mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
944945986f
FW hsi contains regpairs, mostly for 64-bit address representations. Since same paradigm is applied each time a regpair is filled, this introduces a new utility macro for setting such regpairs. Signed-off-by: Yuval Mintz <Yuval.Mintz@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
545 lines
14 KiB
C
545 lines
14 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015 QLogic Corporation
|
|
*
|
|
* This software is available under the terms of the GNU General Public License
|
|
* (GPL) Version 2, available from the file COPYING in the main directory of
|
|
* this source tree.
|
|
*/
|
|
|
|
#ifndef _QED_CHAIN_H
|
|
#define _QED_CHAIN_H
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/qed/common_hsi.h>
|
|
|
|
/* dma_addr_t manip */
|
|
#define DMA_LO_LE(x) cpu_to_le32(lower_32_bits(x))
|
|
#define DMA_HI_LE(x) cpu_to_le32(upper_32_bits(x))
|
|
#define DMA_REGPAIR_LE(x, val) do { \
|
|
(x).hi = DMA_HI_LE((val)); \
|
|
(x).lo = DMA_LO_LE((val)); \
|
|
} while (0)
|
|
|
|
#define HILO_GEN(hi, lo, type) ((((type)(hi)) << 32) + (lo))
|
|
#define HILO_DMA(hi, lo) HILO_GEN(hi, lo, dma_addr_t)
|
|
#define HILO_64(hi, lo) HILO_GEN((le32_to_cpu(hi)), (le32_to_cpu(lo)), u64)
|
|
#define HILO_DMA_REGPAIR(regpair) (HILO_DMA(regpair.hi, regpair.lo))
|
|
#define HILO_64_REGPAIR(regpair) (HILO_64(regpair.hi, regpair.lo))
|
|
|
|
enum qed_chain_mode {
|
|
/* Each Page contains a next pointer at its end */
|
|
QED_CHAIN_MODE_NEXT_PTR,
|
|
|
|
/* Chain is a single page (next ptr) is unrequired */
|
|
QED_CHAIN_MODE_SINGLE,
|
|
|
|
/* Page pointers are located in a side list */
|
|
QED_CHAIN_MODE_PBL,
|
|
};
|
|
|
|
enum qed_chain_use_mode {
|
|
QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
|
|
QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */
|
|
QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
|
|
};
|
|
|
|
struct qed_chain_next {
|
|
struct regpair next_phys;
|
|
void *next_virt;
|
|
};
|
|
|
|
struct qed_chain_pbl {
|
|
dma_addr_t p_phys_table;
|
|
void *p_virt_table;
|
|
u16 prod_page_idx;
|
|
u16 cons_page_idx;
|
|
};
|
|
|
|
struct qed_chain {
|
|
void *p_virt_addr;
|
|
dma_addr_t p_phys_addr;
|
|
void *p_prod_elem;
|
|
void *p_cons_elem;
|
|
u16 page_cnt;
|
|
enum qed_chain_mode mode;
|
|
enum qed_chain_use_mode intended_use; /* used to produce/consume */
|
|
u16 capacity; /*< number of _usable_ elements */
|
|
u16 size; /* number of elements */
|
|
u16 prod_idx;
|
|
u16 cons_idx;
|
|
u16 elem_per_page;
|
|
u16 elem_per_page_mask;
|
|
u16 elem_unusable;
|
|
u16 usable_per_page;
|
|
u16 elem_size;
|
|
u16 next_page_mask;
|
|
struct qed_chain_pbl pbl;
|
|
};
|
|
|
|
#define QED_CHAIN_PBL_ENTRY_SIZE (8)
|
|
#define QED_CHAIN_PAGE_SIZE (0x1000)
|
|
#define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size))
|
|
|
|
#define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((mode == QED_CHAIN_MODE_NEXT_PTR) ? \
|
|
(1 + ((sizeof(struct qed_chain_next) - 1) / \
|
|
(elem_size))) : 0)
|
|
|
|
#define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((u32)(ELEMS_PER_PAGE(elem_size) - \
|
|
UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
|
|
|
|
#define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
|
|
DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
|
|
|
|
/* Accessors */
|
|
static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->prod_idx;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->cons_idx;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
|
|
{
|
|
u16 used;
|
|
|
|
/* we don't need to trancate upon assignmet, as we assign u32->u16 */
|
|
used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) -
|
|
