbox %d, garbled SCpnt.\n", BN(j), i);
if (*(unsigned int *)SCpnt->host_scribble != i)
panic("%s: reset, mbox %d, index mismatch.\n", BN(j), i);
if (SCpnt->scsi_done == NULL)
panic("%s: reset, mbox %d, SCpnt->scsi_done == NULL.\n", BN(j), i);
if (SCpnt == SCarg) arg_done = TRUE;
}
if (wait_on_busy(sh[j]->io_port, MAXLOOP)) {
printk("%s: reset, cannot reset, timeout error.\n", BN(j));
spin_unlock_irq(sh[j]->host_lock);
return FAILED;
}
outb(CMD_RESET, sh[j]->io_port + REG_LCL_INTR);
printk("%s: reset, board reset done, enabling interrupts.\n", BN(j));
#if defined(DEBUG_RESET)
do_trace = TRUE;
#endif
HD(j)->in_reset = TRUE;
spin_unlock_irq(sh[j]->host_lock);
time = jiffies;
while ((jiffies - time) < (10 * HZ) && limit++ < 200000) udelay(100L);
spin_lock_irq(sh[j]->host_lock);
printk("%s: reset, interrupts disabled, loops %d.\n", BN(j), limit);
for (i = 0; i < sh[j]->can_queue; i++) {
if (HD(j)->cp_stat[i] == IN_RESET) {
SCpnt = HD(j)->cp[i].SCpnt;
unmap_dma(i, j);
SCpnt->result = DID_RESET << 16;
SCpnt->host_scribble = NULL;
/* This mailbox is still waiting for its interrupt */
HD(j)->cp_stat[i] = LOCKED;
printk("%s, reset, mbox %d locked, DID_RESET, pid %ld done.\n",
BN(j), i, SCpnt->serial_number);
}
else if (HD(j)->cp_stat[i] == ABORTING) {
SCpnt = HD(j)->cp[i].SCpnt;
unmap_dma(i, j);
SCpnt->result = DID_RESET << 16;
SCpnt->host_scribble = NULL;
/* This mailbox was never queued to the adapter */
HD(j)->cp_stat[i] = FREE;
printk("%s, reset, mbox %d aborting, DID_RESET, pid %ld done.\n",
BN(j), i, SCpnt->serial_number);
}
else
/* Any other mailbox has already been set free by interrupt */
continue;
SCpnt->scsi_done(SCpnt);
}
HD(j)->in_reset = FALSE;
do_trace = FALSE;
if (arg_done) printk("%s: reset, exit, pid %ld done.\n", BN(j), SCarg->serial_number);
else printk("%s: reset, exit.\n", BN(j));
spin_unlock_irq(sh[j]->host_lock);
return SUCCESS;
}
static int u14_34f_bios_param(struct scsi_device *disk,
struct block_device *bdev, sector_t capacity, int *dkinfo) {
unsigned int j = 0;
unsigned int size = capacity;
dkinfo[0] = HD(j)->heads;
dkinfo[1] = HD(j)->sectors;
dkinfo[2] = size / (HD(j)->heads * HD(j)->sectors);
if (ext_tran && (scsicam_bios_param(bdev, capacity, dkinfo) < 0)) {
dkinfo[0] = 255;
dkinfo[1] = 63;
dkinfo[2] = size / (dkinfo[0] * dkinfo[1]);
}
#if defined (DEBUG_GEOMETRY)
printk ("%s: bios_param, head=%d, sec=%d, cyl=%d.\n", driver_name,
dkinfo[0], dkinfo[1], dkinfo[2]);
#endif
return FALSE;
}
static void sort(unsigned long sk[], unsigned int da[], unsigned int n,
unsigned int rev) {
unsigned int i, j, k, y;
unsigned long x;
for (i = 0; i < n - 1; i++) {
k = i;
for (j = k + 1; j < n; j++)
if (rev) {
if (sk[j] > sk[k]) k = j;
}
else {
if (sk[j] < sk[k]) k = j;
}
if (k != i) {
x = sk[k]; sk[k] = sk[i]; sk[i] = x;
