linux_dsm_epyc7002/arch/powerpc/lib/sstep.c
Balamuruhan S 151c32bf5e powerpc/sstep: Add support for divde[.] and divdeu[.] instructions
This patch adds emulation support for divde, divdeu instructions,
  - Divide Doubleword Extended (divde[.])
  - Divide Doubleword Extended Unsigned (divdeu[.])

Signed-off-by: Balamuruhan S <bala24@linux.ibm.com>
Reviewed-by: Sandipan Das <sandipan@linux.ibm.com>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200728130308.1790982-3-bala24@linux.ibm.com
2020-07-29 23:47:52 +10:00

3419 lines
75 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Single-step support.
*
* Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
*/
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/prefetch.h>
#include <asm/sstep.h>
#include <asm/processor.h>
#include <linux/uaccess.h>
#include <asm/cpu_has_feature.h>
#include <asm/cputable.h>
#include <asm/disassemble.h>
extern char system_call_common[];
extern char system_call_vectored_emulate[];
#ifdef CONFIG_PPC64
/* Bits in SRR1 that are copied from MSR */
#define MSR_MASK 0xffffffff87c0ffffUL
#else
#define MSR_MASK 0x87c0ffff
#endif
/* Bits in XER */
#define XER_SO 0x80000000U
#define XER_OV 0x40000000U
#define XER_CA 0x20000000U
#define XER_OV32 0x00080000U
#define XER_CA32 0x00040000U
#ifdef CONFIG_PPC_FPU
/*
* Functions in ldstfp.S
*/
extern void get_fpr(int rn, double *p);
extern void put_fpr(int rn, const double *p);
extern void get_vr(int rn, __vector128 *p);
extern void put_vr(int rn, __vector128 *p);
extern void load_vsrn(int vsr, const void *p);
extern void store_vsrn(int vsr, void *p);
extern void conv_sp_to_dp(const float *sp, double *dp);
extern void conv_dp_to_sp(const double *dp, float *sp);
#endif
#ifdef __powerpc64__
/*
* Functions in quad.S
*/
extern int do_lq(unsigned long ea, unsigned long *regs);
extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
extern int do_lqarx(unsigned long ea, unsigned long *regs);
extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
unsigned int *crp);
#endif
#ifdef __LITTLE_ENDIAN__
#define IS_LE 1
#define IS_BE 0
#else
#define IS_LE 0
#define IS_BE 1
#endif
/*
* Emulate the truncation of 64 bit values in 32-bit mode.
*/
static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
unsigned long val)
{
#ifdef __powerpc64__
if ((msr & MSR_64BIT) == 0)
val &= 0xffffffffUL;
#endif
return val;
}
/*
* Determine whether a conditional branch instruction would branch.
*/
static nokprobe_inline int branch_taken(unsigned int instr,
const struct pt_regs *regs,
struct instruction_op *op)
{
unsigned int bo = (instr >> 21) & 0x1f;
unsigned int bi;
if ((bo & 4) == 0) {
/* decrement counter */
op->type |= DECCTR;
if (((bo >> 1) & 1) ^ (regs->ctr == 1))
return 0;
}
if ((bo & 0x10) == 0) {
/* check bit from CR */
bi = (instr >> 16) & 0x1f;
if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
return 0;
}
return 1;
}
static nokprobe_inline long address_ok(struct pt_regs *regs,
unsigned long ea, int nb)
{
if (!user_mode(regs))
return 1;
if (__access_ok(ea, nb, USER_DS))
return 1;
if (__access_ok(ea, 1, USER_DS))
/* Access overlaps the end of the user region */
regs->dar = USER_DS.seg;
else
regs->dar = ea;
return 0;
}
/*
* Calculate effective address for a D-form instruction
*/
static nokprobe_inline unsigned long dform_ea(unsigned int instr,
const struct pt_regs *regs)
{
int ra;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
ea = (signed short) instr; /* sign-extend */
if (ra)
ea += regs->gpr[ra];
return ea;
}
#ifdef __powerpc64__
/*
* Calculate effective address for a DS-form instruction
*/
static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
const struct pt_regs *regs)
{
int ra;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
ea = (signed short) (instr & ~3); /* sign-extend */
if (ra)
ea += regs->gpr[ra];
return ea;
}
/*
* Calculate effective address for a DQ-form instruction
*/
static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
const struct pt_regs *regs)
{
int ra;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
ea = (signed short) (instr & ~0xf); /* sign-extend */
if (ra)
ea += regs->gpr[ra];
return ea;
}
#endif /* __powerpc64 */
/*
* Calculate effective address for an X-form instruction
*/
static nokprobe_inline unsigned long xform_ea(unsigned int instr,
const struct pt_regs *regs)
{
int ra, rb;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
rb = (instr >> 11) & 0x1f;
ea = regs->gpr[rb];
if (ra)
ea += regs->gpr[ra];
return ea;
}
/*
* Calculate effective address for a MLS:D-form / 8LS:D-form
* prefixed instruction
*/
static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
unsigned int suffix,
const struct pt_regs *regs)
{
int ra, prefix_r;
unsigned int dd;
unsigned long ea, d0, d1, d;
prefix_r = GET_PREFIX_R(instr);
ra = GET_PREFIX_RA(suffix);
d0 = instr & 0x3ffff;
d1 = suffix & 0xffff;
d = (d0 << 16) | d1;
/*
* sign extend a 34 bit number
*/
dd = (unsigned int)(d >> 2);
ea = (signed int)dd;
ea = (ea << 2) | (d & 0x3);
if (!prefix_r && ra)
ea += regs->gpr[ra];
else if (!prefix_r && !ra)
; /* Leave ea as is */
else if (prefix_r && !ra)
ea += regs->nip;
else if (prefix_r && ra)
; /* Invalid form. Should already be checked for by caller! */
return ea;
}
/*
* Return the largest power of 2, not greater than sizeof(unsigned long),
* such that x is a multiple of it.
*/
static nokprobe_inline unsigned long max_align(unsigned long x)
{
x |= sizeof(unsigned long);
return x & -x; /* isolates rightmost bit */
}
static nokprobe_inline unsigned long byterev_2(unsigned long x)
{
return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
}
static nokprobe_inline unsigned long byterev_4(unsigned long x)
{
return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
((x & 0xff00) << 8) | ((x & 0xff) << 24);
}
#ifdef __powerpc64__
static nokprobe_inline unsigned long byterev_8(unsigned long x)
{
return (byterev_4(x) << 32) | byterev_4(x >> 32);
}
#endif
static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
{
switch (nb) {
case 2:
*(u16 *)ptr = byterev_2(*(u16 *)ptr);
break;
case 4:
*(u32 *)ptr = byterev_4(*(u32 *)ptr);
break;
#ifdef __powerpc64__
case 8:
*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
break;
case 16: {
unsigned long *up = (unsigned long *)ptr;
unsigned long tmp;
tmp = byterev_8(up[0]);
up[0] = byterev_8(up[1]);
up[1] = tmp;
break;
}
#endif
default:
WARN_ON_ONCE(1);
}
}
static nokprobe_inline int read_mem_aligned(unsigned long *dest,
unsigned long ea, int nb,
struct pt_regs *regs)
{
int err = 0;
unsigned long x = 0;
switch (nb) {
case 1:
err = __get_user(x, (unsigned char __user *) ea);
break;
case 2:
err = __get_user(x, (unsigned short __user *) ea);
break;
case 4:
err = __get_user(x, (unsigned int __user *) ea);
break;
#ifdef __powerpc64__
case 8:
err = __get_user(x, (unsigned long __user *) ea);
break;
#endif
}
if (!err)
*dest = x;
else
regs->dar = ea;
return err;
}
/*
* Copy from userspace to a buffer, using the largest possible
* aligned accesses, up to sizeof(long).
*/
static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
struct pt_regs *regs)
{
int err = 0;
int c;
for (; nb > 0; nb -= c) {
c = max_align(ea);
if (c > nb)
c = max_align(nb);
switch (c) {
case 1:
err = __get_user(*dest, (unsigned char __user *) ea);
break;
case 2:
err = __get_user(*(u16 *)dest,
(unsigned short __user *) ea);
break;
case 4:
err = __get_user(*(u32 *)dest,
(unsigned int __user *) ea);
break;
#ifdef __powerpc64__
case 8:
err = __get_user(*(unsigned long *)dest,
(unsigned long __user *) ea);
break;
#endif
}
if (err) {
regs->dar = ea;
return err;
}
dest += c;
ea += c;
}
return 0;
}
static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
unsigned long ea, int nb,
struct pt_regs *regs)
{
union {
unsigned long ul;
u8 b[sizeof(unsigned long)];
} u;
int i;
int err;
u.ul = 0;
i = IS_BE ? sizeof(unsigned long) - nb : 0;
err = copy_mem_in(&u.b[i], ea, nb, regs);
if (!err)
*dest = u.ul;
return err;
}
/*
* Read memory at address ea for nb bytes, return 0 for success
* or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
* If nb < sizeof(long), the result is right-justified on BE systems.
*/
static int read_mem(unsigned long *dest, unsigned long ea, int nb,
struct pt_regs *regs)
{
if (!address_ok(regs, ea, nb))
return -EFAULT;
if ((ea & (nb - 1)) == 0)
return read_mem_aligned(dest, ea, nb, regs);
return read_mem_unaligned(dest, ea, nb, regs);
}
NOKPROBE_SYMBOL(read_mem);
static nokprobe_inline int write_mem_aligned(unsigned long val,
unsigned long ea, int nb,
struct pt_regs *regs)
{
int err = 0;
switch (nb) {
case 1:
err = __put_user(val, (unsigned char __user *) ea);
break;
case 2:
err = __put_user(val, (unsigned short __user *) ea);
break;
case 4:
err = __put_user(val, (unsigned int __user *) ea);
break;
#ifdef __powerpc64__
case 8:
err = __put_user(val, (unsigned long __user *) ea);
break;
#endif
}
if (err)
regs->dar = ea;
return err;
}
/*
* Copy from a buffer to userspace, using the largest possible
* aligned accesses, up to sizeof(long).