(u32)p_chain->cons_idx;
|
|
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
|
|
used -= p_chain->prod_idx / p_chain->elem_per_page -
|
|
p_chain->cons_idx / p_chain->elem_per_page;
|
|
|
|
return p_chain->capacity - used;
|
|
}
|
|
|
|
static inline u8 qed_chain_is_full(struct qed_chain *p_chain)
|
|
{
|
|
return qed_chain_get_elem_left(p_chain) == p_chain->capacity;
|
|
}
|
|
|
|
static inline u8 qed_chain_is_empty(struct qed_chain *p_chain)
|
|
{
|
|
return qed_chain_get_elem_left(p_chain) == 0;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_elem_per_page(
|
|
struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->elem_per_page;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_usable_per_page(
|
|
struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->usable_per_page;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_unusable_per_page(
|
|
struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->elem_unusable;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_size(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->size;
|
|
}
|
|
|
|
static inline dma_addr_t
|
|
qed_chain_get_pbl_phys(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->pbl.p_phys_table;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_advance_page -
|
|
*
|
|
* Advance the next element accros pages for a linked chain
|
|
*
|
|
* @param p_chain
|
|
* @param p_next_elem
|
|
* @param idx_to_inc
|
|
* @param page_to_inc
|
|
*/
|
|
static inline void
|
|
qed_chain_advance_page(struct qed_chain *p_chain,
|
|
void **p_next_elem,
|
|
u16 *idx_to_inc,
|
|
u16 *page_to_inc)
|
|
|
|
{
|
|
switch (p_chain->mode) {
|
|
case QED_CHAIN_MODE_NEXT_PTR:
|
|
{
|
|
struct qed_chain_next *p_next = *p_next_elem;
|
|
*p_next_elem = p_next->next_virt;
|
|
*idx_to_inc += p_chain->elem_unusable;
|
|
break;
|
|
}
|
|
case QED_CHAIN_MODE_SINGLE:
|
|
*p_next_elem = p_chain->p_virt_addr;
|
|
break;
|
|
|
|
case QED_CHAIN_MODE_PBL:
|
|
/* It is assumed pages are sequential, next element needs
|
|
* to change only when passing going back to first from last.
|
|
*/
|
|
if (++(*page_to_inc) == p_chain->page_cnt) {
|
|
*page_to_inc = 0;
|
|
*p_next_elem = p_chain->p_virt_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define is_unusable_idx(p, idx) \
|
|
(((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define is_unusable_next_idx(p, idx) \
|
|
((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define test_ans_skip(p, idx) \
|
|
do { \
|
|
if (is_unusable_idx(p, idx)) { \
|
|
(p)->idx += (p)->elem_unusable; \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* @brief qed_chain_return_multi_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*/
|
|
static inline void
|
|
qed_chain_return_multi_produced(struct qed_chain *p_chain,
|
|
u16 num)
|
|
{
|
|
p_chain->cons_idx += num;
|
|
test_ans_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_return_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void qed_chain_return_produced(struct qed_chain *p_chain)
|
|
{
|
|
p_chain->cons_idx++;
|
|
test_ans_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_produce -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this to get
|
|
* a pointer to the next element which can be "Produced". It's driver
|
|
* responsibility to validate that the chain has room for new element.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to next element
|
|
*/
|
|
static inline void *qed_chain_produce(struct qed_chain *p_chain)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if ((p_chain->prod_idx & p_chain->elem_per_page_mask) ==
|
|
p_chain->next_page_mask) {
|
|
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
|
|
&p_chain->prod_idx,
|
|