y = da[k]; da[k] = da[i]; da[i] = y;
}
}
return;
}
static int reorder(unsigned int j, unsigned long cursec,
unsigned int ihdlr, unsigned int il[], unsigned int n_ready) {
struct scsi_cmnd *SCpnt;
struct mscp *cpp;
unsigned int k, n;
unsigned int rev = FALSE, s = TRUE, r = TRUE;
unsigned int input_only = TRUE, overlap = FALSE;
unsigned long sl[n_ready], pl[n_ready], ll[n_ready];
unsigned long maxsec = 0, minsec = ULONG_MAX, seek = 0, iseek = 0;
unsigned long ioseek = 0;
static unsigned int flushcount = 0, batchcount = 0, sortcount = 0;
static unsigned int readycount = 0, ovlcount = 0, inputcount = 0;
static unsigned int readysorted = 0, revcount = 0;
static unsigned long seeksorted = 0, seeknosort = 0;
if (link_statistics && !(++flushcount % link_statistics))
printk("fc %d bc %d ic %d oc %d rc %d rs %d sc %d re %d"\
" av %ldK as %ldK.\n", flushcount, batchcount, inputcount,
ovlcount, readycount, readysorted, sortcount, revcount,
seeknosort / (readycount + 1),
seeksorted / (readycount + 1));
if (n_ready <= 1) return FALSE;
for (n = 0; n < n_ready; n++) {
k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt;
if (!(cpp->xdir == DTD_IN)) input_only = FALSE;
if (SCpnt->request->sector < minsec) minsec = SCpnt->request->sector;
if (SCpnt->request->sector > maxsec) maxsec = SCpnt->request->sector;
sl[n] = SCpnt->request->sector;
ioseek += SCpnt->request->nr_sectors;
if (!n) continue;
if (sl[n] < sl[n - 1]) s = FALSE;
if (sl[n] > sl[n - 1]) r = FALSE;
if (link_statistics) {
if (sl[n] > sl[n - 1])
seek += sl[n] - sl[n - 1];
else
seek += sl[n - 1] - sl[n];
}
}
if (link_statistics) {
if (cursec > sl[0]) seek += cursec - sl[0]; else seek += sl[0] - cursec;
}
if (cursec > ((maxsec + minsec) / 2)) rev = TRUE;
if (ioseek > ((maxsec - minsec) / 2)) rev = FALSE;
if (!((rev && r) || (!rev && s))) sort(sl, il, n_ready, rev);
if (!input_only) for (n = 0; n < n_ready; n++) {
k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt;
ll[n] = SCpnt->request->nr_sectors; pl[n] = SCpnt->serial_number;
if (!n) continue;
if ((sl[n] == sl[n - 1]) || (!rev && ((sl[n - 1] + ll[n - 1]) > sl[n]))
|| (rev && ((sl[n] + ll[n]) > sl[n - 1]))) overlap = TRUE;
}
if (overlap) sort(pl, il, n_ready, FALSE);
if (link_statistics) {
if (cursec > sl[0]) iseek = cursec - sl[0]; else iseek = sl[0] - cursec;
batchcount++; readycount += n_ready; seeknosort += seek / 1024;
if (input_only) inputcount++;
if (overlap) { ovlcount++; seeksorted += iseek / 1024; }
else seeksorted += (iseek + maxsec - minsec) / 1024;
if (rev && !r) { revcount++; readysorted += n_ready; }
if (!rev && !s) { sortcount++; readysorted += n_ready; }
}
#if defined(DEBUG_LINKED_COMMANDS)
if (link_statistics && (overlap || !(flushcount % link_statistics)))
for (n = 0; n < n_ready; n++) {