*/
static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
struct pt_regs *regs)
{
int err = 0;
int c;
for (; nb > 0; nb -= c) {
c = max_align(ea);
if (c > nb)
c = max_align(nb);
switch (c) {
case 1:
err = __put_user(*dest, (unsigned char __user *) ea);
break;
case 2:
err = __put_user(*(u16 *)dest,
(unsigned short __user *) ea);
break;
case 4:
err = __put_user(*(u32 *)dest,
(unsigned int __user *) ea);
break;
#ifdef __powerpc64__
case 8:
err = __put_user(*(unsigned long *)dest,
(unsigned long __user *) ea);
break;
#endif
}
if (err) {
regs->dar = ea;
return err;
}
dest += c;
ea += c;
}
return 0;
}
static nokprobe_inline int write_mem_unaligned(unsigned long val,
unsigned long ea, int nb,
struct pt_regs *regs)
{
union {
unsigned long ul;
u8 b[sizeof(unsigned long)];
} u;
int i;
u.ul = val;
i = IS_BE ? sizeof(unsigned long) - nb : 0;
return copy_mem_out(&u.b[i], ea, nb, regs);
}
/*
* Write memory at address ea for nb bytes, return 0 for success
* or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
*/
static int write_mem(unsigned long val, unsigned long ea, int nb,
struct pt_regs *regs)
{
if (!address_ok(regs, ea, nb))
return -EFAULT;
if ((ea & (nb - 1)) == 0)
return write_mem_aligned(val, ea, nb, regs);
return write_mem_unaligned(val, ea, nb, regs);
}
NOKPROBE_SYMBOL(write_mem);
#ifdef CONFIG_PPC_FPU
/*
* These access either the real FP register or the image in the
* thread_struct, depending on regs->msr & MSR_FP.
*/
static int do_fp_load(struct instruction_op *op, unsigned long ea,
struct pt_regs *regs, bool cross_endian)
{
int err, rn, nb;
union {
int i;
unsigned int u;
float f;
double d[2];
unsigned long l[2];
u8 b[2 * sizeof(double)];
} u;
nb = GETSIZE(op->type);
if (!address_ok(regs, ea, nb))
return -EFAULT;
rn = op->reg;
err = copy_mem_in(u.b, ea, nb, regs);
if (err)
return err;
if (unlikely(cross_endian)) {
do_byte_reverse(u.b, min(nb, 8));
if (nb == 16)
do_byte_reverse(&u.b[8], 8);
}
preempt_disable();
if (nb == 4) {
if (op->type & FPCONV)
conv_sp_to_dp(&u.f, &u.d[0]);
else if (op->type & SIGNEXT)
u.l[0] = u.i;
else
u.l[0] = u.u;
}
if (regs->msr & MSR_FP)
put_fpr(rn, &u.d[0]);
else
current->thread.TS_FPR(rn) = u.l[0];
if (nb == 16) {
/* lfdp */
rn |= 1;
if (regs->msr & MSR_FP)
put_fpr(rn, &u.d[1]);
else
current->thread.TS_FPR(rn) = u.l[1];
}
preempt_enable();
return 0;
}
NOKPROBE_SYMBOL(do_fp_load);
static int do_fp_store(struct instruction_op *op, unsigned long ea,
struct pt_regs *regs, bool cross_endian)
{
int rn, nb;
union {
unsigned int u;
float f;
double d[2];
unsigned long l[2];
u8 b[2 * sizeof(double)];
} u;
nb = GETSIZE(op->type);
if (!address_ok(regs, ea, nb))
return -EFAULT;
rn = op->reg;
preempt_disable();
if (regs->msr & MSR_FP)
get_fpr(rn, &u.d[0]);
else
u.l[0] = current->thread.TS_FPR(rn);
if (nb == 4) {
if (op->type & FPCONV)
conv_dp_to_sp(&u.d[0], &u.f);
else
u.u = u.l[0];
}
if (nb == 16) {
rn |= 1;
if (regs->msr & MSR_FP)
get_fpr(rn, &u.d[1]);
else
u.l[1] = current->thread.TS_FPR(rn);
}
preempt_enable();
if (unlikely(cross_endian)) {
do_byte_reverse(u.b, min(nb, 8));
if (nb == 16)
do_byte_reverse(&u.b[8], 8);
}
return copy_mem_out(u.b, ea, nb, regs);
}
NOKPROBE_SYMBOL(do_fp_store);
#endif
#ifdef CONFIG_ALTIVEC
/* For Altivec/VMX, no need to worry about alignment */
static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
int size, struct pt_regs *regs,
bool cross_endian)
{
int err;
union {
__vector128 v;
u8 b[sizeof(__vector128)];
} u = {};
if (!address_ok(regs, ea & ~0xfUL, 16))
return -EFAULT;
/* align to multiple of size */
ea &= ~(size - 1);
err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
if (err)
return err;
if (unlikely(cross_endian))
do_byte_reverse(&u.b[ea & 0xf], size);
preempt_disable();
if (regs->msr & MSR_VEC)
put_vr(rn, &u.v);
else
current->thread.vr_state.vr[rn] = u.v;
preempt_enable();
return 0;
}
static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
int size, struct pt_regs *regs,
bool cross_endian)
{
union {
__vector128 v;
u8 b[sizeof(__vector128)];
} u;
if (!address_ok(regs, ea & ~0xfUL, 16))
return -EFAULT;
/* align to multiple of size */
ea &= ~(size - 1);
preempt_disable();
if (regs->msr & MSR_VEC)
get_vr(rn, &u.v);
else
u.v = current->thread.vr_state.vr[rn];
preempt_enable();
if (unlikely(cross_endian))
do_byte_reverse(&u.b[ea & 0xf], size);
return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
}
#endif /* CONFIG_ALTIVEC */
#ifdef __powerpc64__
static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
int reg, bool cross_endian)
{
int err;
if (!address_ok(regs, ea, 16))
return -EFAULT;
/* if aligned, should be atomic */
if ((ea & 0xf) == 0) {
err = do_lq(ea, &regs->gpr[reg]);
} else {
err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
if (!err)
err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
}
if (!err && unlikely(cross_endian))
do_byte_reverse(&regs->gpr[reg], 16);
return err;
}
static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
int reg, bool cross_endian)
{
int err;
unsigned long vals[2];
if (!address_ok(regs, ea, 16))
return -EFAULT;
vals[0] = regs->gpr[reg];
vals[1] = regs->gpr[reg + 1];
if (unlikely(cross_endian))
do_byte_reverse(vals, 16);
/* if aligned, should be atomic */
if ((ea & 0xf) == 0)
return do_stq(ea, vals[0], vals[1]);
err = write_mem(vals[IS_LE], ea, 8, regs);
if (!err)
err = write_mem(vals[IS_BE], ea + 8, 8, regs);
return err;
}
#endif /* __powerpc64 */
#ifdef CONFIG_VSX
void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
const void *mem, bool rev)
{
int size, read_size;
int i, j;
const unsigned int *wp;
const unsigned short *hp;
const unsigned char *bp;
size = GETSIZE(op->type);
reg->d[0] = reg->d[1] = 0;
switch (op->element_size) {
case 16:
/* whole vector; lxv[x] or lxvl[l] */
if (size == 0)
break;
memcpy(reg, mem, size);
if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
rev = !rev;
if (rev)
do_byte_reverse(reg, 16);
break;
case 8:
/* scalar loads, lxvd2x, lxvdsx */
read_size = (size >= 8) ? 8 : size;
i = IS_LE ? 8 : 8 - read_size;
memcpy(&reg->b[i], mem, read_size);
if (rev)
do_byte_reverse(&reg->b[i], 8);
if (size < 8) {
if (op->type & SIGNEXT) {
/* size == 4 is the only case here */
reg->d[IS_LE] = (signed int) reg->d[IS_LE];
} else if (op->vsx_flags & VSX_FPCONV) {
preempt_disable();
conv_sp_to_dp(&reg->fp[1 + IS_LE],
&reg->dp[IS_LE]);
preempt_enable();
}
} else {
if (size == 16) {
unsigned long v = *(unsigned long *)(mem + 8);
reg->d[IS_BE] = !rev ? v : byterev_8(v);
} else if (op->vsx_flags & VSX_SPLAT)
reg->d[IS_BE] = reg->d[IS_LE];
}
break;
case 4:
/* lxvw4x, lxvwsx */
wp = mem;
for (j = 0; j < size / 4; ++j) {
i = IS_LE ? 3 - j : j;
reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
}
if (op->vsx_flags & VSX_SPLAT) {
u32 val = reg->w[IS_LE ? 3 : 0];
for (; j < 4; ++j) {
i = IS_LE ? 3 - j : j;
reg->w[i] = val;
}
}
break;
case 2:
/* lxvh8x */
hp = mem;
for (j = 0; j < size / 2; ++j) {
i = IS_LE ? 7 - j : j;
reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
}
break;
case 1:
/* lxvb16x */
bp = mem;
for (j = 0; j < size; ++j) {
i = IS_LE ? 15 - j : j;
reg->b[i] = *bp++;
}
break;
}
}
EXPORT_SYMBOL_GPL(emulate_vsx_load);
NOKPROBE_SYMBOL(emulate_vsx_load);
void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
void *mem, bool rev)
{
int size, write_size;
int i, j;
union vsx_reg buf;
unsigned int *wp;
unsigned short *hp;
unsigned char *bp;
size = GETSIZE(op->type);
switch (op->element_size) {
case 16:
/* stxv, stxvx, stxvl, stxvll */
if (size == 0)
break;
if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
rev = !rev;
if (rev) {
/* reverse 16 bytes */
buf.d[0] = byterev_8(reg->d[1]);
buf.d[1] = byterev_8(reg->d[0]);
reg = &buf;
}
memcpy(mem, reg, size);
break;
case 8:
/* scalar stores, stxvd2x */
write_size = (size >= 8) ? 8 : size;
i = IS_LE ? 8 : 8 - write_size;
if (size < 8 && op->vsx_flags & VSX_FPCONV) {
buf.d[0] = buf.d[1] = 0;
preempt_disable();
conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
preempt_enable();
reg = &buf;
}
memcpy(mem, &reg->b[i], write_size);
if (size == 16)
memcpy(mem + 8, &reg->d[IS_BE], 8);