&p_chain->pbl.prod_page_idx);
|
|
}
|
|
|
|
ret = p_chain->p_prod_elem;
|
|
p_chain->prod_idx++;
|
|
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_get_capacity -
|
|
*
|
|
* Get the maximum number of BDs in chain
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*
|
|
* @return u16, number of unusable BDs
|
|
*/
|
|
static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->capacity;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_recycle_consumed -
|
|
*
|
|
* Returns an element which was previously consumed;
|
|
* Increments producers so they could be written to FW.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void
|
|
qed_chain_recycle_consumed(struct qed_chain *p_chain)
|
|
{
|
|
test_ans_skip(p_chain, prod_idx);
|
|
p_chain->prod_idx++;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_consume -
|
|
*
|
|
* A Chain in which the driver utilizes data written by a different source
|
|
* (i.e., FW) should use this to access passed buffers.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to the next buffer written
|
|
*/
|
|
static inline void *qed_chain_consume(struct qed_chain *p_chain)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if ((p_chain->cons_idx & p_chain->elem_per_page_mask) ==
|
|
p_chain->next_page_mask) {
|
|
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
|
|
&p_chain->cons_idx,
|
|
&p_chain->pbl.cons_page_idx);
|
|
}
|
|
|
|
ret = p_chain->p_cons_elem;
|
|
p_chain->cons_idx++;
|
|
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_reset - Resets the chain to its start state
|
|
*
|
|
* @param p_chain pointer to a previously allocted chain
|
|
*/
|
|
static inline void qed_chain_reset(struct qed_chain *p_chain)
|
|
{
|
|
int i;
|
|
|
|
p_chain->prod_idx = 0;
|
|
p_chain->cons_idx = 0;
|
|
p_chain->p_cons_elem = p_chain->p_virt_addr;
|
|
p_chain->p_prod_elem = p_chain->p_virt_addr;
|
|
|
|
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
|
|
p_chain->pbl.prod_page_idx = p_chain->page_cnt - 1;
|
|
p_chain->pbl.cons_page_idx = p_chain->page_cnt - 1;
|
|
}
|
|
|
|
switch (p_chain->intended_use) {
|
|
case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
|
|
case QED_CHAIN_USE_TO_PRODUCE:
|
|
/* Do nothing */
|
|
break;
|
|
|
|
case QED_CHAIN_USE_TO_CONSUME:
|
|
/* produce empty elements */
|
|
for (i = 0; i < p_chain->capacity; i++)
|
|
qed_chain_recycle_consumed(p_chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_init - Initalizes a basic chain struct
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_addr
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
* @param page_cnt number of pages in the allocated buffer
|
|
* @param elem_size size of each element in the chain
|
|
* @param intended_use
|
|
* @param mode
|
|
*/
|
|
static inline void qed_chain_init(struct qed_chain *p_chain,
|
|
void *p_virt_addr,
|
|
dma_addr_t p_phys_addr,
|
|
u16 page_cnt,
|
|
u8 elem_size,
|
|
enum qed_chain_use_mode intended_use,
|
|
enum qed_chain_mode mode)
|
|
{
|
|
/* chain fixed parameters */
|
|
p_chain->p_virt_addr = p_virt_addr;
|
|
p_chain->p_phys_addr = p_phys_addr;
|
|
p_chain->elem_size = elem_size;
|
|
p_chain->page_cnt = page_cnt;
|
|
p_chain->mode = mode;
|
|
|
|
p_chain->intended_use = intended_use;
|
|
p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
|
|
p_chain->usable_per_page =
|
|
USABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
p_chain->capacity = p_chain->usable_per_page * page_cnt;
|
|
p_chain->size = p_chain->elem_per_page * page_cnt;
|
|
p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
|
|
|
|
p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
|
|
p_chain->next_page_mask = (p_chain->usable_per_page &
|
|
p_chain->elem_per_page_mask);
|
|
|
|