k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt;
printk("%s %d.%d:%d pid %ld mb %d fc %d nr %d sec %ld ns %ld"\
" cur %ld s:%c r:%c rev:%c in:%c ov:%c xd %d.\n",
(ihdlr ? "ihdlr" : "qcomm"), SCpnt->channel, SCpnt->target,
SCpnt->lun, SCpnt->serial_number, k, flushcount, n_ready,
SCpnt->request->sector, SCpnt->request->nr_sectors, cursec,
YESNO(s), YESNO(r), YESNO(rev), YESNO(input_only),
YESNO(overlap), cpp->xdir);
}
#endif
return overlap;
}
static void flush_dev(struct scsi_device *dev, unsigned long cursec, unsigned int j,
unsigned int ihdlr) {
struct scsi_cmnd *SCpnt;
struct mscp *cpp;
unsigned int k, n, n_ready = 0, il[MAX_MAILBOXES];
for (k = 0; k < sh[j]->can_queue; k++) {
if (HD(j)->cp_stat[k] != READY && HD(j)->cp_stat[k] != IN_USE) continue;
cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt;
if (SCpnt->device != dev) continue;
if (HD(j)->cp_stat[k] == IN_USE) return;
il[n_ready++] = k;
}
if (reorder(j, cursec, ihdlr, il, n_ready)) n_ready = 1;
for (n = 0; n < n_ready; n++) {
k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt;
if (wait_on_busy(sh[j]->io_port, MAXLOOP)) {
scmd_printk(KERN_INFO, SCpnt,
"%s, pid %ld, mbox %d, adapter"
" busy, will abort.\n", (ihdlr ? "ihdlr" : "qcomm"),
SCpnt->serial_number, k);
HD(j)->cp_stat[k] = ABORTING;
continue;
}
outl(H2DEV(cpp->cp_dma_addr), sh[j]->io_port + REG_OGM);
outb(CMD_OGM_INTR, sh[j]->io_port + REG_LCL_INTR);
HD(j)->cp_stat[k] = IN_USE;
}
}
static irqreturn_t ihdlr(int irq, unsigned int j) {
struct scsi_cmnd *SCpnt;
unsigned int i, k, c, status, tstatus, reg, ret;
struct mscp *spp, *cpp;
if (sh[j]->irq != irq)
panic("%s: ihdlr, irq %d, sh[j]->irq %d.\n", BN(j), irq, sh[j]->irq);
/* Check if this board need to be serviced */
if (!((reg = inb(sh[j]->io_port + REG_SYS_INTR)) & IRQ_ASSERTED)) goto none;
HD(j)->iocount++;
if (do_trace) printk("%s: ihdlr, enter, irq %d, count %d.\n", BN(j), irq,
HD(j)->iocount);
/* Check if this board is still busy */
if (wait_on_busy(sh[j]->io_port, 20 * MAXLOOP)) {
outb(CMD_CLR_INTR, sh[j]->io_port + REG_SYS_INTR);
printk("%s: ihdlr, busy timeout error, irq %d, reg 0x%x, count %d.\n",
BN(j), irq, reg, HD(j)->iocount);
goto none;
}
ret = inl(sh[j]->io_port + REG_ICM);
/* Clear interrupt pending flag */
outb(CMD_CLR_INTR, sh[j]->io_port + REG_SYS_INTR);
/* Find the mailbox to be serviced on this board */
for (i = 0; i < sh[j]->can_queue; i++)
if (H2DEV(HD(j)->cp[i].cp_dma_addr) == ret) break;
if (i >= sh[j]->can_queue)
panic("%s: ihdlr, invalid mscp bus address %p, cp0 %p.\n", BN(j),
(void *)ret, (void *)H2DEV(HD(j)->cp[0].cp_dma_addr));
cpp = &(HD(j)->cp[i]);
spp = cpp;
#if defined(DEBUG_GENERATE_ABORTS)
if ((HD(j)->iocount > 500) && ((HD(j)->iocount % 500) < 3)) goto handled;
#endif
if (HD(j)->cp_stat[i] == IGNORE) {
HD(j)->cp_stat[i] = FREE;