if (unlikely(rev)) {
do_byte_reverse(mem, write_size);
if (size == 16)
do_byte_reverse(mem + 8, 8);
}
break;
case 4:
/* stxvw4x */
wp = mem;
for (j = 0; j < size / 4; ++j) {
i = IS_LE ? 3 - j : j;
*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
}
break;
case 2:
/* stxvh8x */
hp = mem;
for (j = 0; j < size / 2; ++j) {
i = IS_LE ? 7 - j : j;
*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
}
break;
case 1:
/* stvxb16x */
bp = mem;
for (j = 0; j < size; ++j) {
i = IS_LE ? 15 - j : j;
*bp++ = reg->b[i];
}
break;
}
}
EXPORT_SYMBOL_GPL(emulate_vsx_store);
NOKPROBE_SYMBOL(emulate_vsx_store);
static nokprobe_inline int do_vsx_load(struct instruction_op *op,
unsigned long ea, struct pt_regs *regs,
bool cross_endian)
{
int reg = op->reg;
u8 mem[16];
union vsx_reg buf;
int size = GETSIZE(op->type);
if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
return -EFAULT;
emulate_vsx_load(op, &buf, mem, cross_endian);
preempt_disable();
if (reg < 32) {
/* FP regs + extensions */
if (regs->msr & MSR_FP) {
load_vsrn(reg, &buf);
} else {
current->thread.fp_state.fpr[reg][0] = buf.d[0];
current->thread.fp_state.fpr[reg][1] = buf.d[1];
}
} else {
if (regs->msr & MSR_VEC)
load_vsrn(reg, &buf);
else
current->thread.vr_state.vr[reg - 32] = buf.v;
}
preempt_enable();
return 0;
}
static nokprobe_inline int do_vsx_store(struct instruction_op *op,
unsigned long ea, struct pt_regs *regs,
bool cross_endian)
{
int reg = op->reg;
u8 mem[16];
union vsx_reg buf;
int size = GETSIZE(op->type);
if (!address_ok(regs, ea, size))
return -EFAULT;
preempt_disable();
if (reg < 32) {
/* FP regs + extensions */
if (regs->msr & MSR_FP) {
store_vsrn(reg, &buf);
} else {
buf.d[0] = current->thread.fp_state.fpr[reg][0];
buf.d[1] = current->thread.fp_state.fpr[reg][1];
}
} else {
if (regs->msr & MSR_VEC)
store_vsrn(reg, &buf);
else
buf.v = current->thread.vr_state.vr[reg - 32];
}
preempt_enable();
emulate_vsx_store(op, &buf, mem, cross_endian);
return copy_mem_out(mem, ea, size, regs);
}
#endif /* CONFIG_VSX */
int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
{
int err;
unsigned long i, size;
#ifdef __powerpc64__
size = ppc64_caches.l1d.block_size;
if (!(regs->msr & MSR_64BIT))
ea &= 0xffffffffUL;
#else
size = L1_CACHE_BYTES;
#endif
ea &= ~(size - 1);
if (!address_ok(regs, ea, size))
return -EFAULT;
for (i = 0; i < size; i += sizeof(long)) {
err = __put_user(0, (unsigned long __user *) (ea + i));
if (err) {
regs->dar = ea;
return err;
}
}
return 0;
}
NOKPROBE_SYMBOL(emulate_dcbz);
#define __put_user_asmx(x, addr, err, op, cr) \
__asm__ __volatile__( \
"1: " op " %2,0,%3\n" \
" mfcr %1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,%4\n" \
" b 2b\n" \
".previous\n" \
EX_TABLE(1b, 3b) \
: "=r" (err), "=r" (cr) \
: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
#define __get_user_asmx(x, addr, err, op) \
__asm__ __volatile__( \
"1: "op" %1,0,%2\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,%3\n" \
" b 2b\n" \
".previous\n" \
EX_TABLE(1b, 3b) \
: "=r" (err), "=r" (x) \
: "r" (addr), "i" (-EFAULT), "0" (err))
#define __cacheop_user_asmx(addr, err, op) \
__asm__ __volatile__( \
"1: "op" 0,%1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,%3\n" \
" b 2b\n" \
".previous\n" \
EX_TABLE(1b, 3b) \
: "=r" (err) \
: "r" (addr), "i" (-EFAULT), "0" (err))
static nokprobe_inline void set_cr0(const struct pt_regs *regs,
struct instruction_op *op)
{
long val = op->val;
op->type |= SETCC;
op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
#ifdef __powerpc64__
if (!(regs->msr & MSR_64BIT))
val = (int) val;
#endif
if (val < 0)
op->ccval |= 0x80000000;
else if (val > 0)
op->ccval |= 0x40000000;
else
op->ccval |= 0x20000000;
}
static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
{
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
if (val)
op->xerval |= XER_CA32;
else
op->xerval &= ~XER_CA32;
}
}
static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
struct instruction_op *op, int rd,
unsigned long val1, unsigned long val2,
unsigned long carry_in)
{
unsigned long val = val1 + val2;
if (carry_in)
++val;
op->type = COMPUTE + SETREG + SETXER;
op->reg = rd;
op->val = val;
#ifdef __powerpc64__
if (!(regs->msr & MSR_64BIT)) {
val = (unsigned int) val;
val1 = (unsigned int) val1;
}
#endif
op->xerval = regs->xer;
if (val < val1 || (carry_in && val == val1))
op->xerval |= XER_CA;
else
op->xerval &= ~XER_CA;
set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
(carry_in && (unsigned int)val == (unsigned int)val1));
}
static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
struct instruction_op *op,
long v1, long v2, int crfld)
{
unsigned int crval, shift;
op->type = COMPUTE + SETCC;
crval = (regs->xer >> 31) & 1; /* get SO bit */
if (v1 < v2)
crval |= 8;
else if (v1 > v2)
crval |= 4;
else
crval |= 2;
shift = (7 - crfld) * 4;
op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
}
static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
struct instruction_op *op,
unsigned long v1,
unsigned long v2, int crfld)
{
unsigned int crval, shift;
op->type = COMPUTE + SETCC;
crval = (regs->xer >> 31) & 1; /* get SO bit */
if (v1 < v2)
crval |= 8;
else if (v1 > v2)
crval |= 4;
else
crval |= 2;
shift = (7 - crfld) * 4;
op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
}
static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
struct instruction_op *op,
unsigned long v1, unsigned long v2)
{
unsigned long long out_val, mask;
int i;
out_val = 0;
for (i = 0; i < 8; i++) {
mask = 0xffUL << (i * 8);
if ((v1 & mask) == (v2 & mask))
out_val |= mask;
}
op->val = out_val;
}
/*
* The size parameter is used to adjust the equivalent popcnt instruction.
* popcntb = 8, popcntw = 32, popcntd = 64
*/
static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
struct instruction_op *op,
unsigned long v1, int size)
{
unsigned long long out = v1;
out -= (out >> 1) & 0x5555555555555555ULL;
out = (0x3333333333333333ULL & out) +
(0x3333333333333333ULL & (out >> 2));
out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
if (size == 8) { /* popcntb */
op->val = out;
return;
}
out += out >> 8;
out += out >> 16;
if (size == 32) { /* popcntw */
op->val = out & 0x0000003f0000003fULL;
return;
}
out = (out + (out >> 32)) & 0x7f;
op->val = out; /* popcntd */
}
#ifdef CONFIG_PPC64
static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
struct instruction_op *op,
unsigned long v1, unsigned long v2)
{
unsigned char perm, idx;
unsigned int i;
perm = 0;
for (i = 0; i < 8; i++) {
idx = (v1 >> (i * 8)) & 0xff;
if (idx < 64)
if (v2 & PPC_BIT(idx))
perm |= 1 << i;
}
op->val = perm;
}
#endif /* CONFIG_PPC64 */
/*
* The size parameter adjusts the equivalent prty instruction.
* prtyw = 32, prtyd = 64
*/
static nokprobe_inline void do_prty(const struct pt_regs *regs,
struct instruction_op *op,
unsigned long v, int size)
{
unsigned long long res = v ^ (v >> 8);
res ^= res >> 16;
if (size == 32) { /* prtyw */
op->val = res & 0x0000000100000001ULL;
return;
}
res ^= res >> 32;
op->val = res & 1; /*prtyd */
}
static nokprobe_inline int trap_compare(long v1, long v2)
{
int ret = 0;
if (v1 < v2)
ret |= 0x10;
else if (v1 > v2)
ret |= 0x08;
else
ret |= 0x04;
if ((unsigned long)v1 < (unsigned long)v2)
ret |= 0x02;
else if ((unsigned long)v1 > (unsigned long)v2)
ret |= 0x01;
return ret;
}
/*
* Elements of 32-bit rotate and mask instructions.
*/
#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
#ifdef __powerpc64__
#define MASK64_L(mb) (~0UL >> (mb))
#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
#else
#define DATA32(x) (x)
#endif
#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
/*
* Decode an instruction, and return information about it in *op
* without changing *regs.
* Integer arithmetic and logical instructions, branches, and barrier
* instructions can be emulated just using the information in *op.
*
* Return value is 1 if the instruction can be emulated just by
* updating *regs with the information in *op, -1 if we need the
* GPRs but *regs doesn't contain the full register set, or 0
* otherwise.