if (mode == QED_CHAIN_MODE_NEXT_PTR) {
|
|
struct qed_chain_next *p_next;
|
|
u16 i;
|
|
|
|
for (i = 0; i < page_cnt - 1; i++) {
|
|
/* Increment mem_phy to the next page. */
|
|
p_phys_addr += QED_CHAIN_PAGE_SIZE;
|
|
|
|
/* Initialize the physical address of the next page. */
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
|
|
elem_size *
|
|
p_chain->
|
|
usable_per_page);
|
|
|
|
p_next->next_phys.lo = DMA_LO_LE(p_phys_addr);
|
|
p_next->next_phys.hi = DMA_HI_LE(p_phys_addr);
|
|
|
|
/* Initialize the virtual address of the next page. */
|
|
p_next->next_virt = (void *)((u8 *)p_virt_addr +
|
|
QED_CHAIN_PAGE_SIZE);
|
|
|
|
/* Move to the next page. */
|
|
p_virt_addr = p_next->next_virt;
|
|
}
|
|
|
|
/* Last page's next should point to beginning of the chain */
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
|
|
elem_size *
|
|
p_chain->usable_per_page);
|
|
|
|
p_next->next_phys.lo = DMA_LO_LE(p_chain->p_phys_addr);
|
|
p_next->next_phys.hi = DMA_HI_LE(p_chain->p_phys_addr);
|
|
p_next->next_virt = p_chain->p_virt_addr;
|
|
}
|
|
qed_chain_reset(p_chain);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_pbl_init - Initalizes a basic pbl chain
|
|
* struct
|
|
* @param p_chain
|
|
* @param p_virt_addr virtual address of allocated buffer's beginning
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
* @param page_cnt number of pages in the allocated buffer
|
|
* @param elem_size size of each element in the chain
|
|
* @param use_mode
|
|
* @param p_phys_pbl pointer to a pre-allocated side table
|
|
* which will hold physical page addresses.
|
|
* @param p_virt_pbl pointer to a pre allocated side table
|
|
* which will hold virtual page addresses.
|
|
*/
|
|
static inline void
|
|
qed_chain_pbl_init(struct qed_chain *p_chain,
|
|
void *p_virt_addr,
|
|
dma_addr_t p_phys_addr,
|
|
u16 page_cnt,
|
|
u8 elem_size,
|
|
enum qed_chain_use_mode use_mode,
|
|
dma_addr_t p_phys_pbl,
|
|
dma_addr_t *p_virt_pbl)
|
|
{
|
|
dma_addr_t *p_pbl_dma = p_virt_pbl;
|
|
int i;
|
|
|
|
qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt,
|
|
elem_size, use_mode, QED_CHAIN_MODE_PBL);
|
|
|
|
p_chain->pbl.p_phys_table = p_phys_pbl;
|
|
p_chain->pbl.p_virt_table = p_virt_pbl;
|
|
|
|
/* Fill the PBL with physical addresses*/
|
|
for (i = 0; i < page_cnt; i++) {
|
|
*p_pbl_dma = p_phys_addr;
|
|
p_phys_addr += QED_CHAIN_PAGE_SIZE;
|
|
p_pbl_dma++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_set_prod - sets the prod to the given
|
|
* value
|
|
*
|
|
* @param prod_idx
|
|
* @param p_prod_elem
|
|
*/
|
|
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
|
|
u16 prod_idx,
|
|
void *p_prod_elem)
|
|
{
|
|
p_chain->prod_idx = prod_idx;
|
|
p_chain->p_prod_elem = p_prod_elem;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_get_elem -
|
|
*
|
|
* get a pointer to an element represented by absolute idx
|
|
*
|
|
* @param p_chain
|
|
* @assumption p_chain->size is a power of 2
|
|
*
|
|
* @return void*, a pointer to next element
|
|
*/
|
|
static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain,
|
|
u16 idx)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if (idx >= p_chain->size)
|
|
return NULL;
|
|
|
|
ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_sge_inc_cons_prod
|
|
*
|
|
* for sge chains, producer isn't increased serially, the ring
|
|
* is expected to be full at all times. Once elements are
|
|
* consumed, they are immediately produced.
|
|
*
|
|
* @param p_chain
|
|
* @param cnt
|
|
*
|
|
* @return inline void
|
|
*/
|
|
static inline void
|
|
qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain,
|
|
u16 cnt)
|
|
{
|
|
p_chain->prod_idx += cnt;
|
|
p_chain->cons_idx += cnt;
|
|
}
|
|
|
|
#endif
|