goto handled;
}
else if (HD(j)->cp_stat[i] == LOCKED) {
HD(j)->cp_stat[i] = FREE;
printk("%s: ihdlr, mbox %d unlocked, count %d.\n", BN(j), i,
HD(j)->iocount);
goto handled;
}
else if (HD(j)->cp_stat[i] == FREE) {
printk("%s: ihdlr, mbox %d is free, count %d.\n", BN(j), i,
HD(j)->iocount);
goto handled;
}
else if (HD(j)->cp_stat[i] == IN_RESET)
printk("%s: ihdlr, mbox %d is in reset.\n", BN(j), i);
else if (HD(j)->cp_stat[i] != IN_USE)
panic("%s: ihdlr, mbox %d, invalid cp_stat: %d.\n",
BN(j), i, HD(j)->cp_stat[i]);
HD(j)->cp_stat[i] = FREE;
SCpnt = cpp->SCpnt;
if (SCpnt == NULL) panic("%s: ihdlr, mbox %d, SCpnt == NULL.\n", BN(j), i);
if (SCpnt->host_scribble == NULL)
panic("%s: ihdlr, mbox %d, pid %ld, SCpnt %p garbled.\n", BN(j), i,
SCpnt->serial_number, SCpnt);
if (*(unsigned int *)SCpnt->host_scribble != i)
panic("%s: ihdlr, mbox %d, pid %ld, index mismatch %d.\n",
BN(j), i, SCpnt->serial_number, *(unsigned int *)SCpnt->host_scribble);
sync_dma(i, j);
if (linked_comm && SCpnt->device->queue_depth > 2
&& TLDEV(SCpnt->device->type))
flush_dev(SCpnt->device, SCpnt->request->sector, j, TRUE);
tstatus = status_byte(spp->target_status);
#if defined(DEBUG_GENERATE_ERRORS)
if ((HD(j)->iocount > 500) && ((HD(j)->iocount % 200) < 2))
spp->adapter_status = 0x01;
#endif
switch (spp->adapter_status) {
case ASOK: /* status OK */
/* Forces a reset if a disk drive keeps returning BUSY */
if (tstatus == BUSY && SCpnt->device->type != TYPE_TAPE)
status = DID_ERROR << 16;
/* If there was a bus reset, redo operation on each target */
else if (tstatus != GOOD && SCpnt->device->type == TYPE_DISK
&& HD(j)->target_redo[scmd_id(SCpnt)][scmd_channel(SCpnt)])
status = DID_BUS_BUSY << 16;
/* Works around a flaw in scsi.c */
else if (tstatus == CHECK_CONDITION
&& SCpnt->device->type == TYPE_DISK
&& (SCpnt->sense_buffer[2] & 0xf) == RECOVERED_ERROR)
status = DID_BUS_BUSY << 16;
else
status = DID_OK << 16;
if (tstatus == GOOD)
HD(j)->target_redo[scmd_id(SCpnt)][scmd_channel(SCpnt)] = FALSE;
if (spp->target_status && SCpnt->device->type == TYPE_DISK &&
(!(tstatus == CHECK_CONDITION && HD(j)->iocount <= 1000 &&
(SCpnt->sense_buffer[2] & 0xf) == NOT_READY)))
scmd_printk(KERN_INFO, SCpnt,
"ihdlr, pid %ld, target_status 0x%x, sense key 0x%x.\n",
SCpnt->serial_number, spp->target_status,
SCpnt->sense_buffer[2]);
HD(j)->target_to[scmd_id(SCpnt)][scmd_channel(SCpnt)] = 0;
if (HD(j)->last_retried_pid == SCpnt->serial_number) HD(j)->retries = 0;
break;
case ASST: /* Selection Time Out */
if (HD(j)->target_to[scmd_id(SCpnt)][scmd_channel(SCpnt)] > 1)
status = DID_ERROR << 16;
else {
status = DID_TIME_OUT << 16;
HD(j)->target_to[scmd_id(SCpnt)][scmd_channel(SCpnt)]++;
}
break;
/* Perform a limited number of internal retries */
case 0x93: /* Unexpected bus free */