*/
int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
struct ppc_inst instr)
{
#ifdef CONFIG_PPC64
unsigned int suffixopcode, prefixtype, prefix_r;
#endif
unsigned int opcode, ra, rb, rc, rd, spr, u;
unsigned long int imm;
unsigned long int val, val2;
unsigned int mb, me, sh;
unsigned int word, suffix;
long ival;
word = ppc_inst_val(instr);
suffix = ppc_inst_suffix(instr);
op->type = COMPUTE;
opcode = ppc_inst_primary_opcode(instr);
switch (opcode) {
case 16: /* bc */
op->type = BRANCH;
imm = (signed short)(word & 0xfffc);
if ((word & 2) == 0)
imm += regs->nip;
op->val = truncate_if_32bit(regs->msr, imm);
if (word & 1)
op->type |= SETLK;
if (branch_taken(word, regs, op))
op->type |= BRTAKEN;
return 1;
#ifdef CONFIG_PPC64
case 17: /* sc */
if ((word & 0xfe2) == 2)
op->type = SYSCALL;
else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
(word & 0xfe3) == 1)
op->type = SYSCALL_VECTORED_0;
else
op->type = UNKNOWN;
return 0;
#endif
case 18: /* b */
op->type = BRANCH | BRTAKEN;
imm = word & 0x03fffffc;
if (imm & 0x02000000)
imm -= 0x04000000;
if ((word & 2) == 0)
imm += regs->nip;
op->val = truncate_if_32bit(regs->msr, imm);
if (word & 1)
op->type |= SETLK;
return 1;
case 19:
switch ((word >> 1) & 0x3ff) {
case 0: /* mcrf */
op->type = COMPUTE + SETCC;
rd = 7 - ((word >> 23) & 0x7);
ra = 7 - ((word >> 18) & 0x7);
rd *= 4;
ra *= 4;
val = (regs->ccr >> ra) & 0xf;
op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
return 1;
case 16: /* bclr */
case 528: /* bcctr */
op->type = BRANCH;
imm = (word & 0x400)? regs->ctr: regs->link;
op->val = truncate_if_32bit(regs->msr, imm);
if (word & 1)
op->type |= SETLK;
if (branch_taken(word, regs, op))
op->type |= BRTAKEN;
return 1;
case 18: /* rfid, scary */
if (regs->msr & MSR_PR)
goto priv;
op->type = RFI;
return 0;
case 150: /* isync */
op->type = BARRIER | BARRIER_ISYNC;
return 1;
case 33: /* crnor */
case 129: /* crandc */
case 193: /* crxor */
case 225: /* crnand */
case 257: /* crand */
case 289: /* creqv */
case 417: /* crorc */
case 449: /* cror */
op->type = COMPUTE + SETCC;
ra = (word >> 16) & 0x1f;
rb = (word >> 11) & 0x1f;
rd = (word >> 21) & 0x1f;
ra = (regs->ccr >> (31 - ra)) & 1;
rb = (regs->ccr >> (31 - rb)) & 1;
val = (word >> (6 + ra * 2 + rb)) & 1;
op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
(val << (31 - rd));
return 1;
}
break;
case 31:
switch ((word >> 1) & 0x3ff) {
case 598: /* sync */
op->type = BARRIER + BARRIER_SYNC;
#ifdef __powerpc64__
switch ((word >> 21) & 3) {
case 1: /* lwsync */
op->type = BARRIER + BARRIER_LWSYNC;
break;
case 2: /* ptesync */
op->type = BARRIER + BARRIER_PTESYNC;
break;
}
#endif
return 1;
case 854: /* eieio */
op->type = BARRIER + BARRIER_EIEIO;
return 1;
}
break;
}
/* Following cases refer to regs->gpr[], so we need all regs */
if (!FULL_REGS(regs))
return -1;
rd = (word >> 21) & 0x1f;
ra = (word >> 16) & 0x1f;
rb = (word >> 11) & 0x1f;
rc = (word >> 6) & 0x1f;
switch (opcode) {
#ifdef __powerpc64__
case 1:
prefix_r = GET_PREFIX_R(word);
ra = GET_PREFIX_RA(suffix);
rd = (suffix >> 21) & 0x1f;
op->reg = rd;
op->val = regs->gpr[rd];
suffixopcode = get_op(suffix);
prefixtype = (word >> 24) & 0x3;
switch (prefixtype) {
case 2:
if (prefix_r && ra)
return 0;
switch (suffixopcode) {
case 14: /* paddi */
op->type = COMPUTE | PREFIXED;
op->val = mlsd_8lsd_ea(word, suffix, regs);
goto compute_done;
}
}
break;
case 2: /* tdi */
if (rd & trap_compare(regs->gpr[ra], (short) word))
goto trap;
return 1;
#endif
case 3: /* twi */
if (rd & trap_compare((int)regs->gpr[ra], (short) word))
goto trap;
return 1;
#ifdef __powerpc64__
case 4:
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
switch (word & 0x3f) {
case 48: /* maddhd */
asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
"=r" (op->val) : "r" (regs->gpr[ra]),
"r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
goto compute_done;
case 49: /* maddhdu */
asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
"=r" (op->val) : "r" (regs->gpr[ra]),
"r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
goto compute_done;
case 51: /* maddld */
asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
"=r" (op->val) : "r" (regs->gpr[ra]),
"r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
goto compute_done;
}
/*
* There are other instructions from ISA 3.0 with the same
* primary opcode which do not have emulation support yet.
*/
return -1;
#endif
case 7: /* mulli */
op->val = regs->gpr[ra] * (short) word;
goto compute_done;
case 8: /* subfic */
imm = (short) word;
add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
return 1;
case 10: /* cmpli */
imm = (unsigned short) word;
val = regs->gpr[ra];
#ifdef __powerpc64__
if ((rd & 1) == 0)
val = (unsigned int) val;
#endif
do_cmp_unsigned(regs, op, val, imm, rd >> 2);
return 1;
case 11: /* cmpi */
imm = (short) word;
val = regs->gpr[ra];
#ifdef __powerpc64__
if ((rd & 1) == 0)
val = (int) val;
#endif
do_cmp_signed(regs, op, val, imm, rd >> 2);
return 1;
case 12: /* addic */
imm = (short) word;
add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
return 1;
case 13: /* addic. */
imm = (short) word;
add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
set_cr0(regs, op);
return 1;
case 14: /* addi */
imm = (short) word;
if (ra)
imm += regs->gpr[ra];
op->val = imm;
goto compute_done;
case 15: /* addis */
imm = ((short) word) << 16;
if (ra)
imm += regs->gpr[ra];
op->val = imm;
goto compute_done;
case 19:
if (((word >> 1) & 0x1f) == 2) {
/* addpcis */
imm = (short) (word & 0xffc1); /* d0 + d2 fields */
imm |= (word >> 15) & 0x3e; /* d1 field */
op->val = regs->nip + (imm << 16) + 4;
goto compute_done;
}
op->type = UNKNOWN;
return 0;
case 20: /* rlwimi */
mb = (word >> 6) & 0x1f;
me = (word >> 1) & 0x1f;
val = DATA32(regs->gpr[rd]);
imm = MASK32(mb, me);
op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
goto logical_done;
case 21: /* rlwinm */
mb = (word >> 6) & 0x1f;
me = (word >> 1) & 0x1f;
val = DATA32(regs->gpr[rd]);
op->val = ROTATE(val, rb) & MASK32(mb, me);
goto logical_done;
case 23: /* rlwnm */
mb = (word >> 6) & 0x1f;
me = (word >> 1) & 0x1f;
rb = regs->gpr[rb] & 0x1f;
val = DATA32(regs->gpr[rd]);
op->val = ROTATE(val, rb) & MASK32(mb, me);
goto logical_done;
case 24: /* ori */
op->val = regs->gpr[rd] | (unsigned short) word;
goto logical_done_nocc;
case 25: /* oris */
imm = (unsigned short) word;
op->val = regs->gpr[rd] | (imm << 16);
goto logical_done_nocc;
case 26: /* xori */
op->val = regs->gpr[rd] ^ (unsigned short) word;
goto logical_done_nocc;
case 27: /* xoris */
imm = (unsigned short) word;
op->val = regs->gpr[rd] ^ (imm << 16);
goto logical_done_nocc;
case 28: /* andi. */
op->val = regs->gpr[rd] & (unsigned short) word;
set_cr0(regs, op);
goto logical_done_nocc;
case 29: /* andis. */
imm = (unsigned short) word;
op->val = regs->gpr[rd] & (imm << 16);
set_cr0(regs, op);
goto logical_done_nocc;
#ifdef __powerpc64__
case 30: /* rld* */
mb = ((word >> 6) & 0x1f) | (word & 0x20);
val = regs->gpr[rd];
if ((word & 0x10) == 0) {
sh = rb | ((word & 2) << 4);
val = ROTATE(val, sh);
switch ((word >> 2) & 3) {
case 0: /* rldicl */
val &= MASK64_L(mb);
break;
case 1: /* rldicr */
val &= MASK64_R(mb);
break;
case 2: /* rldic */
val &= MASK64(mb, 63 - sh);
break;
case 3: /* rldimi */
imm = MASK64(mb, 63 - sh);
val = (regs->gpr[ra] & ~imm) |
(val & imm);
}
op->val = val;
goto logical_done;
} else {
sh = regs->gpr[rb] & 0x3f;
val = ROTATE(val, sh);
switch ((word >> 1) & 7) {
case 0: /* rldcl */
op->val = val & MASK64_L(mb);
goto logical_done;
case 1: /* rldcr */
op->val = val & MASK64_R(mb);
goto logical_done;
}
}
#endif
op->type = UNKNOWN; /* illegal instruction */
return 0;
case 31:
/* isel occupies 32 minor opcodes */
if (((word >> 1) & 0x1f) == 15) {
mb = (word >> 6) & 0x1f; /* bc field */
val = (regs->ccr >> (31 - mb)) & 1;
val2 = (ra) ? regs->gpr[ra] : 0;
op->val = (val) ? val2 : regs->gpr[rb];
goto compute_done;
}
switch ((word >> 1) & 0x3ff) {
case 4: /* tw */
if (rd == 0x1f ||
(rd & trap_compare((int)regs->gpr[ra],
(int)regs->gpr[rb])))
goto trap;
return 1;
#ifdef __powerpc64__
case 68: /* td */
if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
goto trap;
return 1;
#endif
case 83: /* mfmsr */
if (regs->msr & MSR_PR)
goto priv;
op->type = MFMSR;
op->reg = rd;
return 0;
case 146: /* mtmsr */
if (regs->msr & MSR_PR)
goto priv;
op->type = MTMSR;
op->reg = rd;
op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
return 0;
#ifdef CONFIG_PPC64
case 178: /* mtmsrd */
if (regs->msr & MSR_PR)
goto priv;
op->type = MTMSR;
op->reg = rd;
/* only MSR_EE and MSR_RI get changed if bit 15 set */
/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
op->val = imm;
return 0;
#endif
case 19: /* mfcr */
imm = 0xffffffffUL;
if ((word >> 20) & 1) {
imm = 0xf0000000UL;
for (sh = 0; sh < 8; ++sh) {
if (word & (0x80000 >> sh))
break;
imm >>= 4;
}
}
op->val = regs->ccr & imm;
goto compute_done;
case 144: /* mtcrf */
op->type = COMPUTE + SETCC;
imm = 0xf0000000UL;
val = regs->gpr[rd];
op->ccval = regs->ccr;
for (sh = 0; sh < 8; ++sh) {
if (word & (0x80000 >> sh))
op->ccval = (op->ccval & ~imm) |
(val & imm);
imm >>= 4;
}
return 1;
case 339: /* mfspr */
spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
op->type = MFSPR;
op->reg = rd;
op->spr = spr;
if (spr == SPRN_XER || spr == SPRN_LR ||
spr == SPRN_CTR)
return 1;
return 0;
case 467: /* mtspr */
spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
op->type = MTSPR;
op->val = regs->gpr[rd];
op->spr = spr;
if (spr == SPRN_XER || spr == SPRN_LR ||
spr == SPRN_CTR)
return 1;
return 0;
/*
* Compare instructions
*/
case 0: /* cmp */
val = regs->gpr[ra];
val2 = regs->gpr[rb];
#ifdef __powerpc64__
if ((rd & 1) == 0) {
/* word (32-bit) compare */
val = (int) val;
val2 = (int) val2;
}
#endif
do_cmp_signed(regs, op, val, val2, rd >> 2);
return 1;
case 32: /* cmpl */
val = regs->gpr[ra];
val2 = regs->gpr[rb];
#ifdef __powerpc64__
if ((rd & 1) == 0) {
/* word (32-bit) compare */
val = (unsigned int) val;
val2 = (unsigned int) val2;
}
#endif
do_cmp_unsigned(regs, op, val, val2, rd >> 2);
return 1;
case 508: /* cmpb */
do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
goto logical_done_nocc;
/*
* Arithmetic instructions
*/
case 8: /* subfc */
add_with_carry(regs, op, rd, ~regs->gpr[ra],
regs->gpr[rb], 1);
goto arith_done;
#ifdef __powerpc64__
case 9: /* mulhdu */
asm("mulhdu %0,%1,%2" : "=r" (op->val) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
#endif
case 10: /* addc */
add_with_carry(regs, op, rd, regs->gpr[ra],
regs->gpr[rb], 0);
goto arith_done;
case 11: /* mulhwu */
asm("mulhwu %0,%1,%2" : "=r" (op->val) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
case 40: /* subf */
op->val = regs->gpr[rb] - regs->gpr[ra];
goto arith_done;
#ifdef __powerpc64__
case 73: /* mulhd */
asm("mulhd %0,%1,%2" : "=r" (op->val) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
#endif
case 75: /* mulhw */
asm("mulhw %0,%1,%2" : "=r" (op->val) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
case 104: /* neg */
op->val = -regs->gpr[ra];
goto arith_done;
case 136: /* subfe */
add_with_carry(regs, op, rd, ~regs->gpr[ra],
regs->gpr[rb], regs->xer & XER_CA);
goto arith_done;
case 138: /* adde */
add_with_carry(regs, op, rd, regs->gpr[ra],
regs->gpr[rb], regs->xer & XER_CA);
goto arith_done;
case 200: /* subfze */
add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
regs->xer & XER_CA);
goto arith_done;
case 202: /* addze */
add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
regs->xer & XER_CA);
goto arith_done;
case 232: /* subfme */
add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
regs->xer & XER_CA);
goto arith_done;
#ifdef __powerpc64__
case 233: /* mulld */
op->val = regs->gpr[ra] * regs->gpr[rb];
goto arith_done;
#endif
case 234: /* addme */
add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
regs->xer & XER_CA);
goto arith_done;
case 235: /* mullw */
op->val = (long)(int) regs->gpr[ra] *
(int) regs->gpr[rb];
goto arith_done;
#ifdef __powerpc64__
case 265: /* modud */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
op->val = regs->gpr[ra] % regs->gpr[rb];
goto compute_done;
#endif
case 266: /* add */
op->val = regs->gpr[ra] + regs->gpr[rb];
goto arith_done;
case 267: /* moduw */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
op->val = (unsigned int) regs->gpr[ra] %
(unsigned int) regs->gpr[rb];
goto compute_done;
#ifdef __powerpc64__
case 457: /* divdu */
op->val = regs->gpr[ra] / regs->gpr[rb];
goto arith_done;
#endif
case 459: /* divwu */
op->val = (unsigned int) regs->gpr[ra] /
(unsigned int) regs->gpr[rb];
goto arith_done;
#ifdef __powerpc64__
case 489: /* divd */
op->val = (long int) regs->gpr[ra] /
(long int) regs->gpr[rb];
goto arith_done;
#endif
case 491: /* divw */
op->val = (int) regs->gpr[ra] /
(int) regs->gpr[rb];
goto arith_done;
#ifdef __powerpc64__
case 425: /* divde[.] */
asm volatile(PPC_DIVDE(%0, %1, %2) :
"=r" (op->val) : "r" (regs->gpr[ra]),
"r" (regs->gpr[rb]));
goto arith_done;
case 393: /* divdeu[.] */
asm volatile(PPC_DIVDEU(%0, %1, %2) :
"=r" (op->val) : "r" (regs->gpr[ra]),
"r" (regs->gpr[rb]));
goto arith_done;
#endif
case 755: /* darn */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
switch (ra & 0x3) {
case 0:
/* 32-bit conditioned */
asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
goto compute_done;
case 1:
/* 64-bit conditioned */
asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
goto compute_done;
case 2:
/* 64-bit raw */
asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
goto compute_done;
}
return -1;
#ifdef __powerpc64__
case 777: /* modsd */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
op->val = (long int) regs->gpr[ra] %
(long int) regs->gpr[rb];
goto compute_done;
#endif
case 779: /* modsw */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
op->val = (int) regs->gpr[ra] %
(int) regs->gpr[rb];
goto compute_done;
/*
* Logical instructions
*/
case 26: /* cntlzw */
val = (unsigned int) regs->gpr[rd];
op->val = ( val ? __builtin_clz(val) : 32 );
goto logical_done;
#ifdef __powerpc64__
case 58: /* cntlzd */
val = regs->gpr[rd];
op->val = ( val ? __builtin_clzl(val) : 64 );
goto logical_done;
#endif
case 28: /* and */
op->val = regs->gpr[rd] & regs->gpr[rb];
goto logical_done;
case 60: /* andc */
op->val = regs->gpr[rd] & ~regs->gpr[rb];
goto logical_done;
case 122: /* popcntb */
do_popcnt(regs, op, regs->gpr[rd], 8);
goto logical_done_nocc;
case 124: /* nor */
op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
goto logical_done;
case 154: /* prtyw */
do_prty(regs, op, regs->gpr[rd], 32);
goto logical_done_nocc;
case 186: /* prtyd */
do_prty(regs, op, regs->gpr[rd], 64);
goto logical_done_nocc;
#ifdef CONFIG_PPC64
case 252: /* bpermd */
do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
goto logical_done_nocc;
#endif
case 284: /* xor */
op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
goto logical_done;
case 316: /* xor */
op->val = regs->gpr[rd] ^ regs->gpr[rb];
goto logical_done;
case 378: /* popcntw */
do_popcnt(regs, op, regs->gpr[rd], 32);
goto logical_done_nocc;
case 412: /* orc */
op->val = regs->gpr[rd] | ~regs->gpr[rb];
goto logical_done;
case 444: /* or */
op->val = regs->gpr[rd] | regs->gpr[rb];
goto logical_done;
case 476: /* nand */
op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
goto logical_done;
#ifdef CONFIG_PPC64
case 506: /* popcntd */
do_popcnt(regs, op, regs->gpr[rd], 64);
goto logical_done_nocc;
#endif
case 538: /* cnttzw */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
val = (unsigned int) regs->gpr[rd];
op->val = (val ? __builtin_ctz(val) : 32);
goto logical_done;
#ifdef __powerpc64__
case 570: /* cnttzd */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
val = regs->gpr[rd];
op->val = (val ? __builtin_ctzl(val) : 64);
goto logical_done;
#endif
case 922: /* extsh */
op->val = (signed short) regs->gpr[rd];
goto logical_done;
case 954: /* extsb */
op->val = (signed char) regs->gpr[rd];
goto logical_done;
#ifdef __powerpc64__
case 986: /* extsw */
op->val = (signed int) regs->gpr[rd];
goto logical_done;
#endif
/*
* Shift instructions
*/
case 24: /* slw */
sh = regs->gpr[rb] & 0x3f;
if (sh < 32)
op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
else
op->val = 0;
goto logical_done;
case 536: /* srw */
sh = regs->gpr[rb] & 0x3f;
if (sh < 32)
op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
else
op->val = 0;
goto logical_done;
case 792: /* sraw */
op->type = COMPUTE + SETREG + SETXER;
sh = regs->gpr[rb] & 0x3f;
ival = (signed int) regs->gpr[rd];
op->val = ival >> (sh < 32 ? sh : 31);
op->xerval = regs->xer;
if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
op->xerval |= XER_CA;
else
op->xerval &= ~XER_CA;
set_ca32(op, op->xerval & XER_CA);
goto logical_done;
case 824: /* srawi */
op->type = COMPUTE + SETREG + SETXER;
sh = rb;
ival = (signed int) regs->gpr[rd];
op->val = ival >> sh;
op->xerval = regs->xer;
if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
op->xerval |= XER_CA;
else
op->xerval &= ~XER_CA;
set_ca32(op, op->xerval & XER_CA);
goto logical_done;
#ifdef __powerpc64__
case 27: /* sld */
sh = regs->gpr[rb] & 0x7f;
if (sh < 64)
op->val = regs->gpr[rd] << sh;
else
op->val = 0;
goto logical_done;
case 539: /* srd */
sh = regs->gpr[rb] & 0x7f;
if (sh < 64)
op->val = regs->gpr[rd] >> sh;
else
op->val = 0;
goto logical_done;
case 794: /* srad */
op->type = COMPUTE + SETREG + SETXER;
sh = regs->gpr[rb] & 0x7f;
ival = (signed long int) regs->gpr[rd];
op->val = ival >> (sh < 64 ? sh : 63);
op->xerval = regs->xer;
if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
op->xerval |= XER_CA;
else
op->xerval &= ~XER_CA;
set_ca32(op, op->xerval & XER_CA);
goto logical_done;
case 826: /* sradi with sh_5 = 0 */
case 827: /* sradi with sh_5 = 1 */
op->type = COMPUTE + SETREG + SETXER;
sh = rb | ((word & 2) << 4);
ival = (signed long int) regs->gpr[rd];
op->val = ival >> sh;
op->xerval = regs->xer;
if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
op->xerval |= XER_CA;
else
op->xerval &= ~XER_CA;
set_ca32(op, op->xerval & XER_CA);
goto logical_done;
case 890: /* extswsli with sh_5 = 0 */
case 891: /* extswsli with sh_5 = 1 */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return -1;
op->type = COMPUTE + SETREG;
sh = rb | ((word & 2) << 4);
val = (signed int) regs->gpr[rd];
if (sh)
op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
else
op->val = val;
goto logical_done;
#endif /* __powerpc64__ */
/*
* Cache instructions
*/
case 54: /* dcbst */
op->type = MKOP(CACHEOP, DCBST, 0);
op->ea = xform_ea(word, regs);
return 0;
case 86: /* dcbf */
op->type = MKOP(CACHEOP, DCBF, 0);
op->ea = xform_ea(word, regs);
return 0;
case 246: /* dcbtst */
op->type = MKOP(CACHEOP, DCBTST, 0);
op->ea = xform_ea(word, regs);
op->reg = rd;
return 0;
case 278: /* dcbt */
op->type = MKOP(CACHEOP, DCBTST, 0);
op->ea = xform_ea(word, regs);
op->reg = rd;
return 0;
case 982: /* icbi */
op->type = MKOP(CACHEOP, ICBI, 0);
op->ea = xform_ea(word, regs);
return 0;
case 1014: /* dcbz */
op->type = MKOP(CACHEOP, DCBZ, 0);
op->ea = xform_ea(word, regs);
return 0;
}
break;
}
/*
* Loads and stores.