case 0x94: /* Target bus phase sequence failure */
case 0x96: /* Illegal SCSI command */
case 0xa3: /* SCSI bus reset error */
for (c = 0; c <= sh[j]->max_channel; c++)
for (k = 0; k < sh[j]->max_id; k++)
HD(j)->target_redo[k][c] = TRUE;
case 0x92: /* Data over/under-run */
if (SCpnt->device->type != TYPE_TAPE
&& HD(j)->retries < MAX_INTERNAL_RETRIES) {
#if defined(DID_SOFT_ERROR)
status = DID_SOFT_ERROR << 16;
#else
status = DID_BUS_BUSY << 16;
#endif
HD(j)->retries++;
HD(j)->last_retried_pid = SCpnt->serial_number;
}
else
status = DID_ERROR << 16;
break;
case 0x01: /* Invalid command */
case 0x02: /* Invalid parameters */
case 0x03: /* Invalid data list */
case 0x84: /* SCSI bus abort error */
case 0x9b: /* Auto request sense error */
case 0x9f: /* Unexpected command complete message error */
case 0xff: /* Invalid parameter in the S/G list */
default:
status = DID_ERROR << 16;
break;
}
SCpnt->result = status | spp->target_status;
#if defined(DEBUG_INTERRUPT)
if (SCpnt->result || do_trace)
#else
if ((spp->adapter_status != ASOK && HD(j)->iocount > 1000) ||
(spp->adapter_status != ASOK &&
spp->adapter_status != ASST && HD(j)->iocount <= 1000) ||
do_trace || msg_byte(spp->target_status))
#endif
scmd_printk(KERN_INFO, SCpnt, "ihdlr, mbox %2d, err 0x%x:%x,"\
" pid %ld, reg 0x%x, count %d.\n",
i, spp->adapter_status, spp->target_status, SCpnt->serial_number,
reg, HD(j)->iocount);
unmap_dma(i, j);
/* Set the command state to inactive */
SCpnt->host_scribble = NULL;
SCpnt->scsi_done(SCpnt);
if (do_trace) printk("%s: ihdlr, exit, irq %d, count %d.\n", BN(j), irq,
HD(j)->iocount);
handled:
return IRQ_HANDLED;
none:
return IRQ_NONE;
}
static irqreturn_t do_interrupt_handler(int irq, void *shap) {
unsigned int j;
unsigned long spin_flags;
irqreturn_t ret;
/* Check if the interrupt must be processed by this handler */
if ((j = (unsigned int)((char *)shap - sha)) >= num_boards) return IRQ_NONE;
spin_lock_irqsave(sh[j]->host_lock, spin_flags);
ret = ihdlr(irq, j);
spin_unlock_irqrestore(sh[j]->host_lock, spin_flags);
return ret;
}
static int u14_34f_release(struct Scsi_Host *shpnt) {
unsigned int i, j;
for (j = 0; sh[j] != NULL && sh[j] != shpnt; j++);
if (sh[j] == NULL)
panic("%s: release, invalid Scsi_Host pointer.\n", driver_name);
for (i = 0; i < sh[j]->can_queue; i++)
kfree((&HD(j)->cp[i])->sglist);
for (i = 0; i < sh[j]->can_queue; i++)
pci_unmap_single(HD(j)->pdev, HD(j)->cp[i].cp_dma_addr,
sizeof(struct mscp), PCI_DMA_BIDIRECTIONAL);
free_irq(sh[j]->irq, &sha[j]);
if (sh[j]->dma_channel != NO_DMA)
free_dma(sh[j]->dma_channel);
release_region(sh[j]->io_port, sh[j]->n_io_port);
scsi_unregister(sh[j]);
return FALSE;
}
#include "scsi_module.c"
#ifndef MODULE
__setup("u14-34f=", option_setup);
#endif /* end MODULE */