*/
op->type = UNKNOWN;
op->update_reg = ra;
op->reg = rd;
op->val = regs->gpr[rd];
u = (word >> 20) & UPDATE;
op->vsx_flags = 0;
switch (opcode) {
case 31:
u = word & UPDATE;
op->ea = xform_ea(word, regs);
switch ((word >> 1) & 0x3ff) {
case 20: /* lwarx */
op->type = MKOP(LARX, 0, 4);
break;
case 150: /* stwcx. */
op->type = MKOP(STCX, 0, 4);
break;
#ifdef __powerpc64__
case 84: /* ldarx */
op->type = MKOP(LARX, 0, 8);
break;
case 214: /* stdcx. */
op->type = MKOP(STCX, 0, 8);
break;
case 52: /* lbarx */
op->type = MKOP(LARX, 0, 1);
break;
case 694: /* stbcx. */
op->type = MKOP(STCX, 0, 1);
break;
case 116: /* lharx */
op->type = MKOP(LARX, 0, 2);
break;
case 726: /* sthcx. */
op->type = MKOP(STCX, 0, 2);
break;
case 276: /* lqarx */
if (!((rd & 1) || rd == ra || rd == rb))
op->type = MKOP(LARX, 0, 16);
break;
case 182: /* stqcx. */
if (!(rd & 1))
op->type = MKOP(STCX, 0, 16);
break;
#endif
case 23: /* lwzx */
case 55: /* lwzux */
op->type = MKOP(LOAD, u, 4);
break;
case 87: /* lbzx */
case 119: /* lbzux */
op->type = MKOP(LOAD, u, 1);
break;
#ifdef CONFIG_ALTIVEC
/*
* Note: for the load/store vector element instructions,
* bits of the EA say which field of the VMX register to use.
*/
case 7: /* lvebx */
op->type = MKOP(LOAD_VMX, 0, 1);
op->element_size = 1;
break;
case 39: /* lvehx */
op->type = MKOP(LOAD_VMX, 0, 2);
op->element_size = 2;
break;
case 71: /* lvewx */
op->type = MKOP(LOAD_VMX, 0, 4);
op->element_size = 4;
break;
case 103: /* lvx */
case 359: /* lvxl */
op->type = MKOP(LOAD_VMX, 0, 16);
op->element_size = 16;
break;
case 135: /* stvebx */
op->type = MKOP(STORE_VMX, 0, 1);
op->element_size = 1;
break;
case 167: /* stvehx */
op->type = MKOP(STORE_VMX, 0, 2);
op->element_size = 2;
break;
case 199: /* stvewx */
op->type = MKOP(STORE_VMX, 0, 4);
op->element_size = 4;
break;
case 231: /* stvx */
case 487: /* stvxl */
op->type = MKOP(STORE_VMX, 0, 16);
break;
#endif /* CONFIG_ALTIVEC */
#ifdef __powerpc64__
case 21: /* ldx */
case 53: /* ldux */
op->type = MKOP(LOAD, u, 8);
break;
case 149: /* stdx */
case 181: /* stdux */
op->type = MKOP(STORE, u, 8);
break;
#endif
case 151: /* stwx */
case 183: /* stwux */
op->type = MKOP(STORE, u, 4);
break;
case 215: /* stbx */
case 247: /* stbux */
op->type = MKOP(STORE, u, 1);
break;
case 279: /* lhzx */
case 311: /* lhzux */
op->type = MKOP(LOAD, u, 2);
break;
#ifdef __powerpc64__
case 341: /* lwax */
case 373: /* lwaux */
op->type = MKOP(LOAD, SIGNEXT | u, 4);
break;
#endif
case 343: /* lhax */
case 375: /* lhaux */
op->type = MKOP(LOAD, SIGNEXT | u, 2);
break;
case 407: /* sthx */
case 439: /* sthux */
op->type = MKOP(STORE, u, 2);
break;
#ifdef __powerpc64__
case 532: /* ldbrx */
op->type = MKOP(LOAD, BYTEREV, 8);
break;
#endif
case 533: /* lswx */
op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
break;
case 534: /* lwbrx */
op->type = MKOP(LOAD, BYTEREV, 4);
break;
case 597: /* lswi */
if (rb == 0)
rb = 32; /* # bytes to load */
op->type = MKOP(LOAD_MULTI, 0, rb);
op->ea = ra ? regs->gpr[ra] : 0;
break;
#ifdef CONFIG_PPC_FPU
case 535: /* lfsx */
case 567: /* lfsux */
op->type = MKOP(LOAD_FP, u | FPCONV, 4);
break;
case 599: /* lfdx */
case 631: /* lfdux */
op->type = MKOP(LOAD_FP, u, 8);
break;
case 663: /* stfsx */
case 695: /* stfsux */
op->type = MKOP(STORE_FP, u | FPCONV, 4);
break;
case 727: /* stfdx */
case 759: /* stfdux */
op->type = MKOP(STORE_FP, u, 8);
break;
#ifdef __powerpc64__
case 791: /* lfdpx */
op->type = MKOP(LOAD_FP, 0, 16);
break;
case 855: /* lfiwax */
op->type = MKOP(LOAD_FP, SIGNEXT, 4);
break;
case 887: /* lfiwzx */
op->type = MKOP(LOAD_FP, 0, 4);
break;
case 919: /* stfdpx */
op->type = MKOP(STORE_FP, 0, 16);
break;
case 983: /* stfiwx */
op->type = MKOP(STORE_FP, 0, 4);
break;
#endif /* __powerpc64 */
#endif /* CONFIG_PPC_FPU */
#ifdef __powerpc64__
case 660: /* stdbrx */
op->type = MKOP(STORE, BYTEREV, 8);
op->val = byterev_8(regs->gpr[rd]);
break;
#endif
case 661: /* stswx */
op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
break;
case 662: /* stwbrx */
op->type = MKOP(STORE, BYTEREV, 4);
op->val = byterev_4(regs->gpr[rd]);
break;
case 725: /* stswi */
if (rb == 0)
rb = 32; /* # bytes to store */
op->type = MKOP(STORE_MULTI, 0, rb);
op->ea = ra ? regs->gpr[ra] : 0;
break;
case 790: /* lhbrx */
op->type = MKOP(LOAD, BYTEREV, 2);
break;
case 918: /* sthbrx */
op->type = MKOP(STORE, BYTEREV, 2);
op->val = byterev_2(regs->gpr[rd]);
break;
#ifdef CONFIG_VSX
case 12: /* lxsiwzx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 4);
op->element_size = 8;
break;
case 76: /* lxsiwax */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
op->element_size = 8;
break;
case 140: /* stxsiwx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 4);
op->element_size = 8;
break;
case 268: /* lxvx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 16);
op->element_size = 16;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 269: /* lxvl */
case 301: { /* lxvll */
int nb;
op->reg = rd | ((word & 1) << 5);
op->ea = ra ? regs->gpr[ra] : 0;
nb = regs->gpr[rb] & 0xff;
if (nb > 16)
nb = 16;
op->type = MKOP(LOAD_VSX, 0, nb);
op->element_size = 16;
op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
VSX_CHECK_VEC;
break;
}
case 332: /* lxvdsx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 8);
op->element_size = 8;
op->vsx_flags = VSX_SPLAT;
break;
case 364: /* lxvwsx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 4);
op->element_size = 4;
op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
break;
case 396: /* stxvx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 16);
op->element_size = 16;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 397: /* stxvl */
case 429: { /* stxvll */
int nb;
op->reg = rd | ((word & 1) << 5);
op->ea = ra ? regs->gpr[ra] : 0;
nb = regs->gpr[rb] & 0xff;
if (nb > 16)
nb = 16;
op->type = MKOP(STORE_VSX, 0, nb);
op->element_size = 16;
op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
VSX_CHECK_VEC;
break;
}
case 524: /* lxsspx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 4);
op->element_size = 8;
op->vsx_flags = VSX_FPCONV;
break;
case 588: /* lxsdx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 8);
op->element_size = 8;
break;
case 652: /* stxsspx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 4);
op->element_size = 8;
op->vsx_flags = VSX_FPCONV;
break;
case 716: /* stxsdx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 8);
op->element_size = 8;
break;
case 780: /* lxvw4x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 16);
op->element_size = 4;
break;
case 781: /* lxsibzx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 1);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 812: /* lxvh8x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 16);
op->element_size = 2;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 813: /* lxsihzx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 2);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 844: /* lxvd2x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 16);
op->element_size = 8;
break;
case 876: /* lxvb16x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(LOAD_VSX, 0, 16);
op->element_size = 1;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 908: /* stxvw4x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 16);
op->element_size = 4;
break;
case 909: /* stxsibx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 1);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 940: /* stxvh8x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 16);
op->element_size = 2;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 941: /* stxsihx */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 2);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 972: /* stxvd2x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 16);
op->element_size = 8;
break;
case 1004: /* stxvb16x */
op->reg = rd | ((word & 1) << 5);
op->type = MKOP(STORE_VSX, 0, 16);
op->element_size = 1;
op->vsx_flags = VSX_CHECK_VEC;
break;
#endif /* CONFIG_VSX */
}
break;
case 32: /* lwz */
case 33: /* lwzu */
op->type = MKOP(LOAD, u, 4);
op->ea = dform_ea(word, regs);
break;
case 34: /* lbz */
case 35: /* lbzu */
op->type = MKOP(LOAD, u, 1);
op->ea = dform_ea(word, regs);
break;
case 36: /* stw */
case 37: /* stwu */
op->type = MKOP(STORE, u, 4);
op->ea = dform_ea(word, regs);
break;
case 38: /* stb */
case 39: /* stbu */
op->type = MKOP(STORE, u, 1);
op->ea = dform_ea(word, regs);
break;
case 40: /* lhz */
case 41: /* lhzu */
op->type = MKOP(LOAD, u, 2);
op->ea = dform_ea(word, regs);
break;
case 42: /* lha */
case 43: /* lhau */
op->type = MKOP(LOAD, SIGNEXT | u, 2);
op->ea = dform_ea(word, regs);
break;
case 44: /* sth */
case 45: /* sthu */
op->type = MKOP(STORE, u, 2);
op->ea = dform_ea(word, regs);
break;
case 46: /* lmw */
if (ra >= rd)
break; /* invalid form, ra in range to load */
op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
op->ea = dform_ea(word, regs);
break;
case 47: /* stmw */
op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
op->ea = dform_ea(word, regs);
break;
#ifdef CONFIG_PPC_FPU
case 48: /* lfs */
case 49: /* lfsu */
op->type = MKOP(LOAD_FP, u | FPCONV, 4);
op->ea = dform_ea(word, regs);
break;
case 50: /* lfd */
case 51: /* lfdu */
op->type = MKOP(LOAD_FP, u, 8);
op->ea = dform_ea(word, regs);
break;
case 52: /* stfs */
case 53: /* stfsu */
op->type = MKOP(STORE_FP, u | FPCONV, 4);
op->ea = dform_ea(word, regs);
break;
case 54: /* stfd */
case 55: /* stfdu */
op->type = MKOP(STORE_FP, u, 8);
op->ea = dform_ea(word, regs);
break;
#endif
#ifdef __powerpc64__
case 56: /* lq */
if (!((rd & 1) || (rd == ra)))
op->type = MKOP(LOAD, 0, 16);
op->ea = dqform_ea(word, regs);
break;
#endif
#ifdef CONFIG_VSX
case 57: /* lfdp, lxsd, lxssp */
op->ea = dsform_ea(word, regs);
switch (word & 3) {
case 0: /* lfdp */
if (rd & 1)
break; /* reg must be even */
op->type = MKOP(LOAD_FP, 0, 16);
break;
case 2: /* lxsd */
op->reg = rd + 32;
op->type = MKOP(LOAD_VSX, 0, 8);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 3: /* lxssp */
op->reg = rd + 32;
op->type = MKOP(LOAD_VSX, 0, 4);
op->element_size = 8;
op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
break;
}
break;
#endif /* CONFIG_VSX */
#ifdef __powerpc64__
case 58: /* ld[u], lwa */
op->ea = dsform_ea(word, regs);
switch (word & 3) {
case 0: /* ld */
op->type = MKOP(LOAD, 0, 8);
break;
case 1: /* ldu */
op->type = MKOP(LOAD, UPDATE, 8);
break;
case 2: /* lwa */
op->type = MKOP(LOAD, SIGNEXT, 4);
break;
}
break;
#endif
#ifdef CONFIG_VSX
case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
switch (word & 7) {
case 0: /* stfdp with LSB of DS field = 0 */
case 4: /* stfdp with LSB of DS field = 1 */
op->ea = dsform_ea(word, regs);
op->type = MKOP(STORE_FP, 0, 16);
break;
case 1: /* lxv */
op->ea = dqform_ea(word, regs);
if (word & 8)
op->reg = rd + 32;
op->type = MKOP(LOAD_VSX, 0, 16);
op->element_size = 16;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 2: /* stxsd with LSB of DS field = 0 */
case 6: /* stxsd with LSB of DS field = 1 */
op->ea = dsform_ea(word, regs);
op->reg = rd + 32;
op->type = MKOP(STORE_VSX, 0, 8);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 3: /* stxssp with LSB of DS field = 0 */
case 7: /* stxssp with LSB of DS field = 1 */
op->ea = dsform_ea(word, regs);
op->reg = rd + 32;
op->type = MKOP(STORE_VSX, 0, 4);
op->element_size = 8;
op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
break;
case 5: /* stxv */
op->ea = dqform_ea(word, regs);
if (word & 8)
op->reg = rd + 32;
op->type = MKOP(STORE_VSX, 0, 16);
op->element_size = 16;
op->vsx_flags = VSX_CHECK_VEC;
break;
}
break;
#endif /* CONFIG_VSX */
#ifdef __powerpc64__
case 62: /* std[u] */
op->ea = dsform_ea(word, regs);
switch (word & 3) {
case 0: /* std */
op->type = MKOP(STORE, 0, 8);
break;
case 1: /* stdu */
op->type = MKOP(STORE, UPDATE, 8);
break;
case 2: /* stq */
if (!(rd & 1))
op->type = MKOP(STORE, 0, 16);
break;
}
break;
case 1: /* Prefixed instructions */
prefix_r = GET_PREFIX_R(word);
ra = GET_PREFIX_RA(suffix);
op->update_reg = ra;
rd = (suffix >> 21) & 0x1f;
op->reg = rd;
op->val = regs->gpr[rd];
suffixopcode = get_op(suffix);
prefixtype = (word >> 24) & 0x3;
switch (prefixtype) {
case 0: /* Type 00 Eight-Byte Load/Store */
if (prefix_r && ra)
break;
op->ea = mlsd_8lsd_ea(word, suffix, regs);
switch (suffixopcode) {
case 41: /* plwa */
op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
break;
case 42: /* plxsd */
op->reg = rd + 32;
op->type = MKOP(LOAD_VSX, PREFIXED, 8);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 43: /* plxssp */
op->reg = rd + 32;
op->type = MKOP(LOAD_VSX, PREFIXED, 4);
op->element_size = 8;
op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
break;
case 46: /* pstxsd */
op->reg = rd + 32;
op->type = MKOP(STORE_VSX, PREFIXED, 8);
op->element_size = 8;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 47: /* pstxssp */
op->reg = rd + 32;
op->type = MKOP(STORE_VSX, PREFIXED, 4);
op->element_size = 8;
op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
break;
case 51: /* plxv1 */
op->reg += 32;
fallthrough;
case 50: /* plxv0 */
op->type = MKOP(LOAD_VSX, PREFIXED, 16);
op->element_size = 16;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 55: /* pstxv1 */
op->reg = rd + 32;
fallthrough;
case 54: /* pstxv0 */
op->type = MKOP(STORE_VSX, PREFIXED, 16);
op->element_size = 16;
op->vsx_flags = VSX_CHECK_VEC;
break;
case 56: /* plq */
op->type = MKOP(LOAD, PREFIXED, 16);
break;
case 57: /* pld */
op->type = MKOP(LOAD, PREFIXED, 8);
break;
case 60: /* stq */
op->type = MKOP(STORE, PREFIXED, 16);
break;
case 61: /* pstd */
op->type = MKOP(STORE, PREFIXED, 8);
break;
}
break;
case 1: /* Type 01 Eight-Byte Register-to-Register */
break;
case 2: /* Type 10 Modified Load/Store */
if (prefix_r && ra)
break;
op->ea = mlsd_8lsd_ea(word, suffix, regs);
switch (suffixopcode) {
case 32: /* plwz */
op->type = MKOP(LOAD, PREFIXED, 4);
break;
case 34: /* plbz */
op->type = MKOP(LOAD, PREFIXED, 1);
break;
case 36: /* pstw */
op->type = MKOP(STORE, PREFIXED, 4);
break;
case 38: /* pstb */
op->type = MKOP(STORE, PREFIXED, 1);
break;
case 40: /* plhz */
op->type = MKOP(LOAD, PREFIXED, 2);
break;
case 42: /* plha */
op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
break;
case 44: /* psth */
op->type = MKOP(STORE, PREFIXED, 2);
break;
case 48: /* plfs */
op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
break;
case 50: /* plfd */
op->type = MKOP(LOAD_FP, PREFIXED, 8);
break;
case 52: /* pstfs */
op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
break;
case 54: /* pstfd */
op->type = MKOP(STORE_FP, PREFIXED, 8);
break;
}
break;
case 3: /* Type 11 Modified Register-to-Register */
break;
}
#endif /* __powerpc64__ */
}
#ifdef CONFIG_VSX
if ((GETTYPE(op->type) == LOAD_VSX ||
GETTYPE(op->type) == STORE_VSX) &&
!cpu_has_feature(CPU_FTR_VSX)) {
return -1;
}
#endif /* CONFIG_VSX */
return 0;
logical_done:
if (word & 1)
set_cr0(regs, op);
logical_done_nocc:
op->reg = ra;
op->type |= SETREG;
return 1;
arith_done:
if (word & 1)
set_cr0(regs, op);
compute_done:
op->reg = rd;
op->type |= SETREG;
return 1;
priv:
op->type = INTERRUPT | 0x700;
op->val = SRR1_PROGPRIV;
return 0;
trap:
op->type = INTERRUPT | 0x700;
op->val = SRR1_PROGTRAP;
return 0;
}
EXPORT_SYMBOL_GPL(analyse_instr);
NOKPROBE_SYMBOL(analyse_instr);
/*
* For PPC32 we always use stwu with r1 to change the stack pointer.
* So this emulated store may corrupt the exception frame, now we
* have to provide the exception frame trampoline, which is pushed
* below the kprobed function stack. So we only update gpr[1] but
* don't emulate the real store operation. We will do real store
* operation safely in exception return code by checking this flag.
*/
static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
{
#ifdef CONFIG_PPC32
/*
* Check if we will touch kernel stack overflow
*/
if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
return -EINVAL;
}
#endif /* CONFIG_PPC32 */
/*
* Check if we already set since that means we'll
* lose the previous value.
*/
WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
set_thread_flag(TIF_EMULATE_STACK_STORE);
return 0;
}
static nokprobe_inline void do_signext(unsigned long *valp, int size)
{
switch (size) {
case 2:
*valp = (signed short) *valp;
break;
case 4:
*valp = (signed int) *valp;
break;
}
}
static nokprobe_inline void do_byterev(unsigned long *valp, int size)
{
switch (size) {
case 2:
*valp = byterev_2(*valp);
break;
case 4:
*valp = byterev_4(*valp);
break;
#ifdef __powerpc64__
case 8:
*valp = byterev_8(*valp);
break;
#endif
}
}
/*
* Emulate an instruction that can be executed just by updating
* fields in *regs.
*/
void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
{
unsigned long next_pc;
next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
switch (GETTYPE(op->type)) {
case COMPUTE:
if (op->type & SETREG)
regs->gpr[op->reg] = op->val;
if (op->type & SETCC)
regs->ccr = op->ccval;
if (op->type & SETXER)
regs->xer = op->xerval;
break;
case BRANCH:
if (op->type & SETLK)
regs->link = next_pc;
if (op->type & BRTAKEN)
next_pc = op->val;
if (op->type & DECCTR)
--regs->ctr;
break;
case BARRIER:
switch (op->type & BARRIER_MASK) {
case BARRIER_SYNC:
mb();
break;
case BARRIER_ISYNC:
isync();
break;
case BARRIER_EIEIO:
eieio();
break;
case BARRIER_LWSYNC:
asm volatile("lwsync" : : : "memory");
break;
case BARRIER_PTESYNC:
asm volatile("ptesync" : : : "memory");
break;
}
break;
case MFSPR:
switch (op->spr) {
case SPRN_XER:
regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
break;
case SPRN_LR:
regs->gpr[op->reg] = regs->link;
break;
case SPRN_CTR:
regs->gpr[op->reg] = regs->ctr;
break;
default:
WARN_ON_ONCE(1);
}
break;
case MTSPR:
switch (op->spr) {
case SPRN_XER:
regs->xer = op->val & 0xffffffffUL;
break;
case SPRN_LR:
regs->link = op->val;
break;
case SPRN_CTR:
regs->ctr = op->val;
break;
default:
WARN_ON_ONCE(1);
}
break;
default:
WARN_ON_ONCE(1);
}
regs->nip = next_pc;
}
NOKPROBE_SYMBOL(emulate_update_regs);
/*
* Emulate a previously-analysed load or store instruction.
* Return values are:
* 0 = instruction emulated successfully
* -EFAULT = address out of range or access faulted (regs->dar
* contains the faulting address)
* -EACCES = misaligned access, instruction requires alignment
* -EINVAL = unknown operation in *op
*/
int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
{
int err, size, type;
int i, rd, nb;
unsigned int cr;
unsigned long val;
unsigned long ea;
bool cross_endian;
err = 0;
size = GETSIZE(op->type);
type = GETTYPE(op->type);
cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
ea = truncate_if_32bit(regs->msr, op->ea);
switch (type) {
case LARX:
if (ea & (size - 1))
return -EACCES; /* can't handle misaligned */
if (!address_ok(regs, ea, size))
return -EFAULT;
err = 0;
val = 0;
switch (size) {
#ifdef __powerpc64__
case 1:
__get_user_asmx(val, ea, err, "lbarx");
break;
case 2:
__get_user_asmx(val, ea, err, "lharx");
break;
#endif
case 4:
__get_user_asmx(val, ea, err, "lwarx");
break;
#ifdef __powerpc64__
case 8:
__get_user_asmx(val, ea, err, "ldarx");
break;
case 16:
err = do_lqarx(ea, &regs->gpr[op->reg]);
break;
#endif
default:
return -EINVAL;
}
if (err) {
regs->dar = ea;
break;
}
if (size < 16)
regs->gpr[op->reg] = val;
break;
case STCX:
if (ea & (size - 1))
return -EACCES; /* can't handle misaligned */
if (!address_ok(regs, ea, size))
return -EFAULT;
err = 0;
switch (size) {
#ifdef __powerpc64__
case 1:
__put_user_asmx(op->val, ea, err, "stbcx.", cr);
break;
case 2:
__put_user_asmx(op->val, ea, err, "stbcx.", cr);
break;
#endif
case 4:
__put_user_asmx(op->val, ea, err, "stwcx.", cr);
break;
#ifdef __powerpc64__
case 8:
__put_user_asmx(op->val, ea, err, "stdcx.", cr);
break;
case 16:
err = do_stqcx(ea, regs->gpr[op->reg],
regs->gpr[op->reg + 1], &cr);
break;
#endif
default:
return -EINVAL;
}
if (!err)
regs->ccr = (regs->ccr & 0x0fffffff) |
(cr & 0xe0000000) |
((regs->xer >> 3) & 0x10000000);
else
regs->dar = ea;
break;
case LOAD:
#ifdef __powerpc64__
if (size == 16) {
err = emulate_lq(regs, ea, op->reg, cross_endian);
break;
}
#endif
err = read_mem(&regs->gpr[op->reg], ea, size, regs);
if (!err) {
if (op->type & SIGNEXT)
do_signext(&regs->gpr[op->reg], size);
if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
do_byterev(&regs->gpr[op->reg], size);
}
break;
#ifdef CONFIG_PPC_FPU
case LOAD_FP:
/*
* If the instruction is in userspace, we can emulate it even
* if the VMX state is not live, because we have the state
* stored in the thread_struct. If the instruction is in
* the kernel, we must not touch the state in the thread_struct.
*/
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
return 0;
err = do_fp_load(op, ea, regs, cross_endian);
break;
#endif
#ifdef CONFIG_ALTIVEC
case LOAD_VMX:
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
return 0;
err = do_vec_load(op->reg, ea, size, regs, cross_endian);
break;
#endif
#ifdef CONFIG_VSX
case LOAD_VSX: {
unsigned long msrbit = MSR_VSX;
/*
* Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
* when the target of the instruction is a vector register.
*/
if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
msrbit = MSR_VEC;
if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
return 0;
err = do_vsx_load(op, ea, regs, cross_endian);
break;
}
#endif
case LOAD_MULTI:
if (!address_ok(regs, ea, size))
return -EFAULT;
rd = op->reg;
for (i = 0; i < size; i += 4) {
unsigned int v32 = 0;
nb = size - i;
if (nb > 4)
nb = 4;
err = copy_mem_in((u8 *) &v32, ea, nb, regs);
if (err)
break;
if (unlikely(cross_endian))
v32 = byterev_4(v32);
regs->gpr[rd] = v32;
ea += 4;
/* reg number wraps from 31 to 0 for lsw[ix] */
rd = (rd + 1) & 0x1f;
}
break;
case STORE:
#ifdef __powerpc64__
if (size == 16) {
err = emulate_stq(regs, ea, op->reg, cross_endian);
break;
}
#endif
if ((op->type & UPDATE) && size == sizeof(long) &&
op->reg == 1 && op->update_reg == 1 &&
!(regs->msr & MSR_PR) &&
ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
err = handle_stack_update(ea, regs);
break;
}
if (unlikely(cross_endian))
do_byterev(&op->val, size);
err = write_mem(op->val, ea, size, regs);
break;
#ifdef CONFIG_PPC_FPU
case STORE_FP:
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
return 0;
err = do_fp_store(op, ea, regs, cross_endian);
break;
#endif
#ifdef CONFIG_ALTIVEC
case STORE_VMX:
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
return 0;
err = do_vec_store(op->reg, ea, size, regs, cross_endian);
break;
#endif
#ifdef CONFIG_VSX
case STORE_VSX: {
unsigned long msrbit = MSR_VSX;
/*
* Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
* when the target of the instruction is a vector register.
*/
if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
msrbit = MSR_VEC;
if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
return 0;
err = do_vsx_store(op, ea, regs, cross_endian);
break;
}
#endif
case STORE_MULTI:
if (!address_ok(regs, ea, size))
return -EFAULT;
rd = op->reg;
for (i = 0; i < size; i += 4) {
unsigned int v32 = regs->gpr[rd];
nb = size - i;
if (nb > 4)
nb = 4;
if (unlikely(cross_endian))
v32 = byterev_4(v32);
err = copy_mem_out((u8 *) &v32, ea, nb, regs);
if (err)
break;
ea += 4;
/* reg number wraps from 31 to 0 for stsw[ix] */
rd = (rd + 1) & 0x1f;
}
break;
default:
return -EINVAL;
}
if (err)
return err;
if (op->type & UPDATE)
regs->gpr[op->update_reg] = op->ea;
return 0;
}
NOKPROBE_SYMBOL(emulate_loadstore);
/*
* Emulate instructions that cause a transfer of control,
* loads and stores, and a few other instructions.
* Returns 1 if the step was emulated, 0 if not,
* or -1 if the instruction is one that should not be stepped,
* such as an rfid, or a mtmsrd that would clear MSR_RI.
*/
int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
{
struct instruction_op op;
int r, err, type;
unsigned long val;
unsigned long ea;
r = analyse_instr(&op, regs, instr);
if (r < 0)
return r;
if (r > 0) {
emulate_update_regs(regs, &op);
return 1;
}
err = 0;
type = GETTYPE(op.type);
if (OP_IS_LOAD_STORE(type)) {
err = emulate_loadstore(regs, &op);
if (err)
return 0;
goto instr_done;
}
switch (type) {
case CACHEOP:
ea = truncate_if_32bit(regs->msr, op.ea);
if (!address_ok(regs, ea, 8))
return 0;
switch (op.type & CACHEOP_MASK) {
case DCBST:
__cacheop_user_asmx(ea, err, "dcbst");
break;
case DCBF:
__cacheop_user_asmx(ea, err, "dcbf");
break;
case DCBTST:
if (op.reg == 0)
prefetchw((void *) ea);
break;
case DCBT:
if (op.reg == 0)
prefetch((void *) ea);
break;
case ICBI:
__cacheop_user_asmx(ea, err, "icbi");
break;
case DCBZ:
err = emulate_dcbz(ea, regs);
break;
}
if (err) {
regs->dar = ea;
return 0;
}
goto instr_done;
case MFMSR:
regs->gpr[op.reg] = regs->msr & MSR_MASK;
goto instr_done;
case MTMSR:
val = regs->gpr[op.reg];
if ((val & MSR_RI) == 0)
/* can't step mtmsr[d] that would clear MSR_RI */
return -1;
/* here op.val is the mask of bits to change */
regs->msr = (regs->msr & ~op.val) | (val & op.val);
goto instr_done;
#ifdef CONFIG_PPC64
case SYSCALL: /* sc */
/*
* N.B. this uses knowledge about how the syscall
* entry code works. If that is changed, this will
* need to be changed also.
*/
if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
cpu_has_feature(CPU_FTR_REAL_LE) &&
regs->gpr[0] == 0x1ebe) {
regs->msr ^= MSR_LE;
goto instr_done;
}
regs->gpr[9] = regs->gpr[13];
regs->gpr[10] = MSR_KERNEL;
regs->gpr[11] = regs->nip + 4;
regs->gpr[12] = regs->msr & MSR_MASK;
regs->gpr[13] = (unsigned long) get_paca();
regs->nip = (unsigned long) &system_call_common;
regs->msr = MSR_KERNEL;
return 1;
#ifdef CONFIG_PPC_BOOK3S_64
case SYSCALL_VECTORED_0: /* scv 0 */
regs->gpr[9] = regs->gpr[13];
regs->gpr[10] = MSR_KERNEL;
regs->gpr[11] = regs->nip + 4;
regs->gpr[12] = regs->msr & MSR_MASK;
regs->gpr[13] = (unsigned long) get_paca();
regs->nip = (unsigned long) &system_call_vectored_emulate;
regs->msr = MSR_KERNEL;
return 1;
#endif
case RFI:
return -1;
#endif
}
return 0;
instr_done:
regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
return 1;
}
NOKPROBE_SYMBOL(emulate_